SN65LVDS93B

現行

10 MHz - 85 MHz LVDS 串聯器/解串器發射器

產品詳細資料

Protocols Catalog Rating Catalog Operating temperature range (°C) -40 to 85
Protocols Catalog Rating Catalog Operating temperature range (°C) -40 to 85
TSSOP (DGG) 56 113.4 mm² 14 x 8.1
  • Industrial Temperature Range –40°C to 85°C
  • LVDS Display Serdes Interfaces Directly to LCD Display Panels With Integrated LVDS
  • Package Options: 8.1-mm × 14-mm TSSOP
  • 1.8 V up to 3.3-V Tolerant Data Inputs to Connect Directly to Low-Power, Low-Voltage Application and Graphic Processors
  • Transfer Rate up to 85 Mpps (Mega Pixels Per Second); Pixel Clock Frequency Range 10 MHz to 85 MHz; Max 2.38 Gbps data rate supported
  • Suited for Display Resolutions Ranging From HVGA up to HD With Low EMI
  • Operates From a Single 3.3-V Supply and 170 mW (Typical) at 75 MHz
  • 28 Data Channels Plus Clock In Low-Voltage TTL to 4 Data Channels Plus Clock Out Low-Voltage Differential
  • Consumes Less Than 1 mW When Disabled
  • Selectable Rising or Falling Clock Edge Triggered Inputs
  • ESD: 5-kV HBM
  • Supports Spread Spectrum Clocking (SSC)
  • Supports RGB 888 to LVDS I Conversion
  • Industrial Temperature Range –40°C to 85°C
  • LVDS Display Serdes Interfaces Directly to LCD Display Panels With Integrated LVDS
  • Package Options: 8.1-mm × 14-mm TSSOP
  • 1.8 V up to 3.3-V Tolerant Data Inputs to Connect Directly to Low-Power, Low-Voltage Application and Graphic Processors
  • Transfer Rate up to 85 Mpps (Mega Pixels Per Second); Pixel Clock Frequency Range 10 MHz to 85 MHz; Max 2.38 Gbps data rate supported
  • Suited for Display Resolutions Ranging From HVGA up to HD With Low EMI
  • Operates From a Single 3.3-V Supply and 170 mW (Typical) at 75 MHz
  • 28 Data Channels Plus Clock In Low-Voltage TTL to 4 Data Channels Plus Clock Out Low-Voltage Differential
  • Consumes Less Than 1 mW When Disabled
  • Selectable Rising or Falling Clock Edge Triggered Inputs
  • ESD: 5-kV HBM
  • Supports Spread Spectrum Clocking (SSC)
  • Supports RGB 888 to LVDS I Conversion

The SN65LVDS93B LVDS SerDes (serializer/deserializer) transmitter contains four 7-bit parallel load serial-out shift registers, a 7 × clock synthesizer, and five low-voltage differential signaling (LVDS) drivers in a single integrated circuit. These functions allow synchronous transmission of 28 bits of single-ended LVTTL data over five balanced-pair conductors for receipt by a compatible receiver, such as the DS90CR286A and SN65LVDS94.

When transmitting, data bits D0 through D27 are each loaded into registers upon the edge of the input clock signal (CLKIN). The rising or falling edge of the clock can be selected through the clock select (CLKSEL) pin. The frequency of CLKIN is multiplied seven times and then used to serially unload the data registers in 7-bit slices. The four serial streams and a phase-locked clock (CLKOUT) are then output to LVDS output drivers. The frequency of CLKOUT is the same as the input clock, CLKIN.

The SN65LVDS93B device requires no external components and little or no control. The data bus appears the same at the input to the transmitter and output of the receiver with the data transmission transparent to the users. The only user intervention is selecting a clock rising edge by inputting a high level to CLKSEL or a falling edge with a low-level input and the possible use of the shutdown/clear (SHTDN) signal. SHTDN is an active-low input to inhibit the clock and shut off the LVDS output drivers for lower power consumption. A low level on this signal clears all internal registers at a low level.

The SN65LVDS93B is characterized for operation over ambient air temperatures of –40°C to 85°C.

The SN65LVDS93B LVDS SerDes (serializer/deserializer) transmitter contains four 7-bit parallel load serial-out shift registers, a 7 × clock synthesizer, and five low-voltage differential signaling (LVDS) drivers in a single integrated circuit. These functions allow synchronous transmission of 28 bits of single-ended LVTTL data over five balanced-pair conductors for receipt by a compatible receiver, such as the DS90CR286A and SN65LVDS94.

When transmitting, data bits D0 through D27 are each loaded into registers upon the edge of the input clock signal (CLKIN). The rising or falling edge of the clock can be selected through the clock select (CLKSEL) pin. The frequency of CLKIN is multiplied seven times and then used to serially unload the data registers in 7-bit slices. The four serial streams and a phase-locked clock (CLKOUT) are then output to LVDS output drivers. The frequency of CLKOUT is the same as the input clock, CLKIN.

The SN65LVDS93B device requires no external components and little or no control. The data bus appears the same at the input to the transmitter and output of the receiver with the data transmission transparent to the users. The only user intervention is selecting a clock rising edge by inputting a high level to CLKSEL or a falling edge with a low-level input and the possible use of the shutdown/clear (SHTDN) signal. SHTDN is an active-low input to inhibit the clock and shut off the LVDS output drivers for lower power consumption. A low level on this signal clears all internal registers at a low level.

The SN65LVDS93B is characterized for operation over ambient air temperatures of –40°C to 85°C.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 4
類型 標題 日期
* Data sheet SN65LVDS93B 10 MHz - 85 MHz 28-bit Flat Panel Display Link LVDS Serdes Transmitter datasheet (Rev. A) PDF | HTML 2018年 5月 15日
Application note High-Speed Layout Guidelines for Reducing EMI for LVDS SerDes Designs 2018年 11月 9日
Technical article How to select serializers and deserializers in HMI systems PDF | HTML 2018年 4月 24日
EVM User's guide LVDS83BTSSOPEVM User's Guide 2017年 10月 13日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

開發板

LVDS83BTSSOPEVM — LVDS83BT 10-135 MHz 28 位元 LVDS 發送器/串聯器評估模組

The SN75LVDS83B transmitter contains four 7-bit parallel-load serial-out shift registers, a 7X clock synthesizer, and five Low-Voltage Differential Signaling (LVDS) line drivers in a single integrated circuit. These functions allow 28 bits of single-ended LVTTL data to be synchronously transmitted (...)
使用指南: PDF
TI.com 無法提供
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
模擬工具

TINA-TI — 基於 SPICE 的類比模擬程式

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
使用指南: PDF
參考設計

TIDA-010013 — 用於 Sitara™ 處理器的 RGB 至 OLDI/LVDS 顯示橋接器參考設計

Higher resolution displays are now in larger demand than ever before. This results in a higher pixel clock which can lead to challenges such as high EMI emission and noise immunity. As a result, the video interface now transitions from a traditional RGB to LVDS video interface. As microprocessors (...)
Design guide: PDF
電路圖: PDF
封裝 引腳 下載
TSSOP (DGG) 56 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片