SLVSHK7A March   2025  – December 2025 TPS65214

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  System Control Thresholds
    6. 6.6  BUCK1, BUCK2, BUCK3 Converter
    7. 6.7  General Purpose LDOs (LDO1, LDO2)
    8. 6.8  GPIOs and multi-function pins (EN/PB/VSENSE, nRSTOUT, nINT, GPO/nWAKEUP, GPIO/VSEL, MODE/STBY)
    9. 6.9  Voltage and Temperature Monitors
    10. 6.10 I2C Interface
    11. 6.11 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Power-Up Sequencing
      2. 7.3.2  Power-Down Sequencing
      3. 7.3.3  Push Button and Enable Input (EN/PB/VSENSE)
      4. 7.3.4  OFF-Request by I2C Command
      5. 7.3.5  First Supply Detection (FSD)
      6. 7.3.6  Input Voltage Slew Rate With Automatic Power-up
      7. 7.3.7  Buck Converters (Buck1, Buck2, and Buck3)
      8. 7.3.8  Linear Regulators (LDO1 and LDO2)
      9. 7.3.9  Reset to SoC (nRSTOUT)
      10. 7.3.10 Interrupt Pin (nINT)
      11. 7.3.11 PWM/PFM and Low Power Modes (MODE/STBY)
      12. 7.3.12 General Purpose Input/Output and Voltage Select Pin (GPIO/VSEL)
      13. 7.3.13 General Purpose Output and nWAKEUP (GPO/nWAKEUP)
      14. 7.3.14 RESET-Request by I2C Command
      15. 7.3.15 Register Access Control
      16. 7.3.16 I2C-Compatible Interface
        1. 7.3.16.1 Data Validity
        2. 7.3.16.2 Start and Stop Conditions
        3. 7.3.16.3 Transferring Data
    4. 7.4 Device Functional Modes
      1. 7.4.1 Modes of Operation
        1. 7.4.1.1 OFF State
        2. 7.4.1.2 INITIALIZE State
        3. 7.4.1.3 ACTIVE State
        4. 7.4.1.4 STBY State
        5. 7.4.1.5 SLEEP State
        6.       49
        7. 7.4.1.6 Fault Handling
  9. User Registers
    1. 8.1 Device Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Typical Application Example
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1 Application Curves
        2. 9.2.3.2 Buck1, Buck2, Buck3 Design Procedure
        3. 9.2.3.3 LDO1, LDO2 Design Procedure
        4. 9.2.3.4 VSYS, VDD1P8
        5. 9.2.3.5 Digital Signals Design Procedure
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

INITIALIZE State

In INITIALIZE state, the device is completely shut down with the exception of a few circuits to monitor the EN/PB/VSENSE input. Whenever entering the INITIALIZE state, the PMIC reads the memory and loads the registers to their NVM-default values. The I2C communication interface is turned off.

Entry to INITIALIZE state is gated if any one of the thermal sensors is above the TWARM_Rising threshold and WARM-detection is not masked.

The NVM load time is given by tNVM_LOAD. The power-up sequence can only execute after the NVM-load is complete.

If INITIALIZE state was entered from OFF state, bit POWER_UP_FROM_OFF in POWER_UP_STATUS_REG register is set and remains set until a write-1-clear is issued. Read-out of this bit allows to determine if INITIALZE state was entered from OFF state or due to a Shut-down-fault or OFF-request.

In INITIALIZE state, the nINT pin status is dependent if faults are and masking thereof. If no faults are present or nINT-reaction for those are masked, nINT-pin is pulled high, provided a VIO-voltage for the pull-up is available.

To transition from the INITIALIZE state to the ACTIVE state, one of the ON-requests must occur:

  • The EN input is 'high' (if EN/PB/VSENSE is configured as 'EN' or 'VSENSE')
  • The PB input is pulled low for at least tPB_ON_SLOW respectively tPB_ON_FAST (if EN/PB/VSENSE is configured as 'PB')

Note: The DISCHARGE_CONFIG register is purposefully omitted from RESET when entering INITIALIZE state from ACTIVE or STBY state. When entering INITIALIZE state from OFF state, the NVM content is loaded. If the discharge configuration changed after power-up, a different start-up behavior can occur, depending if the INITIALIZE state was entered from OFF state or from ACTIVE/STBY.