SPRUII0F May   2019  â€“ June 2024 TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. â–º C28x SYSTEM RESOURCES
    1. 1.1 Technical Reference Manual Overview
  4. C2000â„¢ Microcontrollers Software Support
    1. 2.1 Introduction
    2. 2.2 C2000Ware Structure
    3. 2.3 Documentation
    4. 2.4 Devices
    5. 2.5 Libraries
    6. 2.6 Code Composer Studioâ„¢ Integrated Development Environment (IDE)
    7. 2.7 SysConfig and PinMUX Tool
  5. C28x System Control and Interrupts
    1. 3.1  C28x System Control Introduction
      1. 3.1.1 SYSCTL Related Collateral
    2. 3.2  System Control Functional Description
      1. 3.2.1 Device Identification
      2. 3.2.2 Device Configuration Registers
    3. 3.3  Resets
      1. 3.3.1  Reset Sources
      2. 3.3.2  External Reset (XRSn)
      3. 3.3.3  Simulate External Reset
      4. 3.3.4  Power-On Reset (POR)
      5. 3.3.5  Debugger Reset (SYSRS)
      6. 3.3.6  Simulate CPU1 Reset
      7. 3.3.7  Watchdog Reset (WDRS)
      8. 3.3.8  NMI Watchdog Reset (NMIWDRS)
      9. 3.3.9  Secure Code Copy Reset (SCCRESET)
      10. 3.3.10 ESC Reset Output
      11. 3.3.11 Test Reset (TRST)
    4. 3.4  Peripheral Interrupts
      1. 3.4.1 Interrupt Concepts
      2. 3.4.2 Interrupt Architecture
        1. 3.4.2.1 Peripheral Stage
        2. 3.4.2.2 PIE Stage
        3. 3.4.2.3 CPU Stage
        4. 3.4.2.4 Dual-CPU Interrupt Handling
      3. 3.4.3 Interrupt Entry Sequence
      4. 3.4.4 Configuring and Using Interrupts
        1. 3.4.4.1 Enabling Interrupts
        2. 3.4.4.2 Handling Interrupts
        3. 3.4.4.3 Disabling Interrupts
        4. 3.4.4.4 Nesting Interrupts
      5. 3.4.5 PIE Channel Mapping
        1. 3.4.5.1 PIE Interrupt Priority
          1. 3.4.5.1.1 Channel Priority
          2. 3.4.5.1.2 Group Priority
      6. 3.4.6 System Error and CM Status Interrupts
      7. 3.4.7 Vector Tables
    5. 3.5  Exceptions and Non-Maskable Interrupts
      1. 3.5.1 Configuring and Using NMIs
      2. 3.5.2 Emulation Considerations
      3. 3.5.3 NMI Sources
        1. 3.5.3.1  Missing Clock Detection
        2. 3.5.3.2  RAM Uncorrectable Error
        3. 3.5.3.3  Flash Uncorrectable ECC Error
        4. 3.5.3.4  ROM Uncorrectable Error
        5. 3.5.3.5  NMI Vector Fetch Mismatch
        6. 3.5.3.6  CPU2 Watchdog or NMI Watchdog Reset
        7. 3.5.3.7  CM NMI Watchdog Reset
        8. 3.5.3.8  EtherCAT Reset out
        9. 3.5.3.9  CRC Fail
        10. 3.5.3.10 ERAD NMI
      4. 3.5.4 Illegal Instruction Trap (ITRAP)
    6. 3.6  Safety Features
      1. 3.6.1 Write Protection on Registers
        1. 3.6.1.1 LOCK Protection on System Configuration Registers
        2. 3.6.1.2 EALLOW Protection
      2. 3.6.2 CPU1 and CPU2 ePIE Vector Address Validity Check
      3. 3.6.3 NMIWDs
      4. 3.6.4 ECC and Parity Enabled RAMs, Shared RAMs Protection
      5. 3.6.5 ECC Enabled Flash Memory
      6. 3.6.6 ERRORSTS Pin
    7. 3.7  Clocking
      1. 3.7.1 Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (INTOSC2)
        2. 3.7.1.2 Backup Internal Oscillator (INTOSC1)
        3. 3.7.1.3 External Oscillator (XTAL)
        4. 3.7.1.4 Auxiliary Clock Input (AUXCLKIN)
      2. 3.7.2 Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
        3. 3.7.2.3 Auxiliary Oscillator Clock (AUXOSCCLK)
        4. 3.7.2.4 Auxiliary PLL Output Clock (AUXPLLRAWCLK)
      3. 3.7.3 Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK and PERx.SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 USB Auxiliary Clock (AUXPLLCLK)
        6. 3.7.3.6 CAN Bit Clock
        7. 3.7.3.7 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4 External Clock Output (XCLKOUT)
      5. 3.7.5 Clock Connectivity
      6. 3.7.6 PLL/AUXPLL
        1. 3.7.6.1 Choosing PLL Settings
        2. 3.7.6.2 System Clock Setup
        3. 3.7.6.3 USB Auxiliary Clock Setup
        4. 3.7.6.4 SYS PLL / AUX PLL Bypass
      7. 3.7.7 Clock (OSCCLK) Failure Detection
        1. 3.7.7.1 Missing Clock Detection Logic
    8. 3.8  Clock Configuration Semaphore
    9. 3.9  32-Bit CPU Timers 0/1/2
    10. 3.10 Watchdog Timers
      1. 3.10.1 Servicing the Watchdog Timer
      2. 3.10.2 Minimum Window Check
      3. 3.10.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.10.4 Watchdog Operation in Low-Power Modes
      5. 3.10.5 Emulation Considerations
    11. 3.11 Low-Power Modes
      1. 3.11.1 IDLE
      2. 3.11.2 STANDBY
    12. 3.12 Memory Controller Module
      1. 3.12.1 Functional Description
        1. 3.12.1.1  Dedicated RAM (Dx RAM)
        2. 3.12.1.2  Local Shared RAM (LSx RAM)
        3. 3.12.1.3  Global Shared RAM (GSx RAM)
        4. 3.12.1.4  CPU Message RAM (CPU MSG RAM)
        5. 3.12.1.5  CLA Message RAM (CLA MSGRAM)
        6. 3.12.1.6  CLA-DMA MSG RAM
        7. 3.12.1.7  Access Arbitration
        8. 3.12.1.8  Access Protection
          1. 3.12.1.8.1 CPU Fetch Protection
          2. 3.12.1.8.2 CPU Write Protection
          3. 3.12.1.8.3 CPU Read Protection
          4. 3.12.1.8.4 CLA Fetch Protection
          5. 3.12.1.8.5 CLA Write Protection
          6. 3.12.1.8.6 CLA Read Protection
          7. 3.12.1.8.7 DMA Write Protection
        9. 3.12.1.9  Memory Error Detection, Correction and Error Handling
          1. 3.12.1.9.1 Error Detection and Correction
          2. 3.12.1.9.2 Error Handling
        10. 3.12.1.10 Application Test Hooks for Error Detection and Correction
        11. 3.12.1.11 ROM Test
        12. 3.12.1.12 RAM Initialization
    13. 3.13 JTAG
      1. 3.13.1 JTAG Noise and TAP_STATUS
    14. 3.14 System Control Register Configuration Restrictions
    15. 3.15 Software
      1. 3.15.1 SYSCTL Examples
        1. 3.15.1.1 Missing clock detection (MCD)
        2. 3.15.1.2 XCLKOUT (External Clock Output) Configuration
      2. 3.15.2 MEMCFG Examples
        1. 3.15.2.1 Correctable & Uncorrectable Memory Error Handling
        2. 3.15.2.2 Shared RAM Management (CPU1) - C28X_DUAL
        3. 3.15.2.3 Shared RAM Management (CPU2) - C28X_DUAL
        4. 3.15.2.4 Demonstrate memconfig diagnostics and error handling. - CM
        5. 3.15.2.5 Shared RAM Management (CPU1) - C28X_DUAL
        6. 3.15.2.6 Shared RAM Management (CPU2) - C28X_DUAL
      3. 3.15.3 NMI Examples
        1. 3.15.3.1 NMI handling - C28X_DUAL
        2. 3.15.3.2 Watchdog Reset - C28X_DUAL
        3. 3.15.3.3 NMI handling - C28X_DUAL
        4. 3.15.3.4 Watchdog Reset - C28X_DUAL
      4. 3.15.4 TIMER Examples
        1. 3.15.4.1 CPU Timers
        2. 3.15.4.2 CPU Timers - CM
        3. 3.15.4.3 CPU Timers
      5. 3.15.5 WATCHDOG Examples
        1. 3.15.5.1 Watchdog
        2. 3.15.5.2 Windowed watchdog expiry with NMI handling - CM
    16. 3.16 System Control Registers
      1. 3.16.1  SYSCTRL Base Address Table (C28)
      2. 3.16.2  ACCESS_PROTECTION_REGS Registers
      3. 3.16.3  CLK_CFG_REGS Registers
      4. 3.16.4  CM_CONF_REGS Registers
      5. 3.16.5  CPU_SYS_REGS Registers
      6. 3.16.6  CPU_ID_REGS Registers
      7. 3.16.7  CPU1_PERIPH_AC_REGS Registers
      8. 3.16.8  CPUTIMER_REGS Registers
      9. 3.16.9  DEV_CFG_REGS Registers
      10. 3.16.10 DMA_CLA_SRC_SEL_REGS Registers
      11. 3.16.11 MEM_CFG_REGS Registers
      12. 3.16.12 MEMORY_ERROR_REGS Registers
      13. 3.16.13 NMI_INTRUPT_REGS Registers
      14. 3.16.14 PIE_CTRL_REGS Registers
      15. 3.16.15 ROM_PREFETCH_REGS Registers
      16. 3.16.16 ROM_WAIT_STATE_REGS Registers
      17. 3.16.17 SYNC_SOC_REGS Registers
      18. 3.16.18 SYS_STATUS_REGS Registers
      19. 3.16.19 TEST_ERROR_REGS Registers
      20. 3.16.20 UID_REGS Registers
      21. 3.16.21 WD_REGS Registers
      22. 3.16.22 XINT_REGS Registers
      23. 3.16.23 Register to Driverlib Function Mapping
        1. 3.16.23.1 ASYSCTL Registers to Driverlib Functions
        2. 3.16.23.2 CPUTIMER Registers to Driverlib Functions
        3. 3.16.23.3 DCSM Registers to Driverlib Functions
        4. 3.16.23.4 MEMCFG Registers to Driverlib Functions
        5. 3.16.23.5 NMI Registers to Driverlib Functions
        6. 3.16.23.6 PIE Registers to Driverlib Functions
        7. 3.16.23.7 SYSCTL Registers to Driverlib Functions
        8. 3.16.23.8 WWD Registers to Driverlib Functions
        9. 3.16.23.9 XINT Registers to Driverlib Functions
  6. C28x Processor
    1. 4.1 Introduction
    2. 4.2 C28X Related Collateral
    3. 4.3 Features
    4. 4.4 Floating-Point Unit
    5. 4.5 Trigonometric Math Unit (TMU)
    6. 4.6 VCRC Unit
  7. ROM Code and Peripheral Booting
    1. 5.1 Introduction
      1. 5.1.1 ROM Related Collateral
    2. 5.2 Device Boot Sequence
    3. 5.3 Device Boot Modes
    4. 5.4 Device Boot Configurations
      1. 5.4.1 Configuring Boot Mode Pins for CPU1
      2. 5.4.2 Configuring Boot Mode Table Options for CPU1
      3. 5.4.3 Boot Mode Example Use Cases
        1. 5.4.3.1 Zero Boot Mode Select Pins
        2. 5.4.3.2 One Boot Mode Select Pin
        3. 5.4.3.3 Three Boot Mode Select Pins
    5. 5.5 Device Boot Flow Diagrams
      1. 5.5.1 CPU1 Boot Flow
      2. 5.5.2 CPU2 Boot Flow
      3. 5.5.3 Connectivity Manager (CM) Boot Flow
    6. 5.6 Device Reset and Exception Handling
      1. 5.6.1 Reset Causes and Handling
      2. 5.6.2 Exceptions and Interrupts Handling
    7. 5.7 Boot ROM Description
      1. 5.7.1  CPU1 Boot ROM Configuration Registers
        1. 5.7.1.1 GPREG2 Usage and MPOST Configuration
      2. 5.7.2  Booting CPU2 and CM
        1. 5.7.2.1 Boot Up Procedure
        2. 5.7.2.2 IPCBOOTMODE Details
        3. 5.7.2.3 Error IPC Command Table
      3. 5.7.3  Entry Points
      4. 5.7.4  Wait Points
      5. 5.7.5  Memory Maps
        1. 5.7.5.1 Boot ROM Memory Maps
        2. 5.7.5.2 CLA Data ROM Memory Maps
        3. 5.7.5.3 Reserved RAM Memory Maps
      6. 5.7.6  ROM Tables
      7. 5.7.7  Boot Modes and Loaders
        1. 5.7.7.1 Boot Modes
          1. 5.7.7.1.1 Wait Boot
          2. 5.7.7.1.2 Flash Boot
          3. 5.7.7.1.3 Secure Flash Boot
            1. 5.7.7.1.3.1 Secure Flash CPU1 Linker File Example
          4. 5.7.7.1.4 RAM Boot
          5. 5.7.7.1.5 User OTP Boot
          6. 5.7.7.1.6 IPC Message Copy to RAM Boot
        2. 5.7.7.2 Bootloaders
          1. 5.7.7.2.1 SCI Boot Mode
          2. 5.7.7.2.2 SPI Boot Mode
          3. 5.7.7.2.3 I2C Boot Mode
          4. 5.7.7.2.4 Parallel Boot Mode
          5. 5.7.7.2.5 CAN Boot Mode
          6. 5.7.7.2.6 USB Boot Mode
      8. 5.7.8  GPIO Assignments for CPU1
      9. 5.7.9  Secure ROM Function APIs
      10. 5.7.10 Clock Initializations
      11. 5.7.11 Boot Status information
        1. 5.7.11.1 CPU1 Booting Status
        2. 5.7.11.2 CPU2 Booting Status
        3. 5.7.11.3 CM Booting Status
        4. 5.7.11.4 Boot Mode and MPOST (Memory Power On Self-Test) Status
      12. 5.7.12 ROM Version
    8. 5.8 Application Notes for Using the Bootloaders
      1. 5.8.1 Boot Data Stream Structure
        1. 5.8.1.1 Bootloader Data Stream Structure
          1. 5.8.1.1.1 Data Stream Structure 8-bit
      2. 5.8.2 The C2000 Hex Utility
        1. 5.8.2.1 HEX2000.exe Command Syntax
    9. 5.9 Software
      1. 5.9.1 BOOT Examples
        1. 5.9.1.1 CM Secure Flash Boot
        2. 5.9.1.2 CPU1 Secure Flash Boot
        3. 5.9.1.3 CPU2 Secure Flash Boot
  8. Dual Code Security Module (DCSM)
    1. 6.1 Introduction
      1. 6.1.1 DCSM Related Collateral
    2. 6.2 Functional Description
      1. 6.2.1 CSM Passwords
      2. 6.2.2 Emulation Code Security Logic (ECSL)
      3. 6.2.3 CPU Secure Logic
      4. 6.2.4 Execute-Only Protection
      5. 6.2.5 Password Lock
      6. 6.2.6 JTAGLOCK
      7. 6.2.7 Link Pointer and Zone Select
      8. 6.2.8 C Code Example to Get Zone Select Block Addr for Zone1
    3. 6.3 Flash and OTP Erase/Program
    4. 6.4 Secure Copy Code
    5. 6.5 SecureCRC
    6. 6.6 CSM Impact on Other On-Chip Resources
    7. 6.7 Incorporating Code Security in User Applications
      1. 6.7.1 Environments That Require Security Unlocking
      2. 6.7.2 CSM Password Match Flow
      3. 6.7.3 C Code Example to Unsecure C28x Zone1
      4. 6.7.4 C Code Example to Resecure C28x Zone1
      5. 6.7.5 Environments That Require ECSL Unlocking
      6. 6.7.6 ECSL Password Match Flow
      7. 6.7.7 ECSL Disable Considerations for any Zone
        1. 6.7.7.1 C Code Example to Disable ECSL for C28x-Zone1
      8. 6.7.8 Device Unique ID
    8. 6.8 Software
      1. 6.8.1 DCSM Examples
        1. 6.8.1.1 Empty DCSM Tool Example
        2. 6.8.1.2 DCSM Memory Access control by master CPU1 - C28X_CM
        3. 6.8.1.3 DCSM Memory Access by CPU2 - C28X_DUAL
        4. 6.8.1.4 DCSM Memory Access control by CPU1 - C28X_DUAL
        5. 6.8.1.5 DCSM Memory partitioning Example
        6. 6.8.1.6 DCSM Memory Access by CM - C28X_CM
    9. 6.9 DCSM Registers
      1. 6.9.1 DCSM Base Address Table (C28)
      2. 6.9.2 CM DCSM Base Address Table (CM)
      3. 6.9.3 DCSM_Z1_REGS Registers
      4. 6.9.4 DCSM_Z2_REGS Registers
      5. 6.9.5 DCSM_COMMON_REGS Registers
      6. 6.9.6 DCSM_Z1_OTP Registers
      7. 6.9.7 DCSM_Z2_OTP Registers
  9. Background CRC-32 (BGCRC)
    1. 7.1 Introduction
      1. 7.1.1 BGCRC Related Collateral
      2. 7.1.2 Features
      3. 7.1.3 Block Diagram
      4. 7.1.4 Memory Wait States and Memory Map
    2. 7.2 Functional Description
      1. 7.2.1 Data Read Unit
      2. 7.2.2 CRC-32 Compute Unit
      3. 7.2.3 CRC Notification Unit
        1. 7.2.3.1 CPU Interrupt, CLA Task and NMI
      4. 7.2.4 Operating Modes
        1. 7.2.4.1 CRC Mode
        2. 7.2.4.2 Scrub Mode
      5. 7.2.5 BGCRC Watchdog
      6. 7.2.6 Hardware and Software Faults Protection
    3. 7.3 Application of the BGCRC
      1. 7.3.1 Software Configuration
      2. 7.3.2 Decision on Error Response Severity
      3. 7.3.3 Decision of Controller for CLA_CRC
      4. 7.3.4 Execution of Time Critical Code from Wait-Stated Memories
      5. 7.3.5 BGCRC Execution
      6. 7.3.6 Debug/Error Response for BGCRC Errors
      7. 7.3.7 BGCRC Golden CRC-32 Value Computation
    4. 7.4 Software
      1. 7.4.1 BGCRC Examples
        1. 7.4.1.1 BGCRC CPU Interrupt Example
        2. 7.4.1.2 BGCRC Example with Watchdog and Lock
        3. 7.4.1.3 CLA-BGCRC Example in CRC mode
        4. 7.4.1.4 CLA-BGCRC Example in Scrub Mode
    5. 7.5 BGCRC Registers
      1. 7.5.1 BGCRC Base Address Table (C28)
      2. 7.5.2 BGCRC_REGS Registers
      3. 7.5.3 BGCRC Registers to Driverlib Functions
  10. Control Law Accelerator (CLA)
    1. 8.1 Introduction
      1. 8.1.1 Features
      2. 8.1.2 CLA Related Collateral
      3. 8.1.3 Block Diagram
    2. 8.2 CLA Interface
      1. 8.2.1 CLA Memory
      2. 8.2.2 CLA Memory Bus
      3. 8.2.3 Shared Peripherals and EALLOW Protection
      4. 8.2.4 CLA Tasks and Interrupt Vectors
      5. 8.2.5 CLA Software Interrupt to CPU
    3. 8.3 CLA, DMA, and CPU Arbitration
      1. 8.3.1 CLA Message RAM
      2. 8.3.2 Peripheral Registers (ePWM, HRPWM, Comparator)
    4. 8.4 CLA Configuration and Debug
      1. 8.4.1 Building a CLA Application
      2. 8.4.2 Typical CLA Initialization Sequence
      3. 8.4.3 Debugging CLA Code
        1. 8.4.3.1 Software Breakpoint Support (MDEBUGSTOP1)
        2. 8.4.3.2 Legacy Breakpoint Support (MDEBUGSTOP)
      4. 8.4.4 CLA Illegal Opcode Behavior
      5. 8.4.5 Resetting the CLA
    5. 8.5 Pipeline
      1. 8.5.1 Pipeline Overview
      2. 8.5.2 CLA Pipeline Alignment
        1. 8.5.2.1 Code Fragment For MBCNDD, MCCNDD, or MRCNDD
        2.       379
        3. 8.5.2.2 Code Fragment for Loading MAR0 or MAR1
        4.       381
        5. 8.5.2.3 ADC Early Interrupt to CLA Response
      3. 8.5.3 Parallel Instructions
        1. 8.5.3.1 Math Operation with Parallel Load
        2. 8.5.3.2 Multiply with Parallel Add
      4. 8.5.4 CLA Task Execution Latency
    6. 8.6 Software
      1. 8.6.1 CLA Examples
        1. 8.6.1.1  CLA arcsine(x) using a lookup table (cla_asin_cpu01)
        2. 8.6.1.2  CLA arcsine(x) using a lookup table (cla_asin_cpu01) - C28X_DUAL
        3. 8.6.1.3  CLA Arcsine Example. - C28X_DUAL
        4. 8.6.1.4  CLA arctangent(x) using a lookup table (cla_atan_cpu01)
        5. 8.6.1.5  CLA 2 Pole 2 Zero Infinite Impulse Response Filter (cla_iir2p2z_cpu01) - C28X_DUAL
        6. 8.6.1.6  CLA 2-pole 2-zero IIR Filter Example for F2837xD. - C28X_DUAL
        7. 8.6.1.7  CLA background nesting task
        8. 8.6.1.8  Controlling PWM output using CLA
