Startseite Schnittstelle CAN transceivers

SN65HVD235

AKTIV

CAN, 3,3 V, mit Standby-Modus, Autobaud-Loopback

Produktdetails

Protocols CAN Number of channels 1 Supply voltage (V) 3 to 3.6 Bus fault voltage (V) -36 to 36 Signaling rate (max) (bps) 1000000 Rating Catalog
Protocols CAN Number of channels 1 Supply voltage (V) 3 to 3.6 Bus fault voltage (V) -36 to 36 Signaling rate (max) (bps) 1000000 Rating Catalog
SOIC (D) 8 29.4 mm² 4.9 x 6
  • Single 3.3-V Supply Voltage
  • Bus Pins Fault Protection Exceeds ±36 V
  • Bus Pins ESD Protection Exceeds ±16 kV HBM
  • Compatible With ISO 11898-2
  • GIFT/ICT Compliant
  • Data Rates up to 1 Mbps
  • Extended –7 V to 12 V Common Mode Range
  • High-Input Impedance Allows for 120 Nodes
  • LVTTL I/Os are 5-V Tolerant
  • Adjustable Driver Transition Times for Improved Emissions Performance
  • Unpowered Node Does Not Disturb the Bus
  • Low Current Standby Mode, 200-µA (Typical)
  • SN65HVD233: Loopback Mode
  • SN65HVD234: Ultra Low Current Sleep Mode
    • 50-nA Typical Current Consumption
  • SN65HVD235: Autobaud Loopback Mode
  • Thermal Shutdown Protection
  • Power up and Down With Glitch-Free Bus Inputs and Outputs
    • High-Input Impedance With Low VCC
    • Monolithic Output During Power Cycling
  • Single 3.3-V Supply Voltage
  • Bus Pins Fault Protection Exceeds ±36 V
  • Bus Pins ESD Protection Exceeds ±16 kV HBM
  • Compatible With ISO 11898-2
  • GIFT/ICT Compliant
  • Data Rates up to 1 Mbps
  • Extended –7 V to 12 V Common Mode Range
  • High-Input Impedance Allows for 120 Nodes
  • LVTTL I/Os are 5-V Tolerant
  • Adjustable Driver Transition Times for Improved Emissions Performance
  • Unpowered Node Does Not Disturb the Bus
  • Low Current Standby Mode, 200-µA (Typical)
  • SN65HVD233: Loopback Mode
  • SN65HVD234: Ultra Low Current Sleep Mode
    • 50-nA Typical Current Consumption
  • SN65HVD235: Autobaud Loopback Mode
  • Thermal Shutdown Protection
  • Power up and Down With Glitch-Free Bus Inputs and Outputs
    • High-Input Impedance With Low VCC
    • Monolithic Output During Power Cycling

The SN65HVD233, SN65HVD234, and SN65HVD235 are used in applications employing the controller area network (CAN) serial communication physical layer in accordance with the ISO 11898 standard. As a CAN transceiver, each provides transmit and receive capability between the differential CAN bus and a CAN controller, with signaling rates up to 1 Mbps.

Designed for operation in especially harsh environments, the devices feature cross-wire protection, overvoltage protection up to ±36 V, loss of ground protection, overtemperature (thermal shutdown) protection, and common-mode transient protection of ±100 V. These devices operate over a wide –7 V to 12 V common-mode range. These transceivers are the interface between the host CAN controller on the microprocessor and the differential CAN bus used in industrial, building automation, transportation, and automotive applications.

Modes: The RS pin (pin 8) of the SN65HVD233, SN65HVD234, and SN65HVD235 provides three modes of operation: high-speed, slope control, and low-power standby mode. The high-speed mode of operation is selected by connecting pin 8 directly to ground, allowing the driver output transistors to switch on and off as fast as possible with no limitation on the rise and fall slope. The rise and fall slope can be adjusted by connecting a resistor between the RS pin and ground. The slope will be proportional to the pin’s output current. With a resistor value of 10 kΩ the device driver will have a slew rate of ~15 V/µs and with a value of 100 kΩ the device will have ~2.0 V/µs slew rate. For more information about slope control, refer to Feature Description.

