SLVSHK7A March   2025  – December 2025 TPS65214

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  System Control Thresholds
    6. 6.6  BUCK1, BUCK2, BUCK3 Converter
    7. 6.7  General Purpose LDOs (LDO1, LDO2)
    8. 6.8  GPIOs and multi-function pins (EN/PB/VSENSE, nRSTOUT, nINT, GPO/nWAKEUP, GPIO/VSEL, MODE/STBY)
    9. 6.9  Voltage and Temperature Monitors
    10. 6.10 I2C Interface
    11. 6.11 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Power-Up Sequencing
      2. 7.3.2  Power-Down Sequencing
      3. 7.3.3  Push Button and Enable Input (EN/PB/VSENSE)
      4. 7.3.4  OFF-Request by I2C Command
      5. 7.3.5  First Supply Detection (FSD)
      6. 7.3.6  Input Voltage Slew Rate With Automatic Power-up
      7. 7.3.7  Buck Converters (Buck1, Buck2, and Buck3)
      8. 7.3.8  Linear Regulators (LDO1 and LDO2)
      9. 7.3.9  Reset to SoC (nRSTOUT)
      10. 7.3.10 Interrupt Pin (nINT)
      11. 7.3.11 PWM/PFM and Low Power Modes (MODE/STBY)
      12. 7.3.12 General Purpose Input/Output and Voltage Select Pin (GPIO/VSEL)
      13. 7.3.13 General Purpose Output and nWAKEUP (GPO/nWAKEUP)
      14. 7.3.14 RESET-Request by I2C Command
      15. 7.3.15 Register Access Control
      16. 7.3.16 I2C-Compatible Interface
        1. 7.3.16.1 Data Validity
        2. 7.3.16.2 Start and Stop Conditions
        3. 7.3.16.3 Transferring Data
    4. 7.4 Device Functional Modes
      1. 7.4.1 Modes of Operation
        1. 7.4.1.1 OFF State
        2. 7.4.1.2 INITIALIZE State
        3. 7.4.1.3 ACTIVE State
        4. 7.4.1.4 STBY State
        5. 7.4.1.5 SLEEP State
        6.       49
        7. 7.4.1.6 Fault Handling
  9. User Registers
    1. 8.1 Device Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Typical Application Example
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1 Application Curves
        2. 9.2.3.2 Buck1, Buck2, Buck3 Design Procedure
        3. 9.2.3.3 LDO1, LDO2 Design Procedure
        4. 9.2.3.4 VSYS, VDD1P8
        5. 9.2.3.5 Digital Signals Design Procedure
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Buck1, Buck2, Buck3 Design Procedure

Input Capacitance - Buck1, Buck2, Buck3

Each of the Buck converters require an input capacitor on the corresponding PVIN_Bx pin. The capacitor value must be selected taking into account the voltage and temperature de-rating. Due to the nature of the switching converter, a low ESR ceramic capacitor is required for best input voltage filtering. The typical recommended capacitance is 4.7uF, 10V capacitor. Higher input capacitance can be used if the PCB size allows larger footprint.

Output Capacitance - Buck1, Buck2, Buck3

Every Buck output requires a local output capacitor to form the capacitive part of the LC output filter. Ceramic capacitor with X7 temperature coefficient are recommended. Non-automotive applications can use X6 or lower based on the operating temperature. The buck converters have two bandwidth configurations that impact the output capacitor selection. The bandwidth selection is an independent register field for each Buck converter. Refer to the Technical Reference Manual (TRM) for the specific orderable part number to identify the NVM configuration and the corresponding output capacitance requirements. Table 9-1 shows the required minimum and maximum capacitance (after derating) for each switching mode and bandwidth configuration. DC bias voltage characteristics of ceramic capacitors, tolerance, aging and temperature effects must be considered. ESR must be 10mΩ or lower.

Table 9-1 Buck Output Capacitance
Switching ModeBandwidth SelectionSpec parameterCapacitance
Register fields:

BUCK1_BW_SEL, BUCK2_BW_SEL, BUCK3_BW_SEL

MinMax

(Includes local + point of load)

Quasi-fixed frequency

(auto-PFM or forced-PWM)

Low BandwidthCOUT10uF75uF
High BandwidthCOUT_HIGH_BW 30uF220uF

Inductor Selection - Buck1, Buck2, Buck3

Internal parameters for the buck converters are optimized for 470nH inductor. DCR must be 50mΩ or lower. Select an inductor that is rated to support saturation current of at least 5.4A.