        9. 8.6.1.9  Just-in-time ADC sampling with CLA
        10. 8.6.1.10 Optimal offloading of control algorithms to CLA
        11. 8.6.1.11 Handling shared resources across C28x and CLA
    7. 8.7 Instruction Set
      1. 8.7.1 Instruction Descriptions
      2. 8.7.2 Addressing Modes and Encoding
      3. 8.7.3 Instructions
        1.       MABSF32 MRa, MRb
        2.       MADD32 MRa, MRb, MRc
        3.       MADDF32 MRa, #16FHi, MRb
        4.       MADDF32 MRa, MRb, #16FHi
        5.       MADDF32 MRa, MRb, MRc
        6.       MADDF32 MRd, MRe, MRf||MMOV32 mem32, MRa
        7.       MADDF32 MRd, MRe, MRf ||MMOV32 MRa, mem32
        8.       MAND32 MRa, MRb, MRc
        9.       MASR32 MRa, #SHIFT
        10.       MBCNDD 16BitDest [, CNDF]
        11.       MCCNDD 16BitDest [, CNDF]
        12.       MCLRC BGINTM
        13.       MCMP32 MRa, MRb
        14.       MCMPF32 MRa, MRb
        15.       MCMPF32 MRa, #16FHi
        16.       MDEBUGSTOP
        17.       MDEBUGSTOP1
        18.       MEALLOW
        19.       MEDIS
        20.       MEINVF32 MRa, MRb
        21.       MEISQRTF32 MRa, MRb
        22.       MF32TOI16 MRa, MRb
        23.       MF32TOI16R MRa, MRb
        24.       MF32TOI32 MRa, MRb
        25.       MF32TOUI16 MRa, MRb
        26.       MF32TOUI16R MRa, MRb
        27.       MF32TOUI32 MRa, MRb
        28.       MFRACF32 MRa, MRb
        29.       MI16TOF32 MRa, MRb
        30.       MI16TOF32 MRa, mem16
        31.       MI32TOF32 MRa, mem32
        32.       MI32TOF32 MRa, MRb
        33.       MLSL32 MRa, #SHIFT
        34.       MLSR32 MRa, #SHIFT
        35.       MMACF32 MR3, MR2, MRd, MRe, MRf ||MMOV32 MRa, mem32
        36.       MMAXF32 MRa, MRb
        37.       MMAXF32 MRa, #16FHi
        38.       MMINF32 MRa, MRb
        39.       MMINF32 MRa, #16FHi
        40.       MMOV16 MARx, MRa, #16I
        41.       MMOV16 MARx, mem16
        42.       MMOV16 mem16, MARx
        43.       MMOV16 mem16, MRa
        44.       MMOV32 mem32, MRa
        45.       MMOV32 mem32, MSTF
        46.       MMOV32 MRa, mem32 [, CNDF]
        47.       MMOV32 MRa, MRb [, CNDF]
        48.       MMOV32 MSTF, mem32
        49.       MMOVD32 MRa, mem32
        50.       MMOVF32 MRa, #32F
        51.       MMOVI16 MARx, #16I
        52.       MMOVI32 MRa, #32FHex
        53.       MMOVIZ MRa, #16FHi
        54.       MMOVZ16 MRa, mem16
        55.       MMOVXI MRa, #16FLoHex
        56.       MMPYF32 MRa, MRb, MRc
        57.       MMPYF32 MRa, #16FHi, MRb
        58.       MMPYF32 MRa, MRb, #16FHi
        59.       MMPYF32 MRa, MRb, MRc||MADDF32 MRd, MRe, MRf
        60.       MMPYF32 MRd, MRe, MRf ||MMOV32 MRa, mem32
        61.       MMPYF32 MRd, MRe, MRf ||MMOV32 mem32, MRa
        62.       MMPYF32 MRa, MRb, MRc ||MSUBF32 MRd, MRe, MRf
        63.       MNEGF32 MRa, MRb[, CNDF]
        64.       MNOP
        65.       MOR32 MRa, MRb, MRc
        66.       MRCNDD [CNDF]
        67.       MSETC BGINTM
        68.       MSETFLG FLAG, VALUE
        69.       MSTOP
        70.       MSUB32 MRa, MRb, MRc
        71.       MSUBF32 MRa, MRb, MRc
        72.       MSUBF32 MRa, #16FHi, MRb
        73.       MSUBF32 MRd, MRe, MRf ||MMOV32 MRa, mem32
        74.       MSUBF32 MRd, MRe, MRf ||MMOV32 mem32, MRa
        75.       MSWAPF MRa, MRb [, CNDF]
        76.       MTESTTF CNDF
        77.       MUI16TOF32 MRa, mem16
        78.       MUI16TOF32 MRa, MRb
        79.       MUI32TOF32 MRa, mem32
        80.       MUI32TOF32 MRa, MRb
        81.       MXOR32 MRa, MRb, MRc
    8. 8.8 CLA Registers
      1. 8.8.1 CLA Base Address Table (C28)
      2. 8.8.2 CLA_ONLY_REGS Registers
      3. 8.8.3 CLA_SOFTINT_REGS Registers
      4. 8.8.4 CLA_REGS Registers
      5. 8.8.5 CLA Registers to Driverlib Functions
  11. Configurable Logic Block (CLB)
    1. 9.1  Introduction
      1. 9.1.1 CLB Related Collateral
    2. 9.2  Description
      1. 9.2.1 CLB Clock
    3. 9.3  CLB Input/Output Connection
      1. 9.3.1 Overview
      2. 9.3.2 CLB Input Selection
      3. 9.3.3 CLB Output Selection
      4. 9.3.4 CLB Output Signal Multiplexer
    4. 9.4  CLB Tile
      1. 9.4.1 Static Switch Block
      2. 9.4.2 Counter Block
        1. 9.4.2.1 Counter Description
        2. 9.4.2.2 Counter Operation
        3. 9.4.2.3 Serializer Mode
        4. 9.4.2.4 Linear Feedback Shift Register (LFSR) Mode
      3. 9.4.3 FSM Block
      4. 9.4.4 LUT4 Block
      5. 9.4.5 Output LUT Block
      6. 9.4.6 Asynchronous Output Conditioning (AOC) Block
      7. 9.4.7 High Level Controller (HLC)
        1. 9.4.7.1 High Level Controller Events
        2. 9.4.7.2 High Level Controller Instructions
        3. 9.4.7.3 <Src> and <Dest>
        4. 9.4.7.4 Operation of the PUSH and PULL Instructions (Overflow and Underflow Detection)
    5. 9.5  CPU Interface
      1. 9.5.1 Register Description
      2. 9.5.2 Non-Memory Mapped Registers
    6. 9.6  DMA Access
    7. 9.7  CLB Data Export Through SPI RX Buffer
    8. 9.8  CLB Pipeline Mode
    9. 9.9  Software
      1. 9.9.1 CLB Examples
        1. 9.9.1.1  CLB Empty Project
        2. 9.9.1.2  CLB Combinational Logic
        3. 9.9.1.3  CLB GPIO Input Filter
        4. 9.9.1.4  CLB Auxilary PWM
        5. 9.9.1.5  CLB PWM Protection
        6. 9.9.1.6  CLB Event Window
        7. 9.9.1.7  CLB Signal Generator
        8. 9.9.1.8  CLB State Machine
        9. 9.9.1.9  CLB External Signal AND Gate
        10. 9.9.1.10 CLB Timer
        11. 9.9.1.11 CLB Timer Two States
        12. 9.9.1.12 CLB Interrupt Tag
        13. 9.9.1.13 CLB Output Intersect
        14. 9.9.1.14 CLB PUSH PULL
        15. 9.9.1.15 CLB Multi Tile
        16. 9.9.1.16 CLB Tile to Tile Delay
        17. 9.9.1.17 CLB based One-shot PWM
        18. 9.9.1.18 CLB AOC Control
        19. 9.9.1.19 CLB AOC Release Control
        20. 9.9.1.20 CLB XBARs
        21. 9.9.1.21 CLB AOC Control
        22. 9.9.1.22 CLB Serializer
        23. 9.9.1.23 CLB LFSR
        24. 9.9.1.24 CLB Lock Output Mask
        25. 9.9.1.25 CLB INPUT Pipeline Mode
        26. 9.9.1.26 CLB Clocking and PIPELINE Mode
        27. 9.9.1.27 CLB SPI Data Export
        28. 9.9.1.28 CLB SPI Data Export DMA
        29. 9.9.1.29 CLB Trip Zone Timestamp
        30. 9.9.1.30 CLB CRC
    10. 9.10 CLB Registers
      1. 9.10.1 CLB Base Address Table (C28)
      2. 9.10.2 CLB_LOGIC_CONFIG_REGS Registers
      3. 9.10.3 CLB_LOGIC_CONTROL_REGS Registers
      4. 9.10.4 CLB_DATA_EXCHANGE_REGS Registers
      5. 9.10.5 CLB Registers to Driverlib Functions
  12. 10Dual-Clock Comparator (DCC)
    1. 10.1 Introduction
      1. 10.1.1 Features
      2. 10.1.2 Block Diagram
    2. 10.2 Module Operation
      1. 10.2.1 Configuring DCC Counters
      2. 10.2.2 Single-Shot Measurement Mode
      3. 10.2.3 Continuous Monitoring Mode
      4. 10.2.4 Error Conditions
    3. 10.3 Interrupts
    4. 10.4 Software
      1. 10.4.1 DCC Examples
        1. 10.4.1.1 DCC Single shot Clock verification
        2. 10.4.1.2 DCC Single shot Clock measurement
        3. 10.4.1.3 DCC Continuous clock monitoring
        4. 10.4.1.4 DCC Continuous clock monitoring
        5. 10.4.1.5 DCC Detection of clock failure
    5. 10.5 DCC Registers
      1. 10.5.1 DCC Base Address Table (C28)
      2. 10.5.2 DCC_REGS Registers
      3. 10.5.3 DCC Registers to Driverlib Functions
  13. 11Direct Memory Access (DMA)
    1. 11.1 Introduction
      1. 11.1.1 Features
      2. 11.1.2 Block Diagram
    2. 11.2 Architecture
      1. 11.2.1 Peripheral Interrupt Event Trigger Sources
      2. 11.2.2 DMA Bus
    3. 11.3 Address Pointer and Transfer Control
    4. 11.4 Pipeline Timing and Throughput
    5. 11.5 CPU and CLA Arbitration
    6. 11.6 Channel Priority
      1. 11.6.1 Round-Robin Mode
      2. 11.6.2 Channel 1 High-Priority Mode
    7. 11.7 Overrun Detection Feature
    8. 11.8 Software
      1. 11.8.1 DMA Examples
        1. 11.8.1.1 DMA GSRAM Transfer (dma_ex1_gsram_transfer)
        2. 11.8.1.2 DMA Transfer Shared Peripheral - C28X_DUAL
        3. 11.8.1.3 DMA Transfer for Shared Peripheral Example (CPU2) - C28X_DUAL
        4. 11.8.1.4 DMA GSRAM Transfer (dma_ex2_gsram_transfer)
        5. 11.8.1.5 DMA Transfer Shared Peripheral - C28X_DUAL
    9. 11.9 DMA Registers
      1. 11.9.1 DMA Base Address Table (C28)
      2. 11.9.2 DMA_REGS Registers
      3. 11.9.3 DMA_CH_REGS Registers
      4. 11.9.4 DMA Registers to Driverlib Functions
  14. 12External Memory Interface (EMIF)
    1. 12.1 Introduction
      1. 12.1.1 Purpose of the Peripheral
      2. 12.1.2 EMIF Related Collateral
      3. 12.1.3 Features
        1. 12.1.3.1 Asynchronous Memory Support
        2. 12.1.3.2 Synchronous DRAM Memory Support
      4. 12.1.4 Functional Block Diagram
      5. 12.1.5 Configuring Device Pins
    2. 12.2 EMIF Module Architecture
      1. 12.2.1  EMIF Clock Control
      2. 12.2.2  EMIF Requests
      3. 12.2.3  EMIF Signal Descriptions
      4. 12.2.4  EMIF Signal Multiplexing Control
      5. 12.2.5  SDRAM Controller and Interface
        1. 12.2.5.1  SDRAM Commands
        2. 12.2.5.2  Interfacing to SDRAM
        3. 12.2.5.3  SDRAM Configuration Registers
        4. 12.2.5.4  SDRAM Auto-Initialization Sequence
        5. 12.2.5.5  SDRAM Configuration Procedure
        6. 12.2.5.6  EMIF Refresh Controller
          1. 12.2.5.6.1 Determining the Appropriate Value for the RR Field
        7. 12.2.5.7  Self-Refresh Mode
        8. 12.2.5.8  Power-Down Mode
        9. 12.2.5.9  SDRAM Read Operation
        10. 12.2.5.10 SDRAM Write Operations
        11. 12.2.5.11 Mapping from Logical Address to EMIF Pins
      6. 12.2.6  Asynchronous Controller and Interface
        1. 12.2.6.1 Interfacing to Asynchronous Memory
        2. 12.2.6.2 Accessing Larger Asynchronous Memories
        3. 12.2.6.3 Configuring EMIF for Asynchronous Accesses
        4. 12.2.6.4 Read and Write Operations in Normal Mode
          1. 12.2.6.4.1 Asynchronous Read Operations (Normal Mode)
          2. 12.2.6.4.2 Asynchronous Write Operations (Normal Mode)
        5. 12.2.6.5 Read and Write Operation in Select Strobe Mode
          1. 12.2.6.5.1 Asynchronous Read Operations (Select Strobe Mode)
          2. 12.2.6.5.2 Asynchronous Write Operations (Select Strobe Mode)
        6. 12.2.6.6 Extended Wait Mode and the EM1WAIT Pin
      7. 12.2.7  Data Bus Parking
      8. 12.2.8  Reset and Initialization Considerations
      9. 12.2.9  Interrupt Support
        1. 12.2.9.1 Interrupt Events
      10. 12.2.10 DMA Event Support
      11. 12.2.11 EMIF Signal Multiplexing
      12. 12.2.12 Memory Map
      13. 12.2.13 Priority and Arbitration
      14. 12.2.14 System Considerations
        1. 12.2.14.1 Asynchronous Request Times
      15. 12.2.15 Power Management
        1. 12.2.15.1 Power Management Using Self-Refresh Mode
        2. 12.2.15.2 Power Management Using Power Down Mode
      16. 12.2.16 Emulation Considerations
    3. 12.3 Example Configuration
      1. 12.3.1 Hardware Interface
      2. 12.3.2 Software Configuration
        1. 12.3.2.1 Configuring the SDRAM Interface
          1. 12.3.2.1.1 PLL Programming for EMIF to K4S641632H-TC(L)70 Interface
          2. 12.3.2.1.2 SDRAM Timing Register (SDRAM_TR) Settings for EMIF to K4S641632H-TC(L)70 Interface
          3. 12.3.2.1.3 SDRAM Self Refresh Exit Timing Register (SDR_EXT_TMNG) Settings for EMIF to K4S641632H-TC(L)70 Interface
          4. 12.3.2.1.4 SDRAM Refresh Control Register (SDRAM_RCR) Settings for EMIF to K4S641632H-TC(L)70 Interface
          5. 12.3.2.1.5 SDRAM Configuration Register (SDRAM_CR) Settings for EMIF to K4S641632H-TC(L)70 Interface
        2. 12.3.2.2 Configuring the Flash Interface
          1. 12.3.2.2.1 Asynchronous 1 Configuration Register (ASYNC_CS2_CFG) Settings for EMIF to LH28F800BJE-PTTL90 Interface
    4. 12.4 Software
      1. 12.4.1 EMIF Examples
        1. 12.4.1.1  Pin setup for EMIF module accessing ASRAM.
        2. 12.4.1.2  EMIF1 ASYNC module accessing 16bit ASRAM.
        3. 12.4.1.3  EMIF1 ASYNC module accessing 16bit ASRAM through CPU1 and CPU2. - C28X_DUAL
        4. 12.4.1.4  EMIF1 ASYNC module accessing 16bit ASRAM trhough CPU1 and CPU2. - C28X_DUAL
        5. 12.4.1.5  EMIF1 module accessing 16bit ASRAM as code memory.
        6. 12.4.1.6  EMIF1 module accessing 16bit SDRAM using memcpy_fast_far().
        7. 12.4.1.7  EMIF1 module accessing 16bit SDRAM then puts into Self Refresh mode before entering Low Power Mode.
        8. 12.4.1.8  EMIF1 module accessing 32bit SDRAM using DMA.
        9. 12.4.1.9  EMIF1 module accessing 16bit SDRAM using alternate address mapping.
        10. 12.4.1.10 EMIF1 ASYNC module accessing 16bit ASRAM HIC FSI
        11. 12.4.1.11 EMIF1 ASYNC module accessing 8bit HIC controller.
    5. 12.5 EMIF Registers
      1. 12.5.1 EMIF Base Address Table (C28)
      2. 12.5.2 EMIF_REGS Registers
      3. 12.5.3 EMIF1_CONFIG_REGS Registers
      4. 12.5.4 EMIF2_CONFIG_REGS Registers
      5. 12.5.5 EMIF Registers to Driverlib Functions
  15. 13Flash Module
    1. 13.1  Introduction to Flash and OTP Memory
      1. 13.1.1 FLASH Related Collateral
      2. 13.1.2 Features
      3. 13.1.3 Flash Tools
      4. 13.1.4 Default Flash Configuration
    2. 13.2  Flash Bank, OTP, and Pump
    3. 13.3  Flash Module Controller (FMC)
    4. 13.4  Flash and OTP Memory Power-Down Modes and Wakeup
    5. 13.5  Active Grace Period
    6. 13.6  Flash and OTP Memory Performance
    7. 13.7  Flash Read Interface
      1. 13.7.1 C28x-FMC (CPU1-FMC and CPU2-FMC) Flash Read Interface
        1. 13.7.1.1 Standard Read Mode
        2. 13.7.1.2 Prefetch Mode
          1. 13.7.1.2.1 Data Cache
      2. 13.7.2 M4-FMC (CM-FMC) Flash Read Interface
        1. 13.7.2.1 Standard Read Mode
        2. 13.7.2.2 Cache Mode
          1. 13.7.2.2.1 Program Cache
          2. 13.7.2.2.2 Data Cache
    8. 13.8  Flash Erase and Program
      1. 13.8.1 Erase
      2. 13.8.2 Program
      3. 13.8.3 Verify
    9. 13.9  Error Correction Code (ECC) Protection
      1. 13.9.1 Single-Bit Data Error
      2. 13.9.2 Uncorrectable Error
      3. 13.9.3 SECDED Logic Correctness Check
    10. 13.10 Reserved Locations Within Flash and OTP Memory
    11. 13.11 Migrating an Application from RAM to Flash
    12. 13.12 Procedure to Change the Flash Control Registers
    13. 13.13 Flash Pump Ownership Semaphore
    14. 13.14 Software
      1. 13.14.1 FLASH Examples
        1. 13.14.1.1 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly - CM
        2. 13.14.1.2 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
        3. 13.14.1.3 Flash ECC Test Mode
        4. 13.14.1.4 Flash ECC Test Mode - CM
    15. 13.15 Flash Registers
      1. 13.15.1 FLASH Base Address Table (C28)
      2. 13.15.2 CM FLASH Base Address Table (CM)
      3. 13.15.3 FLASH_CTRL_REGS Registers
      4. 13.15.4 FLASH_ECC_REGS Registers
      5. 13.15.5 CM_FLASH_CTRL_REGS Registers
      6. 13.15.6 CM_FLASH_ECC_REGS Registers
      7. 13.15.7 FLASH_PUMP_SEMAPHORE_REGS Registers
      8. 13.15.8 FLASH Registers to Driverlib Functions
  16. 14Embedded Real-time Analysis and Diagnostic (ERAD)
    1. 14.1 Introduction
      1. 14.1.1 ERAD Related Collateral
    2. 14.2 Enhanced Bus Comparator Unit
      1. 14.2.1 Enhanced Bus Comparator Unit Operations
      2. 14.2.2 Event Masking and Exporting
    3. 14.3 System Event Counter Unit
      1. 14.3.1 System Event Counter Modes
        1. 14.3.1.1 Counting Active Levels Versus Edges
        2. 14.3.1.2 Max Mode
        3. 14.3.1.3 Cumulative Mode
        4. 14.3.1.4 Input Signal Selection
      2. 14.3.2 Reset on Event
      3. 14.3.3 Operation Conditions
    4. 14.4 ERAD Ownership, Initialization and Reset
    5. 14.5 ERAD Programming Sequence
      1. 14.5.1 Hardware Breakpoint and Hardware Watch Point Programming Sequence
      2. 14.5.2 Timer and Counter Programming Sequence
    6. 14.6 Cyclic Redundancy Check Unit
      1. 14.6.1 CRC Unit Qualifier
      2. 14.6.2 CRC Unit Programming Sequence
    7. 14.7 Program Counter Trace
      1. 14.7.1 Functional Block Diagram
      2. 14.7.2 Trace Qualification Modes
      3. 14.7.3 Trace Memory
      4. 14.7.4 Trace Input Signal Conditioning
      5. 14.7.5 PC Trace Software Operation
      6. 14.7.6 Trace Operation in Debug Mode
    8. 14.8 Software
      1. 14.8.1 ERAD Examples
        1. 14.8.1.1  ERAD Profiling Interrupts
        2. 14.8.1.2  ERAD Profile Function