The SN65HVD233, SN65HVD234, and SN65HVD235 enter a low-current standby (listen only) mode during which the driver is switched off and the receiver remains active if a high logic level is applied to the RS pin. If the local protocol controller needs to transmit a message to the bus it will have to return the device to either high-speed mode or slope control mode via the RS pin.

Loopback (SN65HVD233): A logic high on the loopback (LBK) pin (pin 5) of the SN65HVD233 places the bus output and bus input in a high-impedance state. Internally, the D to R path of the device remains active and available for driver to receiver loopback that can be used for self-diagnostic node functions without disturbing the bus. For more information on the loopback mode, refer to Feature Description.

Ultra Low-Current Sleep (SN65HVD234): The SN65HVD234 enters an ultra low-current sleep mode in which both the driver and receiver circuits are deactivated if a low logic level is applied to EN pin (pin 5). The device remains in this sleep mode until the circuit is reactivated by applying a high logic level to pin 5.

Autobaud Loopback (SN65HVD235): The AB pin (pin 5) of the SN65HVD235 implements a bus listen-only loopback feature which allows the local node controller to synchronize its baud rate with that of the CAN bus. In autobaud mode, the bus output of the driver is placed in a high-impedance state while the bus input of the receiver remains active. There is an internal D pin to R pin loopback to assist the controller in baud rate detection, or the autobaud function. For more information on the autobaud mode, refer to Feature Description.

The SN65HVD233, SN65HVD234, and SN65HVD235 are used in applications employing the controller area network (CAN) serial communication physical layer in accordance with the ISO 11898 standard. As a CAN transceiver, each provides transmit and receive capability between the differential CAN bus and a CAN controller, with signaling rates up to 1 Mbps.

Designed for operation in especially harsh environments, the devices feature cross-wire protection, overvoltage protection up to ±36 V, loss of ground protection, overtemperature (thermal shutdown) protection, and common-mode transient protection of ±100 V. These devices operate over a wide –7 V to 12 V common-mode range. These transceivers are the interface between the host CAN controller on the microprocessor and the differential CAN bus used in industrial, building automation, transportation, and automotive applications.

Modes: The RS pin (pin 8) of the SN65HVD233, SN65HVD234, and SN65HVD235 provides three modes of operation: high-speed, slope control, and low-power standby mode. The high-speed mode of operation is selected by connecting pin 8 directly to ground, allowing the driver output transistors to switch on and off as fast as possible with no limitation on the rise and fall slope. The rise and fall slope can be adjusted by connecting a resistor between the RS pin and ground. The slope will be proportional to the pin’s output current. With a resistor value of 10 kΩ the device driver will have a slew rate of ~15 V/µs and with a value of 100 kΩ the device will have ~2.0 V/µs slew rate. For more information about slope control, refer to Feature Description.

The SN65HVD233, SN65HVD234, and SN65HVD235 enter a low-current standby (listen only) mode during which the driver is switched off and the receiver remains active if a high logic level is applied to the RS pin. If the local protocol controller needs to transmit a message to the bus it will have to return the device to either high-speed mode or slope control mode via the RS pin.

Loopback (SN65HVD233): A logic high on the loopback (LBK) pin (pin 5) of the SN65HVD233 places the bus output and bus input in a high-impedance state. Internally, the D to R path of the device remains active and available for driver to receiver loopback that can be used for self-diagnostic node functions without disturbing the bus. For more information on the loopback mode, refer to Feature Description.

Ultra Low-Current Sleep (SN65HVD234): The SN65HVD234 enters an ultra low-current sleep mode in which both the driver and receiver circuits are deactivated if a low logic level is applied to EN pin (pin 5). The device remains in this sleep mode until the circuit is reactivated by applying a high logic level to pin 5.

Autobaud Loopback (SN65HVD235): The AB pin (pin 5) of the SN65HVD235 implements a bus listen-only loopback feature which allows the local node controller to synchronize its baud rate with that of the CAN bus. In autobaud mode, the bus output of the driver is placed in a high-impedance state while the bus input of the receiver remains active. There is an internal D pin to R pin loopback to assist the controller in baud rate detection, or the autobaud function. For more information on the autobaud mode, refer to Feature Description.

