SPRACW9A June   2021  – March 2023 TMS320F2800132 , TMS320F2800132 , TMS320F2800133 , TMS320F2800133 , TMS320F2800135 , TMS320F2800135 , TMS320F2800137 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280023C , TMS320F280025 , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280033 , TMS320F280034 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C , TMS320F280049C-Q1 , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28076 , TMS320F28374D , TMS320F28374D , TMS320F28374S , TMS320F28374S , TMS320F28375D , TMS320F28375D , TMS320F28375S , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376D , TMS320F28376S , TMS320F28376S , TMS320F28377D , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378D , TMS320F28378S , TMS320F28378S , TMS320F28379D , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28379S , TMS320F28384D , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388D , TMS320F28388S , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P650SK , TMS320F28P659DK-Q1 , TMS320F28P659DK-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Memory Cross-Talk Challenges
    2. 1.2 Resources for Signal Conditioning Circuit Design
      1. 1.2.1 TI Precision Labs - SAR ADC Input Driver Design Series
      2. 1.2.2 Analog Engineer's Calculator
      3. 1.2.3 Related Application Reports
      4. 1.2.4 TINA-TI SPICE-Based Analog Simulation Program
      5. 1.2.5 PSPICE for TI
      6. 1.2.6 ADC Input Circuit Evaluation for C2000 MCUs
      7. 1.2.7 Charge-Sharing Driving Circuits for C2000 ADCs
  4. 2Review of ADC Input Settling
    1. 2.1 Mechanism of ADC Input Settling
    2. 2.2 Symptoms of Inadequate Settling
      1. 2.2.1 Distortion
      2. 2.2.2 Memory Cross-Talk
      3. 2.2.3 Accuracy
    3. 2.3 C2000 ADC Architecture
  5. 3Problem Statement
    1. 3.1 Example System
    2. 3.2 S+H Settling Analysis
    3. 3.3 Charge-Sharing Analysis
    4. 3.4 Problem Summary
  6. 4Dedicated ADC Sampling
    1. 4.1 Dedicated ADC Concept
    2. 4.2 Settling Mechanism for Dedicated ADC
    3. 4.3 Design Flow for Dedicated ADC
    4. 4.4 Simulating Settling Performance for a Dedicated ADC Circuit
  7. 5Pre-Sampling VREFLO
    1. 5.1 VREFLO Sampling Concept
    2. 5.2 Properties of VREFLO Sampling Method Error
    3. 5.3 Gain Error Compensation
      1. 5.3.1 Methods for Determining Compensation Coefficients
    4. 5.4 VREFLO Sampling Design Flow
    5. 5.5 Discussion of VREFLO Sampling Sequences
  8. 6Summary
  9. 7References
  10. 8Revision History

Design Flow for Dedicated ADC

The previous section demonstrate that almost all of the charging or discharging of the S+H capacitor CH in a dedicated ADC configuration comes from charge equalization, so a S+H value near the minimum value supported by the ADC can be used (since the charge equalization occurs quickly at the beginning of the S+H window). Furthermore, re-running the simulation in Figure 4-3, but with progressively increasing values of the capacitor on the ADC pin will result in progressively better settling performance at each sampling step (not shown). Therefore, it is generally desirable to maximize the size of CS (if this can be changed in the system hardware) as this will maximize the settling performance. However, note that the source impedance, Rs, and the ADC pin capacitance, Cs form a low-pass filter. Therefore, the size of Cs will need to be limited to ensure the input circuit has sufficient bandwidth to not distort the signal of interest.

These design decisions are summarized in the following list:

  • Isolate the signal affected by memory cross-talk to a dedicated ADC
  • S+H window duration can be set to the minimum allowed by the ADC (or any other valid convenient value)
  • If possible, modify the circuit to maximize Cs (the capacitance on the ADC pin) being mindful that the input circuit bandwidth (BWRsCs) needs to be large enough to allow the circuit to sense the frequencies of interest in the input signal.
Equation 6. B W R s C s = 1 / ( 2 π     C S     R S )
  • (Optional) Simulate the settling performance at frequencies of interest (see next section)