        3. 14.8.1.3  ERAD Profile Function
        4. 14.8.1.4  ERAD HWBP Monitor Program Counter
        5. 14.8.1.5  ERAD HWBP Monitor Program Counter
        6. 14.8.1.6  ERAD Profile Function
        7. 14.8.1.7  ERAD HWBP Stack Overflow Detection
        8. 14.8.1.8  ERAD HWBP Stack Overflow Detection
        9. 14.8.1.9  ERAD Stack Overflow
        10. 14.8.1.10 ERAD Profile Interrupts CLA
        11. 14.8.1.11 ERAD Profiling Interrupts
        12. 14.8.1.12 ERAD Profiling Interrupts
        13. 14.8.1.13 ERAD MEMORY ACCESS RESTRICT
        14. 14.8.1.14 ERAD INTERRUPT ORDER
        15. 14.8.1.15 ERAD AND CLB
        16. 14.8.1.16 ERAD PWM PROTECTION
    9. 14.9 ERAD Registers
      1. 14.9.1 ERAD Base Address Table (C28)
      2. 14.9.2 ERAD_GLOBAL_REGS Registers
      3. 14.9.3 ERAD_HWBP_REGS Registers
      4. 14.9.4 ERAD_COUNTER_REGS Registers
      5. 14.9.5 ERAD_CRC_GLOBAL_REGS Registers
      6. 14.9.6 ERAD_CRC_REGS Registers
      7. 14.9.7 ERAD Registers to Driverlib Functions
  17. 15General-Purpose Input/Output (GPIO)
    1. 15.1  Introduction
      1. 15.1.1 GPIO Related Collateral
    2. 15.2  Configuration Overview
    3. 15.3  Digital General-Purpose I/O Control
    4. 15.4  Input Qualification
      1. 15.4.1 No Synchronization (Asynchronous Input)
      2. 15.4.2 Synchronization to SYSCLKOUT Only
      3. 15.4.3 Qualification Using a Sampling Window
    5. 15.5  USB Signals
    6. 15.6  SPI Signals
    7. 15.7  GPIO and Peripheral Muxing
      1. 15.7.1 GPIO Muxing
      2. 15.7.2 Peripheral Muxing
    8. 15.8  Internal Pullup Configuration Requirements
    9. 15.9  Software
      1. 15.9.1 GPIO Examples
        1. 15.9.1.1 Device GPIO Setup
        2. 15.9.1.2 Device GPIO Toggle
        3. 15.9.1.3 Device GPIO Interrupt
      2. 15.9.2 LED Examples
        1. 15.9.2.1 LED Blinky Example (CM) - C28X_CM
        2. 15.9.2.2 LED Blinky Example - C28X_DUAL
        3. 15.9.2.3 LED Blinky Example - C28X_CM
        4. 15.9.2.4 LED Blinky Example with DCSM
        5. 15.9.2.5 LED Blinky Example - C28X_DUAL
    10. 15.10 GPIO Registers
      1. 15.10.1 GPIO Base Address Table (C28)
      2. 15.10.2 CM GPIO Base Address Table (CM)
      3. 15.10.3 GPIO_CTRL_REGS Registers
      4. 15.10.4 GPIO_DATA_REGS Registers
      5. 15.10.5 GPIO_DATA_READ_REGS Registers
      6. 15.10.6 CM_GPIO_DATA_REGS Registers
      7. 15.10.7 CM_GPIO_DATA_READ_REGS Registers
      8. 15.10.8 GPIO Registers to Driverlib Functions
  18. 16Interprocessor Communication (IPC)
    1. 16.1 Introduction
    2. 16.2 Message RAMs
    3. 16.3 IPC Flags and Interrupts
    4. 16.4 IPC Command Registers
    5. 16.5 Free-Running Counter
    6. 16.6 IPC Communication Protocol
    7. 16.7 Software
      1. 16.7.1 IPC Examples
        1. 16.7.1.1  IPC basic message passing example with interrupt - C28X_CM
        2. 16.7.1.2  IPC basic message passing example with interrupt - C28X_CM
        3. 16.7.1.3  IPC basic message passing example with interrupt - C28X_DUAL
        4. 16.7.1.4  IPC basic message passing example with interrupt - C28X_DUAL
        5. 16.7.1.5  IPC message passing example with interrupt and message queue - C28X_CM
        6. 16.7.1.6  IPC message passing example with interrupt and message queue - C28X_CM
        7. 16.7.1.7  IPC message passing example with interrupt and message queue - C28X_DUAL
        8. 16.7.1.8  IPC message passing example with interrupt and message queue - C28X_DUAL
        9. 16.7.1.9  IPC basic message passing example with interrupt - C28X_DUAL
        10. 16.7.1.10 IPC basic message passing example with interrupt - C28X_DUAL
        11. 16.7.1.11 IPC message passing example with interrupt and message queue - C28X_DUAL
        12. 16.7.1.12 IPC message passing example with interrupt and message queue - C28X_DUAL
    8. 16.8 IPC Registers
      1. 16.8.1 IPC Base Address Table (C28)
      2. 16.8.2 CM IPC Base Address Table (CM)
      3. 16.8.3 CPU1TOCPU2_IPC_REGS_CPU1VIEW Registers
      4. 16.8.4 CPU1TOCPU2_IPC_REGS_CPU2VIEW Registers
      5. 16.8.5 CPU1TOCM_IPC_REGS_CPU1VIEW Registers
      6. 16.8.6 CPU1TOCM_IPC_REGS_CMVIEW Registers
      7. 16.8.7 CPU2TOCM_IPC_REGS_CPU2VIEW Registers
      8. 16.8.8 CPU2TOCM_IPC_REGS_CMVIEW Registers
      9. 16.8.9 IPC Registers to Driverlib Functions
  19. 17Crossbar (X-BAR)
    1. 17.1 Input X-BAR and CLB Input X-BAR
      1. 17.1.1 CLB Input X-BAR
    2. 17.2 ePWM, CLB, and GPIO Output X-BAR
      1. 17.2.1 ePWM X-BAR
        1. 17.2.1.1 ePWM X-BAR Architecture
      2. 17.2.2 CLB X-BAR
        1. 17.2.2.1 CLB X-BAR Architecture
      3. 17.2.3 GPIO Output X-BAR
        1. 17.2.3.1 GPIO Output X-BAR Architecture
      4. 17.2.4 CLB Output X-BAR
        1. 17.2.4.1 CLB Output X-BAR Architecture
      5. 17.2.5 X-BAR Flags
    3. 17.3 XBAR Registers
      1. 17.3.1 XBAR Base Address Table (C28)
      2. 17.3.2 INPUT_XBAR_REGS Registers
      3. 17.3.3 XBAR_REGS Registers
      4. 17.3.4 EPWM_XBAR_REGS Registers
      5. 17.3.5 CLB_XBAR_REGS Registers
      6. 17.3.6 OUTPUT_XBAR_REGS Registers
      7. 17.3.7 Register to Driverlib Function Mapping
        1. 17.3.7.1 INPUTXBAR Registers to Driverlib Functions
        2. 17.3.7.2 XBAR Registers to Driverlib Functions
        3. 17.3.7.3 EPWMXBAR Registers to Driverlib Functions
        4. 17.3.7.4 CLBXBAR Registers to Driverlib Functions
        5. 17.3.7.5 OUTPUTXBAR Registers to Driverlib Functions
  20. 18â–º ANALOG PERIPHERALS
    1. 18.1 Technical Reference Manual Overview
  21. 19Analog Subsystem
    1. 19.1 Introduction
      1. 19.1.1 Features
      2. 19.1.2 Block Diagram
    2. 19.2 Optimizing Power-Up Time
    3. 19.3 Analog Subsystem Registers
      1. 19.3.1 ASBSYS Base Address Table (C28)
      2. 19.3.2 ANALOG_SUBSYS_REGS Registers
  22. 20Analog-to-Digital Converter (ADC)
    1. 20.1  Introduction
      1. 20.1.1 ADC Related Collateral
      2. 20.1.2 Features
      3. 20.1.3 Block Diagram
    2. 20.2  ADC Configurability
      1. 20.2.1 Clock Configuration
      2. 20.2.2 Resolution
      3. 20.2.3 Voltage Reference
        1. 20.2.3.1 External Reference Mode
      4. 20.2.4 Signal Mode
      5. 20.2.5 Expected Conversion Results
      6. 20.2.6 Interpreting Conversion Results
    3. 20.3  SOC Principle of Operation
      1. 20.3.1 SOC Configuration
      2. 20.3.2 Trigger Operation
      3. 20.3.3 ADC Acquisition (Sample and Hold) Window
      4. 20.3.4 ADC Input Models
      5. 20.3.5 Channel Selection
    4. 20.4  SOC Configuration Examples
      1. 20.4.1 Single Conversion from ePWM Trigger
      2. 20.4.2 Oversampled Conversion from ePWM Trigger
      3. 20.4.3 Multiple Conversions from CPU Timer Trigger
      4. 20.4.4 Software Triggering of SOCs
    5. 20.5  ADC Conversion Priority
    6. 20.6  Burst Mode
      1. 20.6.1 Burst Mode Example
      2. 20.6.2 Burst Mode Priority Example
    7. 20.7  EOC and Interrupt Operation
      1. 20.7.1 Interrupt Overflow
      2. 20.7.2 Continue to Interrupt Mode
      3. 20.7.3 Early Interrupt Configuration Mode
    8. 20.8  Post-Processing Blocks
      1. 20.8.1 PPB Offset Correction
      2. 20.8.2 PPB Error Calculation
      3. 20.8.3 PPB Limit Detection and Zero-Crossing Detection
      4. 20.8.4 PPB Sample Delay Capture
    9. 20.9  Opens/Shorts Detection Circuit (OSDETECT)
      1. 20.9.1 Implementation
      2. 20.9.2 Detecting an Open Input Pin
      3. 20.9.3 Detecting a Shorted Input Pin
    10. 20.10 Power-Up Sequence
    11. 20.11 ADC Calibration
      1. 20.11.1 ADC Zero Offset Calibration
      2. 20.11.2 ADC Calibration Routines in OTP Memory
    12. 20.12 ADC Timings
      1. 20.12.1 ADC Timing Diagrams
    13. 20.13 Additional Information
      1. 20.13.1 Ensuring Synchronous Operation
        1. 20.13.1.1 Basic Synchronous Operation
        2. 20.13.1.2 Synchronous Operation with Multiple Trigger Sources
        3. 20.13.1.3 Synchronous Operation with Uneven SOC Numbers
        4. 20.13.1.4 Synchronous Operation with Different Resolutions
        5. 20.13.1.5 Non-overlapping Conversions
      2. 20.13.2 Choosing an Acquisition Window Duration
      3. 20.13.3 Achieving Simultaneous Sampling
      4. 20.13.4 Result Register Mapping
      5. 20.13.5 Internal Temperature Sensor
      6. 20.13.6 Designing an External Reference Circuit
    14. 20.14 Software
      1. 20.14.1 ADC Examples
        1. 20.14.1.1  ADC Software Triggering
        2. 20.14.1.2  ADC ePWM Triggering
        3. 20.14.1.3  ADC Temperature Sensor Conversion
        4. 20.14.1.4  ADC Synchronous SOC Software Force (adc_soc_software_sync)
        5. 20.14.1.5  ADC Continuous Triggering (adc_soc_continuous)
        6. 20.14.1.6  ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma)
        7. 20.14.1.7  ADC PPB Offset (adc_ppb_offset)
        8. 20.14.1.8  ADC PPB Limits (adc_ppb_limits)
        9. 20.14.1.9  ADC PPB Delay Capture (adc_ppb_delay)
        10. 20.14.1.10 ADC ePWM Triggering Multiple SOC
        11. 20.14.1.11 ADC Burst Mode
        12. 20.14.1.12 ADC Burst Mode Oversampling
        13. 20.14.1.13 ADC SOC Oversampling
        14. 20.14.1.14 ADC PPB PWM trip (adc_ppb_pwm_trip)
        15. 20.14.1.15 ADC High Priority SOC (adc_high_priority_soc)
        16. 20.14.1.16 ADC Interleaved Averaging in Software
        17. 20.14.1.17 ADC Open Shorts Detection (adc_open_shorts_detection)
    15. 20.15 ADC Registers
      1. 20.15.1 ADC Base Address Table (C28)
      2. 20.15.2 ADC_REGS Registers
      3. 20.15.3 ADC_RESULT_REGS Registers
      4. 20.15.4 ADC Registers to Driverlib Functions
  23. 21Buffered Digital-to-Analog Converter (DAC)
    1. 21.1 Introduction
      1. 21.1.1 DAC Related Collateral
      2. 21.1.2 Features
      3. 21.1.3 Block Diagram
    2. 21.2 Using the DAC
      1. 21.2.1 Initialization Sequence
      2. 21.2.2 DAC Offset Adjustment
      3. 21.2.3 EPWMSYNCPER Signal
    3. 21.3 Lock Registers
    4. 21.4 Software
      1. 21.4.1 DAC Examples
        1. 21.4.1.1 Buffered DAC Enable
        2. 21.4.1.2 Buffered DAC Random
        3. 21.4.1.3 Buffered DAC Sine (buffdac_sine)
    5. 21.5 DAC Registers
      1. 21.5.1 DAC Base Address Table (C28)
      2. 21.5.2 DAC_REGS Registers
      3. 21.5.3 DAC Registers to Driverlib Functions
  24. 22Comparator Subsystem (CMPSS)
    1. 22.1 Introduction
      1. 22.1.1 CMPSS Related Collateral
      2. 22.1.2 Features
      3. 22.1.3 Block Diagram
    2. 22.2 Comparator
    3. 22.3 Reference DAC
    4. 22.4 Ramp Generator
      1. 22.4.1 Ramp Generator Overview
      2. 22.4.2 Ramp Generator Behavior
      3. 22.4.3 Ramp Generator Behavior at Corner Cases
    5. 22.5 Digital Filter
      1. 22.5.1 Filter Initialization Sequence
    6. 22.6 Using the CMPSS
      1. 22.6.1 LATCHCLR, EPWMSYNCPER, and EPWMBLANK Signals
      2. 22.6.2 Synchronizer, Digital Filter, and Latch Delays
      3. 22.6.3 Calibrating the CMPSS
      4. 22.6.4 Enabling and Disabling the CMPSS Clock
    7. 22.7 Software
      1. 22.7.1 CMPSS Examples
        1. 22.7.1.1 CMPSS Asynchronous Trip
        2. 22.7.1.2 CMPSS Digital Filter Configuration
    8. 22.8 CMPSS Registers
      1. 22.8.1 CMPSS Base Address Table (C28)
      2. 22.8.2 CMPSS_REGS Registers
      3. 22.8.3 CMPSS Registers to Driverlib Functions
  25. 23â–º CONTROL PERIPHERALS
    1. 23.1 Technical Reference Manual Overview
  26. 24Enhanced Capture (eCAP)
    1. 24.1 Introduction
      1. 24.1.1 Features
      2. 24.1.2 ECAP Related Collateral
    2. 24.2 Description
    3. 24.3 Configuring Device Pins for the eCAP
    4. 24.4 Capture and APWM Operating Mode
    5. 24.5 Capture Mode Description
      1. 24.5.1  Event Prescaler
      2. 24.5.2  Edge Polarity Select and Qualifier
      3. 24.5.3  Continuous/One-Shot Control
      4. 24.5.4  32-Bit Counter and Phase Control
      5. 24.5.5  CAP1-CAP4 Registers
      6. 24.5.6  eCAP Synchronization
        1. 24.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 24.5.7  Interrupt Control
      8. 24.5.8  DMA Interrupt
      9. 24.5.9  Shadow Load and Lockout Control
      10. 24.5.10 APWM Mode Operation
    6. 24.6 Application of the eCAP Module
      1. 24.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 24.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 24.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 24.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 24.7 Application of the APWM Mode
      1. 24.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 24.8 Software
      1. 24.8.1 ECAP Examples
        1. 24.8.1.1 eCAP APWM Example
        2. 24.8.1.2 eCAP Capture PWM Example
        3. 24.8.1.3 eCAP APWM Phase-shift Example
        4. 24.8.1.4 eCAP Software Sync Example
    9. 24.9 eCAP Registers
      1. 24.9.1 ECAP Base Address Table (C28)
      2. 24.9.2 ECAP_REGS Registers
      3. 24.9.3 ECAP Registers to Driverlib Functions
  27. 25High Resolution Capture (HRCAP)
    1. 25.1 Introduction
      1. 25.1.1 HRCAP Related Collateral
      2. 25.1.2 Features
      3. 25.1.3 Description
    2. 25.2 Operational Details
      1. 25.2.1 HRCAP Clocking
      2. 25.2.2 HRCAP Initialization Sequence
      3. 25.2.3 HRCAP Interrupts
      4. 25.2.4 HRCAP Calibration
        1. 25.2.4.1 Applying the Scale Factor
    3. 25.3 Known Exceptions
    4. 25.4 Software
      1. 25.4.1 HRCAP Examples
        1. 25.4.1.1 HRCAP Capture and Calibration Example
    5. 25.5 HRCAP Registers
      1. 25.5.1 HRCAP Base Address Table (C28)
      2. 25.5.2 HRCAP_REGS Registers
      3. 25.5.3 HRCAP Registers to Driverlib Functions
  28. 26Enhanced Pulse Width Modulator (ePWM)
    1. 26.1  Introduction
      1. 26.1.1 EPWM Related Collateral
      2. 26.1.2 Submodule Overview
    2. 26.2  Configuring Device Pins
    3. 26.3  ePWM Modules Overview
    4. 26.4  Time-Base (TB) Submodule
      1. 26.4.1 Purpose of the Time-Base Submodule
      2. 26.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 26.4.3 Calculating PWM Period and Frequency
        1. 26.4.3.1 Time-Base Period Shadow Register
        2. 26.4.3.2 Time-Base Clock Synchronization
        3. 26.4.3.3 Time-Base Counter Synchronization
        4. 26.4.3.4 ePWM SYNC Selection
      4. 26.4.4 Phase Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 26.4.5 Simultaneous Writes to TBPRD and CMPx Registers Between ePWM Modules
      6. 26.4.6 Time-Base Counter Modes and Timing Waveforms
      7. 26.4.7 Global Load
        1. 26.4.7.1 Global Load Pulse Pre-Scalar
        2. 26.4.7.2 One-Shot Load Mode
        3. 26.4.7.3 One-Shot Sync Mode
    5. 26.5  Counter-Compare (CC) Submodule
      1. 26.5.1 Purpose of the Counter-Compare Submodule
      2. 26.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 26.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 26.5.4 Count Mode Timing Waveforms
    6. 26.6  Action-Qualifier (AQ) Submodule
      1. 26.6.1 Purpose of the Action-Qualifier Submodule
      2. 26.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 26.6.3 Action-Qualifier Event Priority
      4. 26.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 26.6.5 Configuration Requirements for Common Waveforms
    7. 26.7  Dead-Band Generator (DB) Submodule
      1. 26.7.1 Purpose of the Dead-Band Submodule
      2. 26.7.2 Dead-band Submodule Additional Operating Modes
      3. 26.7.3 Operational Highlights for the Dead-Band Submodule
    8. 26.8  PWM Chopper (PC) Submodule
      1. 26.8.1 Purpose of the PWM Chopper Submodule
      2. 26.8.2 Operational Highlights for the PWM Chopper Submodule
      3. 26.8.3 Waveforms
        1. 26.8.3.1 One-Shot Pulse
        2. 26.8.3.2 Duty Cycle Control
    9. 26.9  Trip-Zone (TZ) Submodule
      1. 26.9.1 Purpose of the Trip-Zone Submodule
      2. 26.9.2 Operational Highlights for the Trip-Zone Submodule
        1. 26.9.2.1 Trip-Zone Configurations
      3. 26.9.3 Generating Trip Event Interrupts
    10. 26.10 Event-Trigger (ET) Submodule
      1. 26.10.1 Operational Overview of the ePWM Event-Trigger Submodule
    11. 26.11 Digital Compare (DC) Submodule
      1. 26.11.1 Purpose of the Digital Compare Submodule
      2. 26.11.2 Enhanced Trip Action Using CMPSS
      3. 26.11.3 Using CMPSS to Trip the ePWM on a Cycle-by-Cycle Basis
      4. 26.11.4 Operation Highlights of the Digital Compare Submodule
        1. 26.11.4.1 Digital Compare Events
        2. 26.11.4.2 Event Filtering
        3. 26.11.4.3 Valley Switching