Herunterladen Video mit Transkript ansehen Video

Ähnliche Produkte, die für Sie interessant sein könnten

Selbe Funktionalität wie der verglichene Baustein bei abweichender Anschlussbelegung
NEU TCAN3403-Q1 AKTIV Automotive-3,3-V-CAN-Transceiver mit flexibler Datenrate (FD), mit flexiblem I/O und Standby-Modus 3.3-V CAN transceiver with 58-V bus fault protection and 1.7-V to 3.6-V I/O support
NEU TCAN3404-Q1 AKTIV 3,3-V-CAN-Transceiver mit flexibler Datenrate (FD) mit Abschaltung und Standby-Modus, für die Automo 3.3V CAN transceiver with 58-V bus fault protection
TCAN3413 AKTIV 3,3-V-CAN-FD-Transceiver mit flexiblem E/A und Standby-Modus 3.3V CAN transceiver with 58-V bus fault protection, +/-30V Common mode range and 1.7-V to 3.6-V IO support
TCAN3414 AKTIV CAN-FD-Transceiver, 3,3 V, mit Abschaltung und Standby-Modus 3.3V CAN transceiver with 58-V bus fault protection, +/-30V Common mode range and Shutdown mode support

Technische Dokumentation

star =Von TI ausgewählte Top-Empfehlungen für dieses Produkt
Keine Ergebnisse gefunden. Bitte geben Sie einen anderen Begriff ein und versuchen Sie es erneut.
Alle anzeigen 2
Typ Titel Datum
* Data sheet SN65HVD23x 3.3-V CAN Bus Transceivers datasheet (Rev. H) PDF | HTML 20 Nov 2018
Application note Overview of 3.3V CAN (Controller Area Network) Transceivers 22 Jan 2013

Design und Entwicklung

Weitere Bedingungen oder erforderliche Ressourcen enthält gegebenenfalls die Detailseite, die Sie durch Klicken auf einen der unten stehenden Titel erreichen.

Evaluierungsplatine

TCAN-SOIC8-EVM — Universelles Evaluierungsmodul für CAN-Transceiver im 8-poligen SOIC- oder SOT-Gehäuse

Der TCAN-SOIC8-EVM wurde entwickelt, um Benutzern die Möglichkeit zu geben, jeden 8-poligen CAN-Transciever-Baustein von Texas Instruments zu prüfen. Die Platine bietet Flexibilität bei der Evaluierung mit Komponenten-Footprint und Jumper-Optionen.

Benutzerhandbuch: PDF | HTML
Simulationsmodell

SN65HVD233 IBIS Model (Rev. A)

SLLC326A.ZIP (71 KB) - IBIS Model
Simulationstool

PSPICE-FOR-TI — PSpice® für TI Design-und Simulationstool

PSpice® für TI ist eine Design- und Simulationsumgebung, welche Sie dabei unterstützt, die Funktionalität analoger Schaltungen zu evaluieren. Diese voll ausgestattete Design- und Simulationssuite verwendet eine analoge Analyse-Engine von Cadence®. PSpice für TI ist kostenlos erhältlich und (...)
Simulationstool

TINA-TI — SPICE-basiertes analoges Simulationsprogramm

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Benutzerhandbuch: PDF
Gehäuse Pins CAD-Symbole, Footprints und 3D-Modelle
SOIC (D) 8 Ultra Librarian

Bestellen & Qualität

Beinhaltete Information:
  • RoHS
  • REACH
  • Bausteinkennzeichnung
  • Blei-Finish/Ball-Material
  • MSL-Rating / Spitzenrückfluss
  • MTBF-/FIT-Schätzungen
  • Materialinhalt
  • Qualifikationszusammenfassung
  • Kontinuierliches Zuverlässigkeitsmonitoring
Beinhaltete Information:
  • Werksstandort
  • Montagestandort

Empfohlene Produkte können Parameter, Evaluierungsmodule oder Referenzdesigns zu diesem TI-Produkt beinhalten.

Support und Schulungen

TI E2E™-Foren mit technischem Support von TI-Ingenieuren

Inhalte werden ohne Gewähr von TI und der Community bereitgestellt. Sie stellen keine Spezifikationen von TI dar. Siehe Nutzungsbedingungen.

Bei Fragen zu den Themen Qualität, Gehäuse oder Bestellung von TI-Produkten siehe TI-Support. ​​​​​​​​​​​​​​

Videos