    12. 26.12 ePWM Crossbar (X-BAR)
    13. 26.13 Applications to Power Topologies
      1. 26.13.1  Overview of Multiple Modules
      2. 26.13.2  Key Configuration Capabilities
      3. 26.13.3  Controlling Multiple Buck Converters With Independent Frequencies
      4. 26.13.4  Controlling Multiple Buck Converters With Same Frequencies
      5. 26.13.5  Controlling Multiple Half H-Bridge (HHB) Converters
      6. 26.13.6  Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM)
      7. 26.13.7  Practical Applications Using Phase Control Between PWM Modules
      8. 26.13.8  Controlling a 3-Phase Interleaved DC/DC Converter
      9. 26.13.9  Controlling Zero Voltage Switched Full Bridge (ZVSFB) Converter
      10. 26.13.10 Controlling a Peak Current Mode Controlled Buck Module
      11. 26.13.11 Controlling H-Bridge LLC Resonant Converter
    14. 26.14 Register Lock Protection
    15. 26.15 High-Resolution Pulse Width Modulator (HRPWM)
      1. 26.15.1 Operational Description of HRPWM
        1. 26.15.1.1 Controlling the HRPWM Capabilities
        2. 26.15.1.2 HRPWM Source Clock
        3. 26.15.1.3 Configuring the HRPWM
        4. 26.15.1.4 Configuring High-Resolution in Deadband Rising-Edge and Falling-Edge Delay
        5. 26.15.1.5 Principle of Operation
          1. 26.15.1.5.1 Edge Positioning
          2. 26.15.1.5.2 Scaling Considerations
          3. 26.15.1.5.3 Duty Cycle Range Limitation
          4. 26.15.1.5.4 High-Resolution Period
            1. 26.15.1.5.4.1 High-Resolution Period Configuration
        6. 26.15.1.6 Deadband High-Resolution Operation
        7. 26.15.1.7 Scale Factor Optimizing Software (SFO)
        8. 26.15.1.8 HRPWM Examples Using Optimized Assembly Code
          1. 26.15.1.8.1 #Defines for HRPWM Header Files
          2. 26.15.1.8.2 Implementing a Simple Buck Converter
            1. 26.15.1.8.2.1 HRPWM Buck Converter Initialization Code
            2. 26.15.1.8.2.2 HRPWM Buck Converter Run-Time Code
          3. 26.15.1.8.3 Implementing a DAC Function Using an R+C Reconstruction Filter
            1. 26.15.1.8.3.1 PWM DAC Function Initialization Code
            2. 26.15.1.8.3.2 PWM DAC Function Run-Time Code
      2. 26.15.2 SFO Library Software - SFO_TI_Build_V8.lib
        1. 26.15.2.1 Scale Factor Optimizer Function - int SFO()
        2. 26.15.2.2 Software Usage
          1. 26.15.2.2.1 A Sample of How to Add "Include" Files
          2.        1176
          3. 26.15.2.2.2 Declaring an Element
          4.        1178
          5. 26.15.2.2.3 Initializing With a Scale Factor Value
          6.        1180
          7. 26.15.2.2.4 SFO Function Calls
    16. 26.16 Software
      1. 26.16.1 EPWM Examples
        1. 26.16.1.1  ePWM Trip Zone
        2. 26.16.1.2  ePWM Up Down Count Action Qualifier
        3. 26.16.1.3  ePWM Synchronization
        4. 26.16.1.4  ePWM Digital Compare
        5. 26.16.1.5  ePWM Digital Compare Event Filter Blanking Window
        6. 26.16.1.6  ePWM Valley Switching
        7. 26.16.1.7  ePWM Digital Compare Edge Filter
        8. 26.16.1.8  ePWM Deadband
        9. 26.16.1.9  ePWM DMA
        10. 26.16.1.10 ePWM Chopper
        11. 26.16.1.11 EPWM Configure Signal
        12. 26.16.1.12 Realization of Monoshot mode
        13. 26.16.1.13 EPWM Action Qualifier (epwm_up_aq)
      2. 26.16.2 HRPWM Examples
        1. 26.16.2.1 HRPWM Duty Control with SFO
        2. 26.16.2.2 HRPWM Slider
        3. 26.16.2.3 HRPWM Period Control
        4. 26.16.2.4 HRPWM Duty Control with UPDOWN Mode
        5. 26.16.2.5 HRPWM Slider Test
        6. 26.16.2.6 HRPWM Duty Up Count
        7. 26.16.2.7 HRPWM Period Up-Down Count
    17. 26.17 ePWM Registers
      1. 26.17.1 EPWM Base Address Table (C28)
      2. 26.17.2 EPWM_REGS Registers
      3. 26.17.3 SYNC_SOC_REGS Registers
      4. 26.17.4 Register to Driverlib Function Mapping
        1. 26.17.4.1 EPWM Registers to Driverlib Functions
        2. 26.17.4.2 HRPWM Registers to Driverlib Functions
  29. 27Enhanced Quadrature Encoder Pulse (eQEP)
    1. 27.1  Introduction
      1. 27.1.1 EQEP Related Collateral
    2. 27.2  Configuring Device Pins
    3. 27.3  Description
      1. 27.3.1 EQEP Inputs
      2. 27.3.2 Functional Description
      3. 27.3.3 eQEP Memory Map
    4. 27.4  Quadrature Decoder Unit (QDU)
      1. 27.4.1 Position Counter Input Modes
        1. 27.4.1.1 Quadrature Count Mode
        2. 27.4.1.2 Direction-Count Mode
        3. 27.4.1.3 Up-Count Mode
        4. 27.4.1.4 Down-Count Mode
      2. 27.4.2 eQEP Input Polarity Selection
      3. 27.4.3 Position-Compare Sync Output
    5. 27.5  Position Counter and Control Unit (PCCU)
      1. 27.5.1 Position Counter Operating Modes
        1. 27.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM]=00)
        2. 27.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM]=01)
        3. 27.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 27.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 27.5.2 Position Counter Latch
        1. 27.5.2.1 Index Event Latch
        2. 27.5.2.2 Strobe Event Latch
      3. 27.5.3 Position Counter Initialization
      4. 27.5.4 eQEP Position-compare Unit
    6. 27.6  eQEP Edge Capture Unit
    7. 27.7  eQEP Watchdog
    8. 27.8  eQEP Unit Timer Base
    9. 27.9  QMA Module
      1. 27.9.1 Modes of Operation
        1. 27.9.1.1 QMA Mode-1 (QMACTRL[MODE]=1)
        2. 27.9.1.2 QMA Mode-2 (QMACTRL[MODE]=2)
      2. 27.9.2 Interrupt and Error Generation
    10. 27.10 eQEP Interrupt Structure
    11. 27.11 Software
      1. 27.11.1 EQEP Examples
        1. 27.11.1.1 Frequency Measurement Using eQEP
        2. 27.11.1.2 Position and Speed Measurement Using eQEP
        3. 27.11.1.3 ePWM frequency Measurement Using eQEP via xbar connection
        4. 27.11.1.4 Frequency Measurement Using eQEP via unit timeout interrupt
        5. 27.11.1.5 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 27.12 eQEP Registers
      1. 27.12.1 EQEP Base Address Table (C28)
      2. 27.12.2 EQEP_REGS Registers
      3. 27.12.3 EQEP Registers to Driverlib Functions
  30. 28Sigma Delta Filter Module (SDFM)
    1. 28.1  Introduction
      1. 28.1.1 SDFM Related Collateral
      2. 28.1.2 Features
      3. 28.1.3 Block Diagram
    2. 28.2  Configuring Device Pins
    3. 28.3  Input Qualification
    4. 28.4  Input Control Unit
    5. 28.5  SDFM Clock Control
    6. 28.6  Sinc Filter
      1. 28.6.1 Data Rate and Latency of the Sinc Filter
    7. 28.7  Data (Primary) Filter Unit
      1. 28.7.1 32-bit or 16-bit Data Filter Output Representation
      2. 28.7.2 Data FIFO
      3. 28.7.3 SDSYNC Event
    8. 28.8  Comparator (Secondary) Filter Unit
      1. 28.8.1 Higher Threshold (HLT) Comparators
      2. 28.8.2 Lower Threshold (LLT) Comparators
      3. 28.8.3 Digital Filter
    9. 28.9  Theoretical SDFM Filter Output
    10. 28.10 Interrupt Unit
      1. 28.10.1 SDFM (SDyERR) Interrupt Sources
      2. 28.10.2 Data Ready (DRINT) Interrupt Sources
    11. 28.11 Software
      1. 28.11.1 SDFM Examples
        1. 28.11.1.1 SDFM Filter Sync CPU
        2. 28.11.1.2 SDFM Filter Sync CLA
        3. 28.11.1.3 SDFM Filter Sync DMA
        4. 28.11.1.4 SDFM PWM Sync
        5. 28.11.1.5 SDFM Type 1 Filter FIFO
        6. 28.11.1.6 SDFM Filter Sync CLA
    12. 28.12 SDFM Registers
      1. 28.12.1 SDFM Base Address Table (C28)
      2. 28.12.2 SDFM_REGS Registers
      3. 28.12.3 SDFM Registers to Driverlib Functions
  31. 29â–º COMMUNICATION PERIPHERALS
    1. 29.1 Technical Reference Manual Overview
  32. 30Controller Area Network (CAN)
    1. 30.1  Introduction
      1. 30.1.1 DCAN Related Collateral
      2. 30.1.2 Features
      3. 30.1.3 Block Diagram
        1. 30.1.3.1 CAN Core
        2. 30.1.3.2 Message Handler
        3. 30.1.3.3 Message RAM
        4. 30.1.3.4 Registers and Message Object Access (IFx)
    2. 30.2  Functional Description
      1. 30.2.1 Configuring Device Pins
      2. 30.2.2 Address/Data Bus Bridge
    3. 30.3  Operating Modes
      1. 30.3.1 Initialization
      2. 30.3.2 CAN Message Transfer (Normal Operation)
        1. 30.3.2.1 Disabled Automatic Retransmission
        2. 30.3.2.2 Auto-Bus-On
      3. 30.3.3 Test Modes
        1. 30.3.3.1 Silent Mode
        2. 30.3.3.2 Loopback Mode
        3. 30.3.3.3 External Loopback Mode
        4. 30.3.3.4 Loopback Combined with Silent Mode
    4. 30.4  Multiple Clock Source
    5. 30.5  Interrupt Functionality
      1. 30.5.1 Message Object Interrupts
      2. 30.5.2 Status Change Interrupts
      3. 30.5.3 Error Interrupts
      4. 30.5.4 Peripheral Interrupt Expansion (PIE) Module Nomenclature for DCAN Interrupts
      5. 30.5.5 Interrupt Topologies
    6. 30.6  DMA Functionality
    7. 30.7  Parity Check Mechanism
      1. 30.7.1 Behavior on Parity Error
    8. 30.8  Debug Mode
    9. 30.9  Module Initialization
    10. 30.10 Configuration of Message Objects
      1. 30.10.1 Configuration of a Transmit Object for Data Frames
      2. 30.10.2 Configuration of a Transmit Object for Remote Frames
      3. 30.10.3 Configuration of a Single Receive Object for Data Frames
      4. 30.10.4 Configuration of a Single Receive Object for Remote Frames
      5. 30.10.5 Configuration of a FIFO Buffer
    11. 30.11 Message Handling
      1. 30.11.1  Message Handler Overview
      2. 30.11.2  Receive/Transmit Priority
      3. 30.11.3  Transmission of Messages in Event Driven CAN Communication
      4. 30.11.4  Updating a Transmit Object
      5. 30.11.5  Changing a Transmit Object
      6. 30.11.6  Acceptance Filtering of Received Messages
      7. 30.11.7  Reception of Data Frames
      8. 30.11.8  Reception of Remote Frames
      9. 30.11.9  Reading Received Messages
      10. 30.11.10 Requesting New Data for a Receive Object
      11. 30.11.11 Storing Received Messages in FIFO Buffers
      12. 30.11.12 Reading from a FIFO Buffer
    12. 30.12 CAN Bit Timing
      1. 30.12.1 Bit Time and Bit Rate
        1. 30.12.1.1 Synchronization Segment
        2. 30.12.1.2 Propagation Time Segment
        3. 30.12.1.3 Phase Buffer Segments and Synchronization
        4. 30.12.1.4 Oscillator Tolerance Range
      2. 30.12.2 Configuration of the CAN Bit Timing
        1. 30.12.2.1 Calculation of the Bit Timing Parameters
        2. 30.12.2.2 Example for Bit Timing at High Baudrate
        3. 30.12.2.3 Example for Bit Timing at Low Baudrate
    13. 30.13 Message Interface Register Sets
      1. 30.13.1 Message Interface Register Sets 1 and 2 (IF1 and IF2)
      2. 30.13.2 Message Interface Register Set 3 (IF3)
    14. 30.14 Message RAM
      1. 30.14.1 Structure of Message Objects
      2. 30.14.2 Addressing Message Objects in RAM
      3. 30.14.3 Message RAM Representation in Debug Mode
    15. 30.15 Software
      1. 30.15.1 CAN Examples
        1. 30.15.1.1  NMI handling - C28X_DUAL
        2. 30.15.1.2  CAN External Loopback
        3. 30.15.1.3  Watchdog Reset - C28X_DUAL
        4. 30.15.1.4  CAN Loopback - CM
        5. 30.15.1.5  CAN External Loopback with Interrupts
        6. 30.15.1.6  CAN External Loopback with Interrupts - C28X_DUAL
        7. 30.15.1.7  CAN External Loopback with Interrupts - CM
        8. 30.15.1.8  CAN-A to CAN-B External Transmit
        9. 30.15.1.9  CAN-A to CAN-B External Transmit - CM
        10. 30.15.1.10 CAN External Loopback with DMA
        11. 30.15.1.11 CAN Transmit and Receive Configurations - CM
        12. 30.15.1.12 CAN Transmit and Receive Configurations
        13. 30.15.1.13 CAN Error Generation Example
        14. 30.15.1.14 CAN Remote Request Loopback
        15. 30.15.1.15 CAN example that illustrates the usage of Mask registers
    16. 30.16 CAN Registers
      1. 30.16.1 CAN Base Address Table (C28)
      2. 30.16.2 CM CAN Base Address Table (CM)
      3. 30.16.3 CAN_REGS Registers
      4. 30.16.4 CAN Registers to Driverlib Functions
  33. 31EtherCAT® Slave Controller (ESC)
    1. 31.1 Introduction
      1. 31.1.1  ECAT Related Collateral
      2. 31.1.2  ESC Features
      3. 31.1.3  ESC Subsystem Integrated Features
      4. 31.1.4  F2838x ESC versus Beckhoff ET1100
      5. 31.1.5  EtherCAT IP Block Diagram
      6. 31.1.6  ESC Functional Blocks
        1. 31.1.6.1  Interface to EtherCAT Master
        2. 31.1.6.2  Process Data Interface
        3. 31.1.6.3  General-Purpose Inputs and Outputs
        4. 31.1.6.4  EtherCAT Processing Unit (EPU)
        5. 31.1.6.5  Fieldbus Memory Management Unit (FMMU)
        6. 31.1.6.6  Sync Manager
        7. 31.1.6.7  Monitoring
        8. 31.1.6.8  Reset Controller
        9. 31.1.6.9  PHY Management
        10. 31.1.6.10 Distributed Clock (DC)
        11. 31.1.6.11 EEPROM
        12. 31.1.6.12 Status / LEDs
      7. 31.1.7  EtherCAT Physical Layer
        1. 31.1.7.1 MII Interface
        2. 31.1.7.2 PHY Management Interface
          1. 31.1.7.2.1 PHY Address Configuration
          2. 31.1.7.2.2 PHY Reset Signal
          3. 31.1.7.2.3 PHY Clock
      8. 31.1.8  EtherCAT Protocol
      9. 31.1.9  EtherCAT State Machine (ESM)
      10. 31.1.10 More Information on EtherCAT
      11. 31.1.11 Beckhoff® Automation EtherCAT IP Errata
    2. 31.2 ESC and ESCSS Description
      1. 31.2.1  ESC RAM Parity and Memory Address Maps
        1. 31.2.1.1 ESC RAM Parity Logic
        2. 31.2.1.2 CPU1 ESC Memory Address Map
        3. 31.2.1.3 CM ESC Memory Address Map
      2. 31.2.2  Local Host Communication
        1. 31.2.2.1 Byte Accessibility Through PDI
        2. 31.2.2.2 Software Details for Operation Across Clock Domains
      3. 31.2.3  Debug Emulation Mode Operation
      4. 31.2.4  ESC SubSystem
        1. 31.2.4.1 CPU1 Bus Interface
        2. 31.2.4.2 CM Bus Interface
      5. 31.2.5  Interrupts and Interrupt Mapping
      6. 31.2.6  Power, Clocks, and Resets
        1. 31.2.6.1 Power
        2. 31.2.6.2 Clocking
        3. 31.2.6.3 Resets
          1. 31.2.6.3.1 Chip-Level Reset
          2. 31.2.6.3.2 EtherCAT Soft Resets
          3. 31.2.6.3.3 Reset Out (RESET_OUT)
      7. 31.2.7  LED Controls
      8. 31.2.8  Slave Node Configuration and EEPROM
      9. 31.2.9  General-Purpose Inputs and Outputs
        1. 31.2.9.1 General-Purpose Inputs
        2. 31.2.9.2 General-Purpose Output
      10. 31.2.10 Distributed Clocks – Sync and Latch
        1. 31.2.10.1 Clock Synchronization
        2. 31.2.10.2 SYNC Signals
          1. 31.2.10.2.1 Seeking Host Intervention
        3. 31.2.10.3 LATCH Signals
          1. 31.2.10.3.1 Timestamping
        4. 31.2.10.4 Device Control and Synchronization
          1. 31.2.10.4.1 Synchronization of PWM
          2. 31.2.10.4.2 ECAP SYNC Inputs
          3. 31.2.10.4.3 SYNC Signal Conditioning and Rerouting
    3. 31.3 Software Initialization Sequence and Allocating Ownership
    4. 31.4 ESC Configuration Constants
    5. 31.5 EtherCAT IP Registers
      1. 31.5.1 ECAT Base Address Table (C28)
      2. 31.5.2 ESCSS_REGS Registers
      3. 31.5.3 ESCSS_CONFIG_REGS Registers
      4. 31.5.4 ESC_SS Registers to Driverlib Functions
  34. 32Fast Serial Interface (FSI)
    1. 32.1 Introduction
      1. 32.1.1 FSI Related Collateral
      2. 32.1.2 FSI Features
    2. 32.2 System-level Integration
      1. 32.2.1 CPU Interface
      2. 32.2.2 Signal Description
        1. 32.2.2.1 Configuring Device Pins
      3. 32.2.3 FSI Interrupts
        1. 32.2.3.1 Transmitter Interrupts
        2. 32.2.3.2 Receiver Interrupts
        3. 32.2.3.3 Configuring Interrupts
        4. 32.2.3.4 Handling Interrupts
      4. 32.2.4 CLA Task Triggering
      5. 32.2.5 DMA Interface
      6. 32.2.6 External Frame Trigger Mux
    3. 32.3 FSI Functional Description
      1. 32.3.1  Introduction to Operation
      2. 32.3.2  FSI Transmitter Module
        1. 32.3.2.1 Initialization
        2. 32.3.2.2 FSI_TX Clocking
        3. 32.3.2.3 Transmitting Frames
          1. 32.3.2.3.1 Software Triggered Frames
          2. 32.3.2.3.2 Externally Triggered Frames
          3. 32.3.2.3.3 Ping Frame Generation
            1. 32.3.2.3.3.1 Automatic Ping Frames
            2. 32.3.2.3.3.2 Software Triggered Ping Frame
            3. 32.3.2.3.3.3 Externally Triggered Ping Frame
          4. 32.3.2.3.4 Transmitting Frames with DMA
        4. 32.3.2.4 Transmit Buffer Management
        5. 32.3.2.5 CRC Submodule
        6. 32.3.2.6 Conditions in Which the Transmitter Must Undergo a Soft Reset
        7. 32.3.2.7 Reset
      3. 32.3.3  FSI Receiver Module
        1. 32.3.3.1  Initialization
        2. 32.3.3.2  FSI_RX Clocking
        3. 32.3.3.3  Receiving Frames
          1. 32.3.3.3.1 Receiving Frames with DMA
        4. 32.3.3.4  Ping Frame Watchdog
        5. 32.3.3.5  Frame Watchdog
        6. 32.3.3.6  Delay Line Control
        7. 32.3.3.7  Buffer Management
        8. 32.3.3.8  CRC Submodule
        9. 32.3.3.9  Using the Zero Bits of the Receiver Tag Registers
        10. 32.3.3.10 Conditions in Which the Receiver Must Undergo a Soft Reset
        11. 32.3.3.11 FSI_RX Reset
      4. 32.3.4  Frame Format
        1. 32.3.4.1 FSI Frame Phases
        2. 32.3.4.2 Frame Types
          1. 32.3.4.2.1 Ping Frames
          2. 32.3.4.2.2 Error Frames
          3. 32.3.4.2.3 Data Frames
        3. 32.3.4.3 Multi-Lane Transmission
      5. 32.3.5  Flush Sequence
      6. 32.3.6  Internal Loopback
      7. 32.3.7  CRC Generation
      8. 32.3.8  ECC Module
      9. 32.3.9  Tag Matching
      10. 32.3.10 TDM Configurations
      11. 32.3.11 FSI-SPI Compatibility Mode
        1. 32.3.11.1 Available SPI Modes
          1. 32.3.11.1.1 FSITX as SPI Master, Transmit Only
            1. 32.3.11.1.1.1 Initialization
            2. 32.3.11.1.1.2 Operation
          2. 32.3.11.1.2 FSIRX as SPI Slave, Receive Only
            1. 32.3.11.1.2.1 Initialization
            2. 32.3.11.1.2.2 Operation
          3. 32.3.11.1.3 FSITX and FSIRX Emulating a Full Duplex SPI Master
            1. 32.3.11.1.3.1 Initialization
            2. 32.3.11.1.3.2 Operation
    4. 32.4 FSI Programing Guide
      1. 32.4.1 Establishing the Communication Link
        1. 32.4.1.1 Establishing the Communication Link from the Master Device
        2. 32.4.1.2 Establishing the Communication Link from the Slave Device
      2. 32.4.2 Register Protection
      3. 32.4.3 Emulation Mode
    5. 32.5 Software
      1. 32.5.1 FSI Examples
        1. 32.5.1.1  FSI Multi-Rx Tag-Match - C28X_DUAL
        2. 32.5.1.2  FSI Loopback:CPU Control
        3. 32.5.1.3  FSI Multi-Rx Tag-Match - C28X_DUAL
        4. 32.5.1.4  FSI Loopback CLA control
        5. 32.5.1.5  FSI DMA frame transfers:DMA Control
        6. 32.5.1.6  FSI data transfer by external trigger
        7. 32.5.1.7  FSI data transfers upon CPU Timer event
        8. 32.5.1.8  FSI and SPI communication(fsi_ex6_spi_main_tx)
        9. 32.5.1.9  FSI and SPI communication(fsi_ex7_spi_remote_rx)
        10. 32.5.1.10 FSI P2Point Connection:Rx Side
        11. 32.5.1.11 FSI P2Point Connection:Tx Side
        12. 32.5.1.12 FSI star connection topology example. FSI communication using CPU control
        13. 32.5.1.13 FSI daisy chain topology, lead device example
        14. 32.5.1.14 FSI daisy chain topology, node device example
    6. 32.6 FSI Registers
      1. 32.6.1 FSI Base Address Table (C28)
      2. 32.6.2 FSI_TX_REGS Registers
      3. 32.6.3 FSI_RX_REGS Registers
      4. 32.6.4 FSI Registers to Driverlib Functions
  35. 33Inter-Integrated Circuit Module (I2C)
    1. 33.1 Introduction
      1. 33.1.1 I2C Related Collateral
      2. 33.1.2 Features
      3. 33.1.3 Features Not Supported
      4. 33.1.4 Functional Overview
      5. 33.1.5 Clock Generation
      6. 33.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 33.1.6.1 Formula for the Master Clock Period
    2. 33.2 Configuring Device Pins
    3. 33.3 I2C Module Operational Details
      1. 33.3.1  Input and Output Voltage Levels
      2. 33.3.2  Selecting Pullup Resistors
      3. 33.3.3  Data Validity
      4. 33.3.4  Operating Modes
      5. 33.3.5  I2C Module START and STOP Conditions
      6. 33.3.6  Non-repeat Mode versus Repeat Mode
      7. 33.3.7  Serial Data Formats
        1. 33.3.7.1 7-Bit Addressing Format
        2. 33.3.7.2 10-Bit Addressing Format
        3. 33.3.7.3 Free Data Format
        4. 33.3.7.4 Using a Repeated START Condition
      8. 33.3.8  Clock Synchronization
      9. 33.3.9  Arbitration
      10. 33.3.10 Digital Loopback Mode
      11. 33.3.11 NACK Bit Generation
    4. 33.4 Interrupt Requests Generated by the I2C Module
      1. 33.4.1 Basic I2C Interrupt Requests
      2. 33.4.2 I2C FIFO Interrupts
    5. 33.5 Resetting or Disabling the I2C Module
    6. 33.6 Software
      1. 33.6.1 I2C Examples
        1. 33.6.1.1  C28x-I2C Library source file for FIFO interrupts
        2. 33.6.1.2  C28x-I2C Library source file for FIFO using polling
        3. 33.6.1.3  C28x-I2C Library source file for FIFO interrupts
        4. 33.6.1.4  I2C Loopback with Slave Receive Interrupt - CM
        5. 33.6.1.5  I2C Digital Loopback with FIFO Interrupts
        6. 33.6.1.6  I2C EEPROM
        7. 33.6.1.7  I2C Digital External Loopback with FIFO Interrupts
        8. 33.6.1.8  I2C EEPROM
        9. 33.6.1.9  I2C controller target communication using FIFO interrupts
        10. 33.6.1.10 I2C EEPROM
    7. 33.7 I2C Registers
      1. 33.7.1 I2C Base Address Table (C28)
      2. 33.7.2 I2C_REGS Registers
      3. 33.7.3 I2C Registers to Driverlib Functions
  36. 34Multichannel Buffered Serial Port (McBSP)
    1. 34.1  Introduction
      1. 34.1.1 MCBSP Related Collateral
      2. 34.1.2 Features of the McBSPs
      3. 34.1.3 McBSP Pins/Signals
        1. 34.1.3.1 McBSP Generic Block Diagram
    2. 34.2  Configuring Device Pins
    3. 34.3  McBSP Operation
      1. 34.3.1 Data Transfer Process of McBSPs
        1. 34.3.1.1 Data Transfer Process for Word Length of 8, 12, or 16 Bits
        2. 34.3.1.2 Data Transfer Process for Word Length of 20, 24, or 32 Bits
      2. 34.3.2 Companding (Compressing and Expanding) Data
        1. 34.3.2.1 Companding Formats
        2. 34.3.2.2 Capability to Compand Internal Data
        3. 34.3.2.3 Reversing Bit Order: Option to Transfer LSB First
      3. 34.3.3 Clocking and Framing Data
        1. 34.3.3.1 Clocking
        2. 34.3.3.2 Serial Words
        3. 34.3.3.3 Frames and Frame Synchronization
        4. 34.3.3.4 Generating Transmit and Receive Interrupts
          1. 34.3.3.4.1 Detecting Frame-Synchronization Pulses, Even in Reset State
        5. 34.3.3.5 Ignoring Frame-Synchronization Pulses
        6. 34.3.3.6 Frame Frequency
        7. 34.3.3.7 Maximum Frame Frequency
      4. 34.3.4 Frame Phases
        1. 34.3.4.1 Number of Phases, Words, and Bits Per Frame
        2. 34.3.4.2 Single-Phase Frame Example
        3. 34.3.4.3 Dual-Phase Frame Example
        4. 34.3.4.4 Implementing the AC97 Standard With a Dual-Phase Frame
      5. 34.3.5 McBSP Reception
      6. 34.3.6 McBSP Transmission
      7. 34.3.7 Interrupts and DMA Events Generated by a McBSP
    4. 34.4  McBSP Sample Rate Generator
      1. 34.4.1 Block Diagram
        1. 34.4.1.1 Clock Generation in the Sample Rate Generator
        2. 34.4.1.2 Choosing an Input Clock
        3. 34.4.1.3 Choosing a Polarity for the Input Clock
        4. 34.4.1.4 Choosing a Frequency for the Output Clock (CLKG)
          1. 34.4.1.4.1 CLKG Frequency
        5. 34.4.1.5 Keeping CLKG Synchronized to External MCLKR
      2. 34.4.2 Frame Synchronization Generation in the Sample Rate Generator
        1. 34.4.2.1 Choosing the Width of the Frame-Synchronization Pulse on FSG
        2. 34.4.2.2 Controlling the Period Between the Starting Edges of Frame-Synchronization Pulses on FSG
        3. 34.4.2.3 Keeping FSG Synchronized to an External Clock
      3. 34.4.3 Synchronizing Sample Rate Generator Outputs to an External Clock
        1. 34.4.3.1 Operating the Transmitter Synchronously with the Receiver
        2. 34.4.3.2 Synchronization Examples
      4. 34.4.4 Reset and Initialization Procedure for the Sample Rate Generator
    5. 34.5  McBSP Exception/Error Conditions
      1. 34.5.1 Types of Errors
      2. 34.5.2 Overrun in the Receiver
        1. 34.5.2.1 Example of Overrun Condition
        2. 34.5.2.2 Example of Preventing Overrun Condition
      3. 34.5.3 Unexpected Receive Frame-Synchronization Pulse
        1. 34.5.3.1 Possible Responses to Receive Frame-Synchronization Pulses
        2. 34.5.3.2 Example of Unexpected Receive Frame-Synchronization Pulse
        3. 34.5.3.3 Preventing Unexpected Receive Frame-Synchronization Pulses
      4. 34.5.4 Overwrite in the Transmitter
        1. 34.5.4.1 Example of Overwrite Condition
        2. 34.5.4.2 Preventing Overwrites
      5. 34.5.5 Underflow in the Transmitter
        1. 34.5.5.1 Example of the Underflow Condition
        2. 34.5.5.2 Example of Preventing Underflow Condition
      6. 34.5.6 Unexpected Transmit Frame-Synchronization Pulse
        1. 34.5.6.1 Possible Responses to Transmit Frame-Synchronization Pulses
        2. 34.5.6.2 Example of Unexpected Transmit Frame-Synchronization Pulse
        3. 34.5.6.3 Preventing Unexpected Transmit Frame-Synchronization Pulses
    6. 34.6  Multichannel Selection Modes
      1. 34.6.1 Channels, Blocks, and Partitions
      2. 34.6.2 Multichannel Selection
      3. 34.6.3 Configuring a Frame for Multichannel Selection
      4. 34.6.4 Using Two Partitions
        1. 34.6.4.1 Assigning Blocks to Partitions A and B
        2. 34.6.4.2 Reassigning Blocks During Reception/Transmission
      5. 34.6.5 Using Eight Partitions
      6. 34.6.6 Receive Multichannel Selection Mode
      7. 34.6.7 Transmit Multichannel Selection Modes
        1. 34.6.7.1 Disabling/Enabling Versus Masking/Unmasking
        2. 34.6.7.2 Activity on McBSP Pins for Different Values of XMCM
      8. 34.6.8 Using Interrupts Between Block Transfers
    7. 34.7  SPI Operation Using the Clock Stop Mode
      1. 34.7.1 SPI Protocol
      2. 34.7.2 Clock Stop Mode
      3. 34.7.3 Enable and Configure the Clock Stop Mode
      4. 34.7.4 Clock Stop Mode Timing Diagrams
      5. 34.7.5 Procedure for Configuring a McBSP for SPI Operation
      6. 34.7.6 McBSP as the SPI Master
      7. 34.7.7 McBSP as an SPI Slave
    8. 34.8  Receiver Configuration
      1. 34.8.1  Programming the McBSP Registers for the Desired Receiver Operation
      2. 34.8.2  Resetting and Enabling the Receiver
        1. 34.8.2.1 Reset Considerations
      3. 34.8.3  Set the Receiver Pins to Operate as McBSP Pins
      4. 34.8.4  Digital Loopback Mode
      5. 34.8.5  Clock Stop Mode
      6. 34.8.6  Receive Multichannel Selection Mode
      7. 34.8.7  Receive Frame Phases
      8. 34.8.8  Receive Word Lengths
        1. 34.8.8.1 Word Length Bits
      9. 34.8.9  Receive Frame Length
        1. 34.8.9.1 Selected Frame Length
      10. 34.8.10 Receive Frame-Synchronization Ignore Function
        1. 34.8.10.1 Unexpected Frame-Synchronization Pulses and the Frame-Synchronization Ignore Function
        2. 34.8.10.2 Examples of Effects of RFIG
      11. 34.8.11 Receive Companding Mode
        1. 34.8.11.1 Companding
        2. 34.8.11.2 Format of Expanded Data
        3. 34.8.11.3 Companding Internal Data
        4. 34.8.11.4 Option to Receive LSB First
      12. 34.8.12 Receive Data Delay
        1. 34.8.12.1 Data Delay
        2. 34.8.12.2 0-Bit Data Delay
        3. 34.8.12.3 2-Bit Data Delay
      13. 34.8.13 Receive Sign-Extension and Justification Mode
        1. 34.8.13.1 Sign-Extension and the Justification
      14. 34.8.14 Receive Interrupt Mode
      15. 34.8.15 Receive Frame-Synchronization Mode
        1. 34.8.15.1 Receive Frame-Synchronization Modes
      16. 34.8.16 Receive Frame-Synchronization Polarity
        1. 34.8.16.1 Frame-Synchronization Pulses, Clock Signals, and Their Polarities
        2. 34.8.16.2 Frame-Synchronization Period and the Frame-Synchronization Pulse Width
      17. 34.8.17 Receive Clock Mode
        1. 34.8.17.1 Selecting a Source for the Receive Clock and a Data Direction for the MCLKR Pin
      18. 34.8.18 Receive Clock Polarity
        1. 34.8.18.1 Frame Synchronization Pulses, Clock Signals, and Their Polarities
      19. 34.8.19 SRG Clock Divide-Down Value
        1. 34.8.19.1 Sample Rate Generator Clock Divider
      20. 34.8.20 SRG Clock Synchronization Mode
      21. 34.8.21 SRG Clock Mode (Choose an Input Clock)
      22. 34.8.22 SRG Input Clock Polarity
        1. 34.8.22.1 Using CLKXP/CLKRP to Choose an Input Clock Polarity
    9. 34.9  Transmitter Configuration
      1. 34.9.1  Programming the McBSP Registers for the Desired Transmitter Operation
      2. 34.9.2  Resetting and Enabling the Transmitter
        1. 34.9.2.1 Reset Considerations
      3. 34.9.3  Set the Transmitter Pins to Operate as McBSP Pins
      4. 34.9.4  Digital Loopback Mode
      5. 34.9.5  Clock Stop Mode
      6. 34.9.6  Transmit Multichannel Selection Mode
      7. 34.9.7  XCERs Used in the Transmit Multichannel Selection Mode
      8. 34.9.8  Transmit Frame Phases
      9. 34.9.9  Transmit Word Lengths
        1. 34.9.9.1 Word Length Bits
      10. 34.9.10 Transmit Frame Length
        1. 34.9.10.1 Selected Frame Length
      11. 34.9.11 Enable/Disable the Transmit Frame-Synchronization Ignore Function
        1. 34.9.11.1 Unexpected Frame-Synchronization Pulses and Frame-Synchronization Ignore
        2. 34.9.11.2 Examples Showing the Effects of XFIG
      12. 34.9.12 Transmit Companding Mode
        1. 34.9.12.1 Companding
        2. 34.9.12.2 Format for Data To Be Compressed
        3. 34.9.12.3 Capability to Compand Internal Data
        4. 34.9.12.4 Option to Transmit LSB First
      13. 34.9.13 Transmit Data Delay
        1. 34.9.13.1 Data Delay
        2. 34.9.13.2 0-Bit Data Delay
        3. 34.9.13.3 2-Bit Data Delay
      14. 34.9.14 Transmit DXENA Mode
      15. 34.9.15 Transmit Interrupt Mode
      16. 34.9.16 Transmit Frame-Synchronization Mode
        1. 34.9.16.1 Other Considerations
      17. 34.9.17 Transmit Frame-Synchronization Polarity
        1. 34.9.17.1 Frame Synchronization Pulses, Clock Signals, and Their Polarities
      18. 34.9.18 SRG Frame-Synchronization Period and Pulse Width
        1. 34.9.18.1 Frame-Synchronization Period and Frame-Synchronization Pulse Width
      19. 34.9.19 Transmit Clock Mode
        1. 34.9.19.1 Selecting a Source for the Transmit Clock and a Data Direction for the MCLKX pin
        2. 34.9.19.2 Other Considerations
      20. 34.9.20 Transmit Clock Polarity
        1. 34.9.20.1 Frame Synchronization Pulses, Clock Signals, and Their Polarities
    10. 34.10 Emulation and Reset Considerations
      1. 34.10.1 McBSP Emulation Mode
      2. 34.10.2 Resetting and Initializing McBSPs
        1. 34.10.2.1 McBSP Pin States: DSP Reset Versus Receiver/Transmitter Reset
        2. 34.10.2.2 Device Reset, McBSP Reset, and Sample Rate Generator Reset
        3. 34.10.2.3 McBSP Initialization Procedure
        4. 34.10.2.4 Resetting the Transmitter While the Receiver is Running
          1. 34.10.2.4.1 Resetting and Configuring McBSP Transmitter While McBSP Receiver Running
    11. 34.11 Data Packing Examples
      1. 34.11.1 Data Packing Using Frame Length and Word Length
      2. 34.11.2 Data Packing Using Word Length and the Frame-Synchronization Ignore Function
    12. 34.12 Interrupt Generation
      1. 34.12.1 McBSP Receive Interrupt Generation
      2. 34.12.2 McBSP Transmit Interrupt Generation
      3. 34.12.3 Error Flags
    13. 34.13 McBSP Modes
    14. 34.14 Special Case: External Device is the Transmit Frame Master
    15. 34.15 Software
      1. 34.15.1 MCBSP Examples
        1. 34.15.1.1 Pin Setup for McBSP module
        2. 34.15.1.2 McBSP loopback example
        3. 34.15.1.3 McBSP loopback with DMA example.
        4. 34.15.1.4 McBSP loopback with interrupts example
        5. 34.15.1.5 McBSP loopback with interrupts example
        6. 34.15.1.6 McBSP loopback example using SPI mode
        7. 34.15.1.7 McBSP external loopback example
        8. 34.15.1.8 McBSP external loopback example using SPI mode
        9. 34.15.1.9 McBSP TDM-8 Test
    16. 34.16 McBSP Registers
      1. 34.16.1 MCBSP Base Address Table (C28)
      2. 34.16.2 McBSP_REGS Registers
      3. 34.16.3 MCBSP Registers to Driverlib Functions
  37. 35Power Management Bus Module (PMBus)
    1. 35.1 Introduction
      1. 35.1.1 PMBUS Related Collateral
      2. 35.1.2 Features
      3. 35.1.3 Block Diagram
    2. 35.2 Configuring Device Pins
    3. 35.3 Slave Mode Operation
      1. 35.3.1 Configuration
      2. 35.3.2 Message Handling
        1. 35.3.2.1  Quick Command
        2. 35.3.2.2  Send Byte
        3. 35.3.2.3  Receive Byte
        4. 35.3.2.4  Write Byte and Write Word
        5. 35.3.2.5  Read Byte and Read Word
        6. 35.3.2.6  Process Call
        7. 35.3.2.7  Block Write
        8. 35.3.2.8  Block Read
        9. 35.3.2.9  Block Write-Block Read Process Call
        10. 35.3.2.10 Alert Response
        11. 35.3.2.11 Extended Command
        12. 35.3.2.12 Group Command
    4. 35.4 Master Mode Operation
      1. 35.4.1 Configuration
      2. 35.4.2 Message Handling
        1. 35.4.2.1  Quick Command
        2. 35.4.2.2  Send Byte
        3. 35.4.2.3  Receive Byte
        4. 35.4.2.4  Write Byte and Write Word
        5. 35.4.2.5  Read Byte and Read Word
        6. 35.4.2.6  Process Call
        7. 35.4.2.7  Block Write
        8. 35.4.2.8  Block Read
        9. 35.4.2.9  Block Write-Block Read Process Call
        10. 35.4.2.10 Alert Response
        11. 35.4.2.11 Extended Command
        12. 35.4.2.12 Group Command
    5. 35.5 PMBus Registers
      1. 35.5.1 PMBUS Base Address Table (C28)
      2. 35.5.2 PMBUS_REGS Registers
      3. 35.5.3 PMBUS Registers to Driverlib Functions
  38. 36Serial Communications Interface (SCI)
    1. 36.1  Introduction
      1. 36.1.1 Features
      2. 36.1.2 SCI Related Collateral
      3. 36.1.3 Block Diagram
    2. 36.2  Architecture
    3. 36.3  SCI Module Signal Summary
    4. 36.4  Configuring Device Pins
    5. 36.5  Multiprocessor and Asynchronous Communication Modes
    6. 36.6  SCI Programmable Data Format
    7. 36.7  SCI Multiprocessor Communication
      1. 36.7.1 Recognizing the Address Byte
      2. 36.7.2 Controlling the SCI TX and RX Features
      3. 36.7.3 Receipt Sequence
    8. 36.8  Idle-Line Multiprocessor Mode
      1. 36.8.1 Idle-Line Mode Steps
      2. 36.8.2 Block Start Signal
      3. 36.8.3 Wake-Up Temporary (WUT) Flag
        1. 36.8.3.1 Sending a Block Start Signal
      4. 36.8.4 Receiver Operation
    9. 36.9  Address-Bit Multiprocessor Mode
      1. 36.9.1 Sending an Address
    10. 36.10 SCI Communication Format
      1. 36.10.1 Receiver Signals in Communication Modes
      2. 36.10.2 Transmitter Signals in Communication Modes
    11. 36.11 SCI Port Interrupts
      1. 36.11.1 Break Detect
    12. 36.12 SCI Baud Rate Calculations
    13. 36.13 SCI Enhanced Features
      1. 36.13.1 SCI FIFO Description
      2. 36.13.2 SCI Auto-Baud
      3. 36.13.3 Autobaud-Detect Sequence
    14. 36.14 Software
      1. 36.14.1 SCI Examples
        1. 36.14.1.1 Tune Baud Rate via UART Example
        2. 36.14.1.2 SCI FIFO Digital Loop Back
        3. 36.14.1.3 Watchdog Reset - C28X_DUAL
        4. 36.14.1.4 NMI handling - C28X_DUAL
        5. 36.14.1.5 SCI Digital Loop Back with Interrupts
        6. 36.14.1.6 SCI Echoback
        7. 36.14.1.7 stdout redirect example
    15. 36.15 SCI Registers
      1. 36.15.1 SCI Base Address Table (C28)
      2. 36.15.2 SCI_REGS Registers
      3. 36.15.3 SCI Registers to Driverlib Functions
  39. 37Serial Peripheral Interface (SPI)
    1. 37.1 Introduction
      1. 37.1.1 Features
      2. 37.1.2 SPI Related Collateral
      3. 37.1.3 Block Diagram
    2. 37.2 System-Level Integration
      1. 37.2.1 SPI Module Signals
      2. 37.2.2 Configuring Device Pins
        1. 37.2.2.1 GPIOs Required for High-Speed Mode
      3. 37.2.3 SPI Interrupts
      4. 37.2.4 DMA Support
    3. 37.3 SPI Operation
      1. 37.3.1  Introduction to Operation
      2. 37.3.2  Master Mode
      3. 37.3.3  Slave Mode
      4. 37.3.4  Data Format
        1. 37.3.4.1 Transmission of Bit from SPIRXBUF
      5. 37.3.5  Baud Rate Selection
        1. 37.3.5.1 Baud Rate Determination
        2. 37.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 37.3.6  SPI Clocking Schemes
      7. 37.3.7  SPI FIFO Description
      8. 37.3.8  SPI DMA Transfers
        1. 37.3.8.1 Transmitting Data Using SPI with DMA
        2. 37.3.8.2 Receiving Data Using SPI with DMA
      9. 37.3.9  SPI High-Speed Mode
      10. 37.3.10 SPI 3-Wire Mode Description
    4. 37.4 Programming Procedure
      1. 37.4.1 Initialization Upon Reset
      2. 37.4.2 Configuring the SPI
      3. 37.4.3 Configuring the SPI for High-Speed Mode
      4. 37.4.4 Data Transfer Example
      5. 37.4.5 SPI 3-Wire Mode Code Examples
        1. 37.4.5.1 3-Wire Master Mode Transmit
        2.       1924
          1. 37.4.5.2.1 3-Wire Master Mode Receive
        3.       1926
          1. 37.4.5.2.1 3-Wire Slave Mode Transmit
        4.       1928
          1. 37.4.5.2.1 3-Wire Slave Mode Receive
      6. 37.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 37.5 Software
      1. 37.5.1 SPI Examples
        1. 37.5.1.1 SPI Digital Loopback
        2. 37.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 37.5.1.3 SPI Digital External Loopback without FIFO Interrupts
        4. 37.5.1.4 SPI Digital External Loopback with FIFO Interrupts
        5. 37.5.1.5 SPI Digital Loopback with DMA
        6. 37.5.1.6 SPI EEPROM
        7. 37.5.1.7 SPI DMA EEPROM
    6. 37.6 SPI Registers
      1. 37.6.1 SPI Base Address Table (C28)
      2. 37.6.2 SPI_REGS Registers
      3. 37.6.3 SPI Registers to Driverlib Functions
  40. 38Universal Serial Bus (USB) Controller
    1. 38.1 Introduction
      1. 38.1.1 Features
      2. 38.1.2 USB Related Collateral
      3. 38.1.3 Block Diagram
        1. 38.1.3.1 Signal Description
        2. 38.1.3.2 VBus Recommendations
    2. 38.2 Functional Description
      1. 38.2.1 Operation as a Device
        1. 38.2.1.1 Control and Configurable Endpoints
          1. 38.2.1.1.1 IN Transactions as a Device
          2. 38.2.1.1.2 Out Transactions as a Device
          3. 38.2.1.1.3 Scheduling
          4. 38.2.1.1.4 Additional Actions
          5. 38.2.1.1.5 Device Mode Suspend
          6. 38.2.1.1.6 Start of Frame
          7. 38.2.1.1.7 USB Reset
          8. 38.2.1.1.8 Connect/Disconnect
      2. 38.2.2 Operation as a Host
        1. 38.2.2.1 Endpoint Registers
        2. 38.2.2.2 IN Transactions as a Host
        3. 38.2.2.3 OUT Transactions as a Host
        4. 38.2.2.4 Transaction Scheduling
        5. 38.2.2.5 USB Hubs
        6. 38.2.2.6 Babble
        7. 38.2.2.7 Host SUSPEND
        8. 38.2.2.8 USB RESET
        9. 38.2.2.9 Connect/Disconnect
      3. 38.2.3 DMA Operation
      4. 38.2.4 Address/Data Bus Bridge
    3. 38.3 Initialization and Configuration
      1. 38.3.1 Pin Configuration
      2. 38.3.2 Endpoint Configuration
    4. 38.4 USB Global Interrupts
    5. 38.5 Software
      1. 38.5.1 USB Examples
        1. 38.5.1.1  Wrapper for interrupt functions and USB support pins. - CM
        2. 38.5.1.2  USB CDC serial example
        3. 38.5.1.3  USB Composite Serial Device (usb_dev_cserial) - CM
        4. 38.5.1.4  USB HID Mouse Device
        5. 38.5.1.5  USB HID Mouse Device - CM
        6. 38.5.1.6  Data structures defining the USB mouse device. - CM
        7. 38.5.1.7  USB Device Keyboard
        8. 38.5.1.8  USB HID Keyboard Device (usb_dev_keyboard) - CM
        9. 38.5.1.9  Data structures defining the USB keyboard device. - CM
        10. 38.5.1.10 Data structures defining this bulk USB device. - CM
        11. 38.5.1.11 USB Generic Bulk Device (usb_dev_bulk) - CM
        12. 38.5.1.12 USB Generic Bulk Device
        13. 38.5.1.13 USB HID Mouse Host
        14. 38.5.1.14 USB HID Mouse Host (usb_host_mouse) - CM
        15. 38.5.1.15 USB HID Keyboard Host (usb_host_keyboard) - CM
        16. 38.5.1.16 USB HID Keyboard Host
        17. 38.5.1.17 USB Mass Storage Class Host
        18. 38.5.1.18 USB Mass Storage Class Host (usb_host_msc) - CM
        19. 38.5.1.19 USB Dual Detect
        20. 38.5.1.20 Data structures defining this bulk USB device. - CM
        21. 38.5.1.21 USB Throughput Bulk Device Example (usb_ex9_throughput_dev_bulk) - CM
        22. 38.5.1.22 USB HUB Host example - CM
        23. 38.5.1.23 USB Throughput Bulk Device Example (usb_ex9_throughput_dev_bulk)
        24. 38.5.1.24 USB HUB Host example
    6. 38.6 USB Registers
      1. 38.6.1 USB Base Address Table (C28)
      2. 38.6.2 USB_REGS Registers
      3. 38.6.3 USB Registers to Driverlib Functions
  41. 39â–º CONNECTIVITY MANAGER (CM)
    1. 39.1 Technical Reference Manual Overview
  42. 40Connectivity Manager Subsystem
    1. 40.1 Connectivity Manager Overview
    2. 40.2 Connectivity Manager Functional Block Diagram
    3. 40.3 Arm® Cortex®-M4 Processor Core Overview
  43. 41Connectivity Manager System Control and Interrupts
    1. 41.1  Introduction
    2. 41.2  Reset
      1. 41.2.1 CPU1 SYSRS
      2. 41.2.2 System Reset Request (CMSYSRESETREQ)
      3. 41.2.3 CM NMI Watchdog Reset (CMNMIWDRSTn)
      4. 41.2.4 CM Secure Code Copy Reset (CMSCCRESETn)
    3. 41.3  CM Clocking
      1. 41.3.1 CM Clock Sources
      2. 41.3.2 CM Derived Clocks
      3. 41.3.3 CM Device Clock Domains
        1. 41.3.3.1 Connectivity Manager Clock (CMCLK)
        2. 41.3.3.2 CM Peripheral Subsystem Clock (CM.PERx.SYSCLK)
        3. 41.3.3.3 MCAN Bit Clock
      4. 41.3.4 CM Clock Connectivity
    4. 41.4  SysTick
    5. 41.5  Watchdog Timer
    6. 41.6  Exceptions and NMI
      1. 41.6.1 CM Subsystem Nested Vectored Interrupt Controller
      2. 41.6.2 CM Subsystem Exceptions Handling
      3. 41.6.3 CM Subsystem Non-Maskable Interrupt (CMNMI) Module
        1. 41.6.3.1 CM Subsystem NMI Sources
          1. 41.6.3.1.1 RAM/ROM Uncorrectable Error
          2. 41.6.3.1.2 Reset Request from EtherCAT
          3. 41.6.3.1.3 Clock Fail Condition
          4. 41.6.3.1.4 MCAN Uncorrectable Error
          5. 41.6.3.1.5 CM Windowed Watchdog Timed Out
          6. 41.6.3.1.6 Flash Uncorrectable Error
        2. 41.6.3.2 CM Subsystem NMIWD Module
          1. 41.6.3.2.1 Emulation Considerations
        3. 41.6.3.3 Handling of CMNMI
      4. 41.6.4 CM Interrupts/NMI to CPU1/CPU2
    7. 41.7  Nested Vectored Interrupt Controller (NVIC)
      1. 41.7.1 Level-Sensitive and Pulse Interrupts
      2. 41.7.2 Hardware and Software Control of Interrupts
      3. 41.7.3 NVIC Registers Access
    8. 41.8  32-Bit CM CPU Timers 0/1/2
    9. 41.9  Memory Controller Module
      1. 41.9.1 Functional Description
        1. 41.9.1.1 Dedicated RAM
        2. 41.9.1.2 Shared RAM
        3. 41.9.1.3 MSG RAM
        4. 41.9.1.4 ROM
        5. 41.9.1.5 Interleaving
        6. 41.9.1.6 Access Arbitration
        7. 41.9.1.7 Access Protection
        8. 41.9.1.8 Memory Error Detection, Correction and Error Handling
          1. 41.9.1.8.1 Error Detection and Correction
          2. 41.9.1.8.2 Error Handling
          3. 41.9.1.8.3 Application Test Hooks for Error Detection and Correction
          4. 41.9.1.8.4 ROM Test
        9. 41.9.1.9 RAM Initialization
    10. 41.10 Memory Protection Unit (MPU)
      1. 41.10.1 Functional Description
      2. 41.10.2 Overlapping Regions
      3. 41.10.3 Sub-Regions
      4. 41.10.4 Programmers Model
    11. 41.11 Debug and Trace
      1. 41.11.1 Trace Port Interface Unit
    12. 41.12 CM-SysCtrl Registers
      1. 41.12.1  CM System Control Base Addresses
      2. 41.12.2  CM_MEMCFG_REGS Registers
      3. 41.12.3  CM_MEMORYDIAGERROR_REGS Registers
      4. 41.12.4  CM_MEMORYERROR_REGS Registers
      5. 41.12.5  CMSYSCTL_REGS Registers
      6. 41.12.6  CM_CPUTIMER_REGS Registers
      7. 41.12.7  MPU_REGS Registers
      8. 41.12.8  CM_NMI_INTRUPT_REGS Registers
      9. 41.12.9  NVIC Registers
      10. 41.12.10 SCB Registers
      11. 41.12.11 CSFR Registers
      12. 41.12.12 SYSTICK Registers
      13. 41.12.13 MPU Registers
      14. 41.12.14 CM_WD_REGS Registers
  44. 42Advanced Encryption Standard (AES) Accelerator
    1. 42.1 Introduction
      1. 42.1.1 AES Block Diagram
        1. 42.1.1.1 Interfaces
        2. 42.1.1.2 AES Subsystem
        3. 42.1.1.3 AES Wide-Bus Engine
      2. 42.1.2 AES Algorithm
    2. 42.2 AES Operating Modes
      1. 42.2.1  GCM Operation
      2. 42.2.2  CCM Operation
      3. 42.2.3  XTS Operation
      4. 42.2.4  ECB Feedback Mode
      5. 42.2.5  CBC Feedback Mode
      6. 42.2.6  CTR and ICM Feedback Modes
      7. 42.2.7  CFB Mode
      8. 42.2.8  F8 Mode
      9. 42.2.9  F9 Operation
      10. 42.2.10 CBC-MAC Operation
    3. 42.3 Extended and Combined Modes of Operations
      1. 42.3.1 GCM Protocol Operation
      2. 42.3.2 CCM Protocol Operation
      3. 42.3.3 Hardware Requests
    4. 42.4 AES Module Programming Guide
      1. 42.4.1 AES Low-Level Programming Models
        1. 42.4.1.1 Global Initialization
        2. 42.4.1.2 AES Operating Modes Configuration
        3. 42.4.1.3 AES Mode Configurations
        4. 42.4.1.4 AES Events Servicing
    5. 42.5 Software
      1. 42.5.1 AES Examples
        1. 42.5.1.1 AES ECB Encryption Example (CM) - CM
        2. 42.5.1.2 AES ECB De-cryption Example (CM) - CM
        3. 42.5.1.3 AES GCM Encryption Example (CM) - CM
        4. 42.5.1.4 AES GCM Decryption Example (CM) - CM
    6. 42.6 AES Registers
      1. 42.6.1 AES Base Addresses
      2. 42.6.2 AES_SS_REGS Registers
      3. 42.6.3 AES_REGS Registers
  45. 43Ethernet Media Access Controller (EMAC)
    1. 43.1 Introduction
      1. 43.1.1 Standard Compliance
      2. 43.1.2 MAC Features
        1. 43.1.2.1 MAC Tx and Rx Features
        2. 43.1.2.2 MAC Tx Features
        3. 43.1.2.3 MAC Rx Features
    2. 43.2 System Level Integration
      1. 43.2.1 Ethernet Signal Connection and Description
        1. 43.2.1.1 MII Interface Signals
        2. 43.2.1.2 RMII Interface Signals
        3. 43.2.1.3 RevMII Interface Signals
        4. 43.2.1.4 Pulse Per Second Signals
      2. 43.2.2 Configuring Device Pins
      3. 43.2.3 MAC Interface Selection
      4. 43.2.4 Clocks for Ethernet Module
      5. 43.2.5 RMII Mode Clocking
      6. 43.2.6 RevMII Mode Clocking
      7. 43.2.7 Configuring Trigger Sources for Time Stamping
        1. 43.2.7.1 Software Trigger for Time Stamping
      8. 43.2.8 Ethernet Interrupts
    3. 43.3 Features
      1. 43.3.1 Multiple Channels and Queues Support
        1. 43.3.1.1 Multiple Queues and Channels in Transmit Path
        2. 43.3.1.2 Multiple Queues and Channels in Receive Path
        3. 43.3.1.3 Rx Queue to DMA Mapping
        4. 43.3.1.4 Selection of Tag Priorities Assigned to Tx and Rx Queues
        5. 43.3.1.5 Rx Side Routing from MAC to Queues
      2. 43.3.2 IEEE 1588 Timestamp Support
        1. 43.3.2.1 Feature Description
          1. 43.3.2.1.1 Clock Types
            1. 43.3.2.1.1.1 Peer-to-Peer Transparent Clock (P2PTC) Message Support
            2. 43.3.2.1.1.2 Timestamp Correction
            3. 43.3.2.1.1.3 Ingress Correction
            4. 43.3.2.1.1.4 Egress Correction
            5. 43.3.2.1.1.5 Frequency Range of Reference Timing Clock
          2. 43.3.2.1.2 Maximum PTP Clock Frequency
          3. 43.3.2.1.3 Minimum PTP Clock Frequency
          4. 43.3.2.1.4 PTP Processing and Control
          5. 43.3.2.1.5 PTP Packets Over IPv4
          6. 43.3.2.1.6 PTP Frames Over IPv6
          7. 43.3.2.1.7 PTP Packets Over Ethernet
          8. 43.3.2.1.8 Transmit Path Functions
          9. 43.3.2.1.9 Receive Path Functions
        2. 43.3.2.2 IEEE 1588 System Time Source
          1. 43.3.2.2.1 External Timestamp Input
          2. 43.3.2.2.2 Internal Reference Time
          3. 43.3.2.2.3 System Time Register Module
        3. 43.3.2.3 IEEE 1588 Higher Word Register
        4. 43.3.2.4 IEEE 1588 Auxillary Snapshot
        5. 43.3.2.5 Flexible Pulse-Per-Second Output
          1. 43.3.2.5.1 PPS Start or Stop Time
          2. 43.3.2.5.2 PPS Width and Interval
      3. 43.3.3 Packet Filtering
        1. 43.3.3.1 Packet Filtering Sequence
        2. 43.3.3.2 Destination Address Filtering
        3. 43.3.3.3 Source Address Filtering
        4. 43.3.3.4 Inverse Filtering
        5. 43.3.3.5 VLAN Filtering
          1. 43.3.3.5.1 Comparison Modes
          2. 43.3.3.5.2 Filter Status
          3. 43.3.3.5.3 Stripping
        6. 43.3.3.6 Layer 3 and Layer 4 Filtering
          1. 43.3.3.6.1 Layer 3 Filtering
      4. 43.3.4 VLAN Support
        1. 43.3.4.1 Double VLAN Processing
          1. 43.3.4.1.1 Transmit Path
          2. 43.3.4.1.2 Receive Path
        2. 43.3.4.2 Double VLAN-Related Registers
        3. 43.3.4.3 Source Address and VLAN Insertion, Replacement, or Deletion
          1. 43.3.4.3.1 Programming VLAN Insertion, Replacement, or Deletion
        4. 43.3.4.4 Queue/Channel Based VLAN Tag Insertion on Tx
      5. 43.3.5 TCP/IP Offloading Features
        1. 43.3.5.1 Transmit Checksum Offload Engine
          1. 43.3.5.1.1 IP Header Checksum Engine
          2. 43.3.5.1.2 TCP/UDP/ICMP Checksum Engine
        2. 43.3.5.2 Receive Checksum Offload Engine
        3. 43.3.5.3 TCP/IP Segmentation Offload (TSO) Engine
          1. 43.3.5.3.1 DMA Operation with TSO Feature
            1. 43.3.5.3.1.1 TCP/IP Header Fields
            2. 43.3.5.3.1.2 Header and Payload Fields of Segmented Packets
        4. 43.3.5.4 Segmentation Versus Fragmentation
        5. 43.3.5.5 Using the IPv4 ARP Offload Engine
        6. 43.3.5.6 Energy Efficient Ethernet (EEE) Support
          1. 43.3.5.6.1 Magic Packet
          2. 43.3.5.6.2 Remote Wakeup Filter
          3. 43.3.5.6.3 Energy Efficient Ethernet (EEE)
            1. 43.3.5.6.3.1 Transmit Path Functions
          4. 43.3.5.6.4 Automated Entry/Exit of LPI mode in Transmit Path
          5. 43.3.5.6.5 Receive Path Functions
        7. 43.3.5.7 Automated Entry/Exit of LPI Mode in Transmit Path
        8. 43.3.5.8 Receive Path Functions
      6. 43.3.6 Loopback Mode
      7. 43.3.7 Reverse Media Independent Interface (RevMII)
        1. 43.3.7.1 RevMII Register Maps
        2. 43.3.7.2 MAC_RevMII_PHY_Control
        3. 43.3.7.3 MAC_RevMII_Common_Status
        4. 43.3.7.4 MAC_RevMII_Common_Ext_Status
        5. 43.3.7.5 MAC_RevMII_Interrupt_Status_Mask
        6. 43.3.7.6 MAC_RevMII_Remote_PHY_Status
        7. 43.3.7.7 MAC_RevMII_PHY_Status Register
    4. 43.4 Descriptors
      1. 43.4.1 Descriptor Structure
      2. 43.4.2 Transmit Descriptor
        1. 43.4.2.1 Transmit Normal Descriptor (Read Format)
          1. 43.4.2.1.1 TDES0 Normal Descriptor (Read Format)
          2. 43.4.2.1.2 TDES1 Normal Descriptor (Read Format)
          3. 43.4.2.1.3 TDES2 Normal Descriptor (Read Format)
          4. 43.4.2.1.4 TDES3 Normal Descriptor (Read Format)
        2. 43.4.2.2 Transmit Normal Descriptor (Write-Back Format)
          1. 43.4.2.2.1 TDES0 Normal Descriptor (Write-Back Format)
          2. 43.4.2.2.2 TDES1 Normal Descriptor (Write-Back Format)
          3. 43.4.2.2.3 TDES2 Normal Descriptor (Write-Back Format)
          4. 43.4.2.2.4 TDES3 Normal Descriptor (Write-Back Format)
        3. 43.4.2.3 Transmit Context Descriptor
          1. 43.4.2.3.1 TDES0 Context Descriptor
          2. 43.4.2.3.2 TDES1 Context Descriptor
          3. 43.4.2.3.3 TDES2 Context Descriptor
          4. 43.4.2.3.4 TDES3 Context Descriptor
      3. 43.4.3 Receive Descriptor
        1. 43.4.3.1 Receive Normal Descriptor (Read Format)
          1. 43.4.3.1.1 RDES0 Normal Descriptor (Read Format)
          2. 43.4.3.1.2 RDES1 Normal Descriptor (Read Format)
          3. 43.4.3.1.3 RDES2 Normal Descriptor (Read Format)
          4. 43.4.3.1.4 RDES3 Normal Descriptor (Read Format)
        2. 43.4.3.2 Receive Normal Descriptor (Write-Back Format)
          1. 43.4.3.2.1 RDES0 Normal Descriptor (Write-Back Format)
          2. 43.4.3.2.2 RDES1 Normal Descriptor (Write-Back Format)
          3. 43.4.3.2.3 RDES2 Normal Descriptor (Write-Back Format)
          4. 43.4.3.2.4 RDES3 Normal Descriptor (Write-Back Format)
        3. 43.4.3.3 Receive Context Descriptor
          1. 43.4.3.3.1 RDES0 Context Descriptor
          2. 43.4.3.3.2 RDES1 Context Descriptor
          3. 43.4.3.3.3 RDES2 Context Descriptor
          4. 43.4.3.3.4 RDES3 Context Descriptor
    5. 43.5 Programming
      1. 43.5.1 Initializing DMA
      2. 43.5.2 Initializing MTL Registers
      3. 43.5.3 Initializing MAC
      4. 43.5.4 Performing Normal Receive and Transmit Operation
      5. 43.5.5 Stopping and Starting Transmission
      6. 43.5.6 Programming Guidelines for Multi-Channel Multi-Queuing
        1. 43.5.6.1 Transmit
        2. 43.5.6.2 Receive
        3. 43.5.6.3 Programming Guidelines for Recovering from DMA Channel Failure
          1. 43.5.6.3.1 Recovering from the Receive DMA Channel Failure
          2. 43.5.6.3.2 Recovering from the Transmit DMA Channel Failure
        4. 43.5.6.4 Programming Guidelines for IEEE 1588 Timestamping
          1. 43.5.6.4.1 Initialization Guidelines for System Time Generation
          2. 43.5.6.4.2 System Time Correction
            1. 43.5.6.4.2.1 Coarse Correction Method
            2. 43.5.6.4.2.2 Fine Correction Method
        5. 43.5.6.5 Programming Guidelines for Energy Efficient Ethernet
          1. 43.5.6.5.1 Entering and Exiting the Tx LPI Mode
          2. 43.5.6.5.2 Gating Off the CSR Clock in the LPI Mode
          3. 43.5.6.5.3 Rx LPI Mode
          4. 43.5.6.5.4 Gating Off the CSR Clock in the Tx LPI Mode
        6. 43.5.6.6 Programming Guidelines for Flexible Pulse-Per-Second Output
          1. 43.5.6.6.1 Generating Single Pulse on PPS
          2. 43.5.6.6.2 Generating Next Pulse on PPS
          3. 43.5.6.6.3 Generating a Pulse Train on PPS
          4. 43.5.6.6.4 Generating an Interrupt without Affecting the PPS
        7. 43.5.6.7 Programming Guidelines for TSO
    6. 43.6 Software
      1. 43.6.1 ETHERNET Examples
        1. 43.6.1.1  Ethernet + IPC basic message passing example with interrupt - C28X_CM
        2. 43.6.1.2  Ethernet + IPC basic message passing example with interrupt - C28X_CM
        3. 43.6.1.3  Ethernet MAC Internal Loopback - CM
        4. 43.6.1.4  Ethernet Basic Transmit and Receive PHY Loopback - CM
        5. 43.6.1.5  Ethernet Threshold mode with level PHY loopback - CM
        6. 43.6.1.6  Ethernet PTP Basic Master - CM
        7. 43.6.1.7  Ethernet PTP Basic Slave - CM
        8. 43.6.1.8  Ethernet PTP Offload Master - CM
        9. 43.6.1.9  Ethernet PTP Offload Slave - CM
        10. 43.6.1.10 Ethernet MAC CRC and Checksum Offload - CM
        11. 43.6.1.11 Ethernet Transmit Segmentation Offload - CM
        12. 43.6.1.12 Ethernet MAC Internal Loopback - CM
        13. 43.6.1.13 Ethernet RevMII Example MII side - CM
        14. 43.6.1.14 Ethernet RevMII Example RevMII side - CM
        15. 43.6.1.15 Ethernet Low Latency Interrupt - CM
    7. 43.7 Ethernet Registers
      1. 43.7.1 Ethernet Base Addresses
      2. 43.7.2 ETHERNETSS_REGS Registers
      3. 43.7.3 EMAC_REGS Registers
  46. 44Generic Cyclic Redundancy Check (GCRC)
    1. 44.1 Generic CRC Overview
      1. 44.1.1 GCRC Features
      2. 44.1.2 GCRC Block Diagram
    2. 44.2 GCRC Functional Description
      1. 44.2.1 GCRC Polynomials
      2. 44.2.2 Fixed Polynomial
      3. 44.2.3 GCRC Data Input
      4. 44.2.4 GCRC Execution Sequence Flow
      5. 44.2.5 GCRC Transformations
        1. 44.2.5.1 Endianness Transformation
        2. 44.2.5.2 Mask Transformation
        3. 44.2.5.3 Bit Reversal Transformation
    3. 44.3 Software
      1. 44.3.1 GCRC Examples
        1. 44.3.1.1 GCRC example - CM
    4. 44.4 GCRC Registers
      1. 44.4.1 GCRC Base Addresses
      2. 44.4.2 GCRC_REGS Registers
  47. 45Modular Controller Area Network (MCAN)
    1. 45.1 MCAN Introduction
      1. 45.1.1 MCAN Related Collateral
      2. 45.1.2 MCAN Features
    2. 45.2 MCAN Environment
    3. 45.3 CAN Network Basics
    4. 45.4 MCAN Integration
    5. 45.5 MCAN Functional Description
      1. 45.5.1  Module Clocking Requirements
      2. 45.5.2  Interrupt Requests
      3. 45.5.3  Operating Modes
        1. 45.5.3.1 Software Initialization
        2. 45.5.3.2 Normal Operation
        3. 45.5.3.3 CAN FD Operation
      4. 45.5.4  Transmitter Delay Compensation
        1. 45.5.4.1 Description
        2. 45.5.4.2 Transmitter Delay Compensation Measurement
      5. 45.5.5  Restricted Operation Mode
      6. 45.5.6  Bus Monitoring Mode
      7. 45.5.7  Disabled Automatic Retransmission (DAR) Mode
        1. 45.5.7.1 Frame Transmission in DAR Mode
      8. 45.5.8  Clock Stop Mode
        1. 45.5.8.1 Suspend Mode
        2. 45.5.8.2 Wakeup Request
      9. 45.5.9  Test Modes
        1. 45.5.9.1 External Loop Back Mode
        2. 45.5.9.2 Internal Loop Back Mode
      10. 45.5.10 Timestamp Generation
        1. 45.5.10.1 External Timestamp Counter
      11. 45.5.11 Timeout Counter
      12. 45.5.12 Safety
        1. 45.5.12.1 ECC Wrapper
        2. 45.5.12.2 ECC Aggregator
          1. 45.5.12.2.1 ECC Aggregator Overview
          2. 45.5.12.2.2 ECC Aggregator Registers
        3. 45.5.12.3 Reads to ECC Control and Status Registers
        4. 45.5.12.4 ECC Interrupts
      13. 45.5.13 Rx Handling
        1. 45.5.13.1 Acceptance Filtering
          1. 45.5.13.1.1 Range Filter
          2. 45.5.13.1.2 Filter for Specific IDs
          3. 45.5.13.1.3 Classic Bit Mask Filter
          4. 45.5.13.1.4 Standard Message ID Filtering
          5. 45.5.13.1.5 Extended Message ID Filtering
        2. 45.5.13.2 Rx FIFOs
          1. 45.5.13.2.1 Rx FIFO Blocking Mode
          2. 45.5.13.2.2 Rx FIFO Overwrite Mode
        3. 45.5.13.3 Dedicated Rx Buffers
          1. 45.5.13.3.1 Rx Buffer Handling
      14. 45.5.14 Tx Handling
        1. 45.5.14.1 Transmit Pause
        2. 45.5.14.2 Dedicated Tx Buffers
        3. 45.5.14.3 Tx FIFO
        4. 45.5.14.4 Tx Queue
        5. 45.5.14.5 Mixed Dedicated Tx Buffers/Tx FIFO
        6. 45.5.14.6 Mixed Dedicated Tx Buffers/Tx Queue
        7. 45.5.14.7 Transmit Cancellation
        8. 45.5.14.8 Tx Event Handling
      15. 45.5.15 FIFO Acknowledge Handling
      16. 45.5.16 Message RAM
        1. 45.5.16.1 Message RAM Configuration
        2. 45.5.16.2 Rx Buffer and FIFO Element
        3. 45.5.16.3 Tx Buffer Element
        4. 45.5.16.4 Tx Event FIFO Element
        5. 45.5.16.5 Standard Message ID Filter Element
        6. 45.5.16.6 Extended Message ID Filter Element
    6. 45.6 Software
      1. 45.6.1 MCAN Examples
        1. 45.6.1.1  MCAN Internal Loopback with Interrupt - CM
        2. 45.6.1.2  MCAN Internal Loopback with Interrupt
        3. 45.6.1.3  MCAN External Loopback with Interrupt - CM
        4. 45.6.1.4  MCAN Loopback with Interrupts Example Using SYSCONFIG Tool
        5. 45.6.1.5  MCAN receive using Rx Buffer
        6. 45.6.1.6  MCAN External Reception (with mask filter) into RX-FIFO1
        7. 45.6.1.7  MCAN Classic frames transmission using Tx Buffer
        8. 45.6.1.8  MCAN External Reception (with RANGE filter) into RX-FIFO1
        9. 45.6.1.9  MCAN External Transmit using Tx Buffer
        10. 45.6.1.10 MCAN receive using Rx Buffer
        11. 45.6.1.11 MCAN Internal Loopback with Interrupt
        12. 45.6.1.12 MCAN External Transmit using Tx Buffer
    7. 45.7 MCAN Registers
      1. 45.7.1 MCAN Base Address Table (C28)
      2. 45.7.2 CM MCAN Base Address Table (CM)
      3. 45.7.3 MCANSS_REGS Registers
      4. 45.7.4 MCAN_REGS Registers
      5. 45.7.5 MCAN_ERROR_REGS Registers
  48. 46Connectivity Manager Inter-Integrated Circuit (I2C) Module
    1. 46.1 Introduction
      1. 46.1.1 Features
      2. 46.1.2 Block Diagram
    2. 46.2 Functional Description
      1. 46.2.1 I2C Bus Functional Overview
        1. 46.2.1.1  START and STOP Conditions
        2. 46.2.1.2  Data Format With 7-Bit Address
        3. 46.2.1.3  Data Validity
        4. 46.2.1.4  Acknowledge
        5. 46.2.1.5  Repeated START
          1. 46.2.1.5.1 Repeated Start for Master Transmit
          2. 46.2.1.5.2 Repeated Start for Master Receive
        6. 46.2.1.6  Clock Low Time-out (CLTO)
        7. 46.2.1.7  Dual Address
        8. 46.2.1.8  Arbitration
        9. 46.2.1.9  Glitch Suppression in Multi-Master Configuration
        10. 46.2.1.10 SMBus Operation
          1. 46.2.1.10.1 Quick Command
      2. 46.2.2 Available Speed Modes
        1. 46.2.2.1 Standard, Fast, and Fast Plus Modes
        2. 46.2.2.2 High-Speed Mode
      3. 46.2.3 Interrupts
      4. 46.2.4 Loopback Operation
      5. 46.2.5 FIFO and µDMA Operation
        1. 46.2.5.1 Master Module Burst Mode
          1. 46.2.5.1.1 Master Module µDMA Functionality
        2. 46.2.5.2 Slave Module
      6. 46.2.6 Command Sequence Flow Charts
        1. 46.2.6.1 I2C Master Command Sequences
        2. 46.2.6.2 I2C Slave Command Sequences
    3. 46.3 Initialization and Configuration
      1. 46.3.1 Configure the I2C Module to Transmit a Single Byte as a Master
      2. 46.3.2 Configure the I2C Master to High-Speed Mode
    4. 46.4 CM I2C Registers
      1. 46.4.1 CM I2C Base Addresses
      2. 46.4.2 CM_I2C_REGS Registers
      3. 46.4.3 CM_I2C_WRITE_REGS Registers
  49. 47Synchronous Serial Interface (SSI)
    1. 47.1 Introduction
      1. 47.1.1 Features
      2. 47.1.2 Block Diagram
    2. 47.2 Functional Description
      1. 47.2.1 Bit Rate Generation
      2. 47.2.2 FIFO Operation
        1. 47.2.2.1 Transmit FIFO
        2. 47.2.2.2 Receive FIFO
      3. 47.2.3 SSInFSS Function
      4. 47.2.4 Interrupts
      5. 47.2.5 Frame Formats
        1. 47.2.5.1 Freescale SPI Frame Format
          1. 47.2.5.1.1 SPO Clock Polarity Bit
          2. 47.2.5.1.2 SPH Phase Control Bit
        2. 47.2.5.2 Freescale SPI Frame Format with SPO=0 and SPH=0
        3. 47.2.5.3 Freescale SPI Frame Format with SPO=0 and SPH=1
        4. 47.2.5.4 Freescale SPI Frame Format with SPO=1 and SPH=0
        5. 47.2.5.5 Freescale SPI Frame Format with SPO=1 and SPH=1
      6. 47.2.6 DMA Operation
    3. 47.3 Initialization and Configuration
    4. 47.4 Software
      1. 47.4.1 SSI Examples
        1. 47.4.1.1 SSI Loopback example with interrupts - CM
        2. 47.4.1.2 SSI Loopback example with UDMA - CM
    5. 47.5 SSI Registers
      1. 47.5.1 SSI Base Addresses
      2. 47.5.2 SSI_REGS Registers
  50. 48Universal Asynchronous Receiver/Transmitter (UART)
    1. 48.1 Introduction
      1. 48.1.1 Features
      2. 48.1.2 Block Diagram
    2. 48.2 Functional Description
      1. 48.2.1 Transmit and Receive Logic
      2. 48.2.2 Baud-Rate Generation
      3. 48.2.3 Data Transmission
      4. 48.2.4 Serial IR (SIR)
      5. 48.2.5 9-Bit UART Mode
      6. 48.2.6 FIFO Operation
      7. 48.2.7 Interrupts
      8. 48.2.8 Loopback Operation
      9. 48.2.9 DMA Operation
    3. 48.3 Initialization and Configuration
    4. 48.4 Software
      1. 48.4.1 UART Examples
        1. 48.4.1.1 UART Echoback - CM
        2. 48.4.1.2 UART Loopback example with UDMA - CM
    5. 48.5 UART Registers
      1. 48.5.1 UART Base Addresses
      2. 48.5.2 UART_REGS Registers
      3. 48.5.3 UART_REGS_WRITE Registers
  51. 49Micro Direct Memory Access (µDMA)
    1. 49.1 Introduction
      1. 49.1.1 Features
      2. 49.1.2 Block Diagram
    2. 49.2 Functional Description
      1. 49.2.1  Channel Assignments
      2. 49.2.2  Priority
      3. 49.2.3  Arbitration Size
      4. 49.2.4  Request Types
        1. 49.2.4.1 Single Request
        2. 49.2.4.2 Burst Request
      5. 49.2.5  Channel Configuration
      6. 49.2.6  Transfer Modes
        1. 49.2.6.1 Stop Mode
        2. 49.2.6.2 Basic Mode
        3. 49.2.6.3 Auto Mode
        4. 49.2.6.4 Ping-Pong
        5. 49.2.6.5 Memory Scatter-Gather
        6. 49.2.6.6 Peripheral Scatter-Gather
      7. 49.2.7  Transfer Size and Increment
      8. 49.2.8  Peripheral Interface
        1. 49.2.8.1 FIFO Peripherals
        2. 49.2.8.2 Trigger Peripherals
      9. 49.2.9  Software Request
      10. 49.2.10 Interrupts and Errors
    3. 49.3 Initialization and Configuration
      1. 49.3.1 Module Initialization
      2. 49.3.2 Configuring a Memory-to-Memory Transfer
        1. 49.3.2.1 Configure the Channel Attributes
        2. 49.3.2.2 Configure the Channel Control Structure
          1. 49.3.2.2.1 Configure the Source and Destination
          2. 49.3.2.2.2 Configure Peripheral Interrupts
        3. 49.3.2.3 Start the Transfer
      3. 49.3.3 Configuring a Peripheral for Simple Transmit
        1. 49.3.3.1 Configure the Channel Attributes
        2. 49.3.3.2 Configure the Channel Control Structure
          1. 49.3.3.2.1 Configure the Source and Destination
        3. 49.3.3.3 Start the Transfer
      4. 49.3.4 Configuring a Peripheral for Ping-Pong Receive
        1. 49.3.4.1 Configure the Channel Attributes
        2. 49.3.4.2 Configure the Channel Control Structure
          1. 49.3.4.2.1 Configure the Source and Destination
        3. 49.3.4.3 Configure and Enable the Peripheral Interrupt
        4. 49.3.4.4 Process Interrupts
      5. 49.3.5 Configuring Channel Assignments
    4. 49.4 Software
      1. 49.4.1 UDMA Examples
        1. 49.4.1.1 uDMA RAM to RAM transfer - CM
        2. 49.4.1.2 uDMA RAM to RAM transfer - CM
    5. 49.5 µDMA Registers
      1. 49.5.1 µDMA Base Addresses
      2. 49.5.2 UDMAREGS Registers
      3. 49.5.3 UDMACHDES Registers
  52. 50Revision History

USB_REGS Registers

Table 38-4 lists the memory-mapped registers for the USB_REGS registers. All register offset addresses not listed in Table 38-4 should be considered as reserved locations and the register contents should not be modified.

Table 38-4 USB_REGS Registers
OffsetAcronymRegister NameWrite ProtectionSection
0hUSBFADDRUSB Device Functional AddressGo
1hUSBPOWERUSB PowerGo
2hUSBTXISUSB Transmit Interrupt StatusGo
4hUSBRXISUSB Receive Interrupt StatusGo
6hUSBTXIEUSB Transmit Interrupt EnableGo
8hUSBRXIEUSB Receive Interrupt EnableGo
AhUSBISUSB General Interrupt StatusGo
BhUSBIEUSB Interrupt EnableGo
ChUSBFRAMEUSB Frame ValueGo
EhUSBEPIDXUSB Endpoint IndexGo
FhUSBTESTUSB Test ModeGo
20hUSBFIFO0USB FIFO Endpoint 0Go
24hUSBFIFO1USB FIFO Endpoint 1Go
28hUSBFIFO2USB FIFO Endpoint 2Go
2ChUSBFIFO3USB FIFO Endpoint 3Go
60hUSBDEVCTLUSB Device ControlGo
62hUSBTXFIFOSZUSB Transmit Dynamic FIFO SizingGo
63hUSBRXFIFOSZUSB Receive Dynamic FIFO SizingGo
64hUSBTXFIFOADDUSB Transmit FIFO Start AddressGo
66hUSBRXFIFOADDUSB Receive FIFO Start AddressGo
7AhUSBCONTIMUSB Connect TimingGo
7DhUSBFSEOFUSB Full-Speed Last Transaction to End of Frame TimingGo
7EhUSBLSEOFUSB Low-Speed Last Transaction to End of Frame TimingGo
80hUSBTXFUNCADDR0USB Transmit Functional Address Endpoint 0Go
82hUSBTXHUBADDR0USB Transmit Hub Address Endpoint 0Go
83hUSBTXHUBPORT0USB Transmit Hub Port Endpoint 0Go
88hUSBTXFUNCADDR1USB Transmit Functional Address Endpoint 1Go
8AhUSBTXHUBADDR1USB Transmit Hub Address Endpoint 1Go
8BhUSBTXHUBPORT1USB Transmit Hub Port Endpoint 1Go
8ChUSBRXFUNCADDR1USB Receive Functional Address Endpoint 1Go
8EhUSBRXHUBADDR1USB Receive Hub Address Endpoint 1Go
8FhUSBRXHUBPORT1USB Receive Hub Port Endpoint 1Go
90hUSBTXFUNCADDR2USB Transmit Functional Address Endpoint 2Go
92hUSBTXHUBADDR2USB Transmit Hub Address Endpoint 2Go
93hUSBTXHUBPORT2USB Transmit Hub Port Endpoint 2Go
94hUSBRXFUNCADDR2USB Receive Functional Address Endpoint 2Go
96hUSBRXHUBADDR2USB Receive Hub Address Endpoint 2Go
97hUSBRXHUBPORT2USB Receive Hub Port Endpoint 2Go
98hUSBTXFUNCADDR3USB Transmit Functional Address Endpoint 3Go
9AhUSBTXHUBADDR3USB Transmit Hub Address Endpoint 3Go
9BhUSBTXHUBPORT3USB Transmit Hub Port Endpoint 3Go
9ChUSBRXFUNCADDR3USB Receive Functional Address Endpoint 3Go
9EhUSBRXHUBADDR3USB Receive Hub Address Endpoint 3Go
9FhUSBRXHUBPORT3USB Receive Hub Port Endpoint 3Go
102hUSBCSRL0USB Control and Status Endpoint 0 LowGo
103hUSBCSRH0USB Control and Status Endpoint 0 HighGo
108hUSBCOUNT0USB Receive Byte Count Endpoint 0Go
10AhUSBTYPE0USB Type Endpoint 0Go
10BhUSBNAKLMTUSB NAK LimitGo
110hUSBTXMAXP1USB Maximum Transmit Data Endpoint 1Go
112hUSBTXCSRL1USB Transmit Control and Status Endpoint 1 LowGo
113hUSBTXCSRH1USB Transmit Control and Status Endpoint 1 HighGo
114hUSBRXMAXP1USB Maximum Receive Data Endpoint 1Go
116hUSBRXCSRL1USB Receive Control and Status Endpoint 1 LowGo
117hUSBRXCSRH1USB Receive Control and Status Endpoint 1 HighGo
118hUSBRXCOUNT1USB Receive Byte Count Endpoint 1Go
11AhUSBTXTYPE1USB Host Transmit Configure Type Endpoint 1Go
11BhUSBTXINTERVAL1USB Host Transmit Interval Endpoint 1Go
11ChUSBRXTYPE1USB Host Configure Receive Type Endpoint 1Go
11DhUSBRXINTERVAL1USB Host Receive Polling Interval Endpoint 1Go
120hUSBTXMAXP2USB Maximum Transmit Data Endpoint 2Go
122hUSBTXCSRL2USB Transmit Control and Status Endpoint 2 LowGo
123hUSBTXCSRH2USB Transmit Control and Status Endpoint 2 HighGo
124hUSBRXMAXP2USB Maximum Receive Data Endpoint 2Go
126hUSBRXCSRL2USB Receive Control and Status Endpoint 2 LowGo
127hUSBRXCSRH2USB Receive Control and Status Endpoint 2 HighGo
128hUSBRXCOUNT2USB Receive Byte Count Endpoint 2Go
12AhUSBTXTYPE2USB Host Transmit Configure Type Endpoint 2Go
12BhUSBTXINTERVAL2USB Host Transmit Interval Endpoint 2Go
12ChUSBRXTYPE2USB Host Configure Receive Type Endpoint 2Go
12DhUSBRXINTERVAL2USB Host Receive Polling Interval Endpoint 2Go
130hUSBTXMAXP3USB Maximum Transmit Data Endpoint 3Go
132hUSBTXCSRL3USB Transmit Control and Status Endpoint 3 LowGo
133hUSBTXCSRH3USB Transmit Control and Status Endpoint 3 HighGo
134hUSBRXMAXP3USB Maximum Receive Data Endpoint 3Go
136hUSBRXCSRL3USB Receive Control and Status Endpoint 3 LowGo
137hUSBRXCSRH3USB Receive Control and Status Endpoint 3 HighGo
138hUSBRXCOUNT3USB Receive Byte Count Endpoint 3Go
13AhUSBTXTYPE3USB Host Transmit Configure Type Endpoint 3Go
13BhUSBTXINTERVAL3USB Host Transmit Interval Endpoint 3Go
13ChUSBRXTYPE3USB Host Configure Receive Type Endpoint 3Go
13DhUSBRXINTERVAL3USB Host Receive Polling Interval Endpoint 3Go
304hUSBRQPKTCOUNT1USB Request Packet Count in Block Transfer Endpoint 1Go
308hUSBRQPKTCOUNT2USB Request Packet Count in Block Transfer Endpoint 2Go
30ChUSBRQPKTCOUNT3USB Request Packet Count in Block Transfer Endpoint 3Go
340hUSBRXDPKTBUFDISUSB Receive Double Packet Buffer DisableGo
342hUSBTXDPKTBUFDISUSB Transmit Double Packet Buffer DisableGo
400hUSBEPCUSB External Power ControlGo
404hUSBEPCRISUSB External Power Control Raw Interrupt StatusGo
408hUSBEPCIMUSB External Power Control Interrupt MaskGo
40ChUSBEPCISCUSB External Power Control Interrupt Status and ClearGo
410hUSBDRRISUSB Device RESUME Raw Interrupt StatusGo
414hUSBDRIMUSB Device RESUME Interrupt MaskGo
418hUSBDRISCUSB Device RESUME Interrupt Status and ClearGo
41ChUSBGPCSUSB General-Purpose Control and StatusGo
430hUSBVDCUSB VBUS Droop ControlGo
434hUSBVDCRISUSB VBUS Droop Control Raw Interrupt StatusGo
438hUSBVDCIMUSB VBUS Droop Control Interrupt MaskGo
43ChUSBVDCISCUSB VBUS Droop Control Interrupt Status and ClearGo
444hUSBIDVRISUSB ID Valid Detect Raw Interrupt StatusGo
448hUSBIDVIMUSB ID Valid Detect Interrupt MaskGo
44ChUSBIDVISCUSB ID Valid Detect Interrupt Status and ClearGo
450hUSBDMASELUSB DMA SelectGo
480hUSB_GLB_INT_ENUSB Global Interrupt Enable Register
Note: This Register is applicable only when USB is mapped to CPU1
Go
484hUSB_GLB_INT_FLGUSB Global Interrupt Flag Register
Note: This Register is applicable only when USB is mapped to CPU1
Go
488hUSB_GLB_INT_FLG_CLRUSB Global Interrupt Flag Clear Register
Note: This Register is applicable only when USB is mapped to CPU1
Go
500hUSBDMARISUSB uDMA Raw Interrupt Status register.
Note: This Register is applicable only when USB is mapped to CM
Go
504hUSBDMAIMUSB uDMA Interrupt Mask Register
Note: This Register is applicable only when USB is mapped to CM
Go
508hUSBDMAISCUSB uDMA Interrupt Status and Clear Register
Note: This Register is applicable only when USB is mapped to CM
Go

Complex bit access types are encoded to fit into small table cells. Table 38-5 shows the codes that are used for access types in this section.

Table 38-5 USB_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1CW
1C
Write
1 to clear
W1SW
1S
Write
1 to set
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

38.6.2.1 USBFADDR Register (Offset = 0h) [Reset = 00h]

USBFADDR is shown in Figure 38-3 and described in Table 38-6.

Return to the Summary Table.

USB Device Functional Address

Figure 38-3 USBFADDR Register
76543210
RESERVEDFUNCADDR
R-0hR/W-0h
Table 38-6 USBFADDR Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0FUNCADDRR/W0hFunction Address of Device as received through SET_ADDRESS

Reset type: SYSRSn

38.6.2.2 USBPOWER Register (Offset = 1h) [Reset = 00h]

USBPOWER is shown in Figure 38-4 and described in Table 38-7.

Return to the Summary Table.

USB Power

Figure 38-4 USBPOWER Register
76543210
ISOUPSOFT_CONNRESERVEDRESETRESUMESUSPENDPWRDNPHY
R/W-0hR/W-0hR-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-7 USBPOWER Register Field Descriptions
BitFieldTypeResetDescription
7ISOUPR/W0hIsochronous Update

Reset type: SYSRSn


0h (R/W) = Host Mode - Reserved

Device Mode - No effect

1h (R/W) = Host Mode - Reserved

Device Mode - The USB controller waits for an SOF token from the time the TXRDY bit is set in the USBTXCSRLn register before sending the packet. If an IN token is received before an SOF token, then a zerolength
data packet is sent.
6SOFT_CONNR/W0hSoft Connect/Disconnect

Reset type: SYSRSn


0h (R/W) = Host Mode - Reserved

Device Mode - The USB D+/D- lines are tri-stated.

1h (R/W) = Host Mode - Reserved

Device Mode - The USB D+/D- lines are enabled.
5-4RESERVEDR0hReserved
3RESETR/W0hEnable Reset Signaling

Reset type: SYSRSn


0h (R/W) = Ends RESET signaling on the bus.
1h (R/W) = Enables RESET signaling on the bus.
2RESUMER/W0hEnable Resume Signaling. The bit should be cleared by software 20 ms after being set.

Reset type: SYSRSn


0h (R/W) = Ends RESUME signaling on the bus.
1h (R/W) = Enables RESUME signaling when the Device is in SUSPEND mode.
1SUSPENDR/W0hEnable Suspend

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Enables SUSPEND mode.
0PWRDNPHYR/W0hPower Down PHY

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Powers down the internal USB PHY.

38.6.2.3 USBTXIS Register (Offset = 2h) [Reset = 0000h]

USBTXIS is shown in Figure 38-5 and described in Table 38-8.

Return to the Summary Table.

USB Transmit Interrupt Status

Figure 38-5 USBTXIS Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDEP3EP2EP1EP0
R-0hR-0hR-0hR-0hR-0h
Table 38-8 USBTXIS Register Field Descriptions
BitFieldTypeResetDescription
15-4RESERVEDR0hReserved
3EP3R0hTransmit Endpoint 3 Interrupt

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The Endpoint 3 transmit interrupt is asserted.
2EP2R0hTransmit Endpoint 2 Interrupt

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The Endpoint 2 transmit interrupt is asserted.
1EP1R0hTransmit Endpoint 1 Interrupt

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The Endpoint 1 transmit interrupt is asserted.
0EP0R0hTransmit Endpoint 0 Interrupt

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The Endpoint 0 transmit and receive interrupt is asserted.

38.6.2.4 USBRXIS Register (Offset = 4h) [Reset = 0000h]

USBRXIS is shown in Figure 38-6 and described in Table 38-9.

Return to the Summary Table.

USB Receive Interrupt Status

Figure 38-6 USBRXIS Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDEP3EP2EP1RESERVED
R-0hR-0hR-0hR-0hR-0h
Table 38-9 USBRXIS Register Field Descriptions
BitFieldTypeResetDescription
15-4RESERVEDR0hReserved
3EP3R0hRecieve Endpoint 3 Interrupt

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The Endpoint 3 transmit interrupt is asserted.
2EP2R0hRecieve Endpoint 2 Interrupt

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The Endpoint 2 transmit interrupt is asserted.
1EP1R0hRecieve Endpoint 1 Interrupt

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The Endpoint 1 transmit interrupt is asserted.
0RESERVEDR0hReserved

38.6.2.5 USBTXIE Register (Offset = 6h) [Reset = 000Fh]

USBTXIE is shown in Figure 38-7 and described in Table 38-10.

Return to the Summary Table.

USB Transmit Interrupt Enable

Figure 38-7 USBTXIE Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDEP3EP2EP1EP0
R-0hR/W-1hR/W-1hR/W-1hR/W-1h
Table 38-10 USBTXIE Register Field Descriptions
BitFieldTypeResetDescription
15-4RESERVEDR0hReserved
3EP3R/W1hTransmit Endpoint 3 Interrupt Enable

Reset type: SYSRSn


0h (R/W) = The EP3 transmit interrupt is suppressed and not sent to the interrupt controller.
1h (R/W) = An interrupt is sent to the interrupt controller when the EP3 bit in the USBTXIS register is set.
2EP2R/W1hTransmit Endpoint 2 Interrupt Enable

Reset type: SYSRSn


0h (R/W) = The EP2 transmit interrupt is suppressed and not sent to the interrupt controller.
1h (R/W) = An interrupt is sent to the interrupt controller when the EP2 bit in the USBTXIS register is set.
1EP1R/W1hTransmit Endpoint 1 Interrupt Enable

Reset type: SYSRSn


0h (R/W) = The EP1 transmit interrupt is suppressed and not sent to the interrupt controller.
1h (R/W) = An interrupt is sent to the interrupt controller when the EP1 bit in the USBTXIS register is set.
0EP0R/W1hTransmit Endpoint 0 Interrupt Enable

Reset type: SYSRSn


0h (R/W) = The EP0 transmit and receive interrupt is suppressed and not sent to the interupt controller.
1h (R/W) = An interrupt is sent to the interrupt controller when the EP0 bit in the USBTXIS register is set.

38.6.2.6 USBRXIE Register (Offset = 8h) [Reset = 000Eh]

USBRXIE is shown in Figure 38-8 and described in Table 38-11.

Return to the Summary Table.

USB Receive Interrupt Enable

Figure 38-8 USBRXIE Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDEP3EP2EP1RESERVED
R-0hR/W-1hR/W-1hR/W-1hR-0h
Table 38-11 USBRXIE Register Field Descriptions
BitFieldTypeResetDescription
15-4RESERVEDR0hReserved
3EP3R/W1hRecieve Endpoint 3 Interrupt Enable

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The Endpoint 3 transmit interrupt is asserted.
2EP2R/W1hRecieve Endpoint 2 Interrupt Enable

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The Endpoint 2 transmit interrupt is asserted.
1EP1R/W1hRecieve Endpoint 1 Interrupt Enable

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The Endpoint 1 transmit interrupt is asserted.
0RESERVEDR0hReserved

38.6.2.7 USBIS Register (Offset = Ah) [Reset = 2Eh]

USBIS is shown in Figure 38-9 and described in Table 38-12.

Return to the Summary Table.

USB General Interrupt Status

Figure 38-9 USBIS Register
76543210
RESERVEDDISCONRESERVEDSOFRESETRESUMESUSPEND
R-0hR/W-1hR-0hR/W-1hR/W-1hR/W-1hR-0h
Table 38-12 USBIS Register Field Descriptions
BitFieldTypeResetDescription
7-6RESERVEDR0hReserved
5DISCONR/W1hSession Disconnect

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = The device has been disconnected from the host.
4RESERVEDR0hReserved
3SOFR/W1hStart of frame

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = A new frame has started.
2RESETR/W1hRESET Signaling Detected

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = RESET signaling has been detected on the bus.
1RESUMER/W1hRESUME Signaling Detected.

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = RESUME signaling has been detected on the bus while the USB controller is in SUSPEND mode.
0SUSPENDR0hSUSPEND Signaling Detected

Reset type: SYSRSn


0h (R/W) = No interrupt
1h (R/W) = SUSPEND signaling has been detected on the bus.

38.6.2.8 USBIE Register (Offset = Bh) [Reset = 2Eh]

USBIE is shown in Figure 38-10 and described in Table 38-13.

Return to the Summary Table.

USB Interrupt Enable

Figure 38-10 USBIE Register
76543210
RESERVEDDISCONRESERVEDSOFRESETRESUMESUSPEND
R-0hR/W-1hR-0hR/W-1hR/W-1hR/W-1hR-0h
Table 38-13 USBIE Register Field Descriptions
BitFieldTypeResetDescription
7-6RESERVEDR0hReserved
5DISCONR/W1hSession Disconnect

Reset type: SYSRSn


0h (R/W) = The DISCON interrupt is suppressed and not sent to the interrupt controller.
1h (R/W) = An interrupt is sent to the interrupt controller when the DISCON bit in the USBIS register is set.
4RESERVEDR0hReserved
3SOFR/W1hStart of frame

Reset type: SYSRSn


0h (R/W) = The SOF interrupt is suppressed and not sent to the interrupt controller.
1h (R/W) = An interrupt is sent to the interrupt controller when the SOF bit in the USBIS register is set.
2RESETR/W1hRESET Signaling Detected

Reset type: SYSRSn


0h (R/W) = The RESET interrupt is suppressed and not sent to the interrupt controller.
1h (R/W) = An interrupt is sent to the interrupt controller when the RESET bit in the USBIS register is set.
1RESUMER/W1hRESUME Signaling Detected.

Reset type: SYSRSn


0h (R/W) = The RESUME interrupt is suppressed and not sent to the interrupt controller.
1h (R/W) = An interrupt is sent to the interrupt controller when the RESUME bit in the USBIS register is set.
0SUSPENDR0hSUSPEND Signaling Detected

Reset type: SYSRSn


0h (R/W) = The SUSPEND interrupt is suppressed and not sent to the interrupt controller.
1h (R/W) = An interrupt is sent to the interrupt controller when the DISCON bit in the USBIS register is set.

38.6.2.9 USBFRAME Register (Offset = Ch) [Reset = 0000h]

USBFRAME is shown in Figure 38-11 and described in Table 38-14.

Return to the Summary Table.

USB Frame Value

Figure 38-11 USBFRAME Register
15141312111098
RESERVEDFRAME
R-0hR-0h
76543210
FRAME
R-0h
Table 38-14 USBFRAME Register Field Descriptions
BitFieldTypeResetDescription
15-11RESERVEDR0hReserved
10-0FRAMER0hFrame Number

Reset type: SYSRSn

38.6.2.10 USBEPIDX Register (Offset = Eh) [Reset = 00h]

USBEPIDX is shown in Figure 38-12 and described in Table 38-15.

Return to the Summary Table.

USB Endpoint Index

Figure 38-12 USBEPIDX Register
76543210
RESERVEDEPIDX
R-0hR/W-0h
Table 38-15 USBEPIDX Register Field Descriptions
BitFieldTypeResetDescription
7-4RESERVEDR0hReserved
3-0EPIDXR/W0hEndpoint Index.
This bit field configures which endpoint is accessed when reading or writing to one of the USB controller's indexed registers. A value of 0x0 corresponds to Endpoint 0 and a value of 0xF corresponds to Endpoint 15.

Reset type: SYSRSn

38.6.2.11 USBTEST Register (Offset = Fh) [Reset = 00h]

USBTEST is shown in Figure 38-13 and described in Table 38-16.

Return to the Summary Table.

USB Test Mode

Figure 38-13 USBTEST Register
76543210
FORCEHFIFOACCFORCEFSRESERVED
R/W-0hR/W-0hR/W-0hR-0h
Table 38-16 USBTEST Register Field Descriptions
BitFieldTypeResetDescription
7FORCEHR/W0hForce Host Mode.
While in this mode, status of the bus connection may be read using the DEV bit of the USBDEVCTL register. The operating speed is determined from the FORCEFS bit.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Forces the USB controller to enter Host mode when the SESSION bit is set, regardless ofwhether the USB controller is connected to any peripheral. The state of the USB0DP and USB0DM signals is ignored. The USB controller then remains in Host mode until the SESSION
bit is cleared, even if a Device is disconnected. If the FORCEH bit remains set, the USB controller re-enters Host mode the next time the SESSION bit is set.
6FIFOACCR/W0hFIFO Access

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Transfers the packet in the endpoint 0 transmit FIFO to the endpoint 0 receive FIFO.
5FORCEFSR/W0hForce Full Speed Upon Reset

Reset type: SYSRSn


0h (R/W) = The USB controller operates at Low Speed.
1h (R/W) = Forces the USB controller into Full-Speed mode upon receiving a USB RESET.
4-0RESERVEDR0hReserved

38.6.2.12 USBFIFO0 Register (Offset = 20h) [Reset = 00000000h]

USBFIFO0 is shown in Figure 38-14 and described in Table 38-17.

Return to the Summary Table.

USB FIFO Endpoint 0

Figure 38-14 USBFIFO0 Register
313029282726252423222120191817161514131211109876543210
EPDATA
R/W-0h
Table 38-17 USBFIFO0 Register Field Descriptions
BitFieldTypeResetDescription
31-0EPDATAR/W0hEndpoint Data.
Writing to this register loads the data into the Transmit FIFO and reading unloads data from the Receive FIFO.

Reset type: SYSRSn

38.6.2.13 USBFIFO1 Register (Offset = 24h) [Reset = 00000000h]

USBFIFO1 is shown in Figure 38-15 and described in Table 38-18.

Return to the Summary Table.

USB FIFO Endpoint 1

Figure 38-15 USBFIFO1 Register
313029282726252423222120191817161514131211109876543210
EPDATA
R/W-0h
Table 38-18 USBFIFO1 Register Field Descriptions
BitFieldTypeResetDescription
31-0EPDATAR/W0hEndpoint Data.
Writing to this register loads the data into the Transmit FIFO and reading unloads data from the Receive FIFO.

Reset type: SYSRSn

38.6.2.14 USBFIFO2 Register (Offset = 28h) [Reset = 00000000h]

USBFIFO2 is shown in Figure 38-16 and described in Table 38-19.

Return to the Summary Table.

USB FIFO Endpoint 2

Figure 38-16 USBFIFO2 Register
313029282726252423222120191817161514131211109876543210
EPDATA
R/W-0h
Table 38-19 USBFIFO2 Register Field Descriptions
BitFieldTypeResetDescription
31-0EPDATAR/W0hEndpoint Data.
Writing to this register loads the data into the Transmit FIFO and reading unloads data from the Receive FIFO.

Reset type: SYSRSn

38.6.2.15 USBFIFO3 Register (Offset = 2Ch) [Reset = 00000000h]

USBFIFO3 is shown in Figure 38-17 and described in Table 38-20.

Return to the Summary Table.

USB FIFO Endpoint 3

Figure 38-17 USBFIFO3 Register
313029282726252423222120191817161514131211109876543210
EPDATA
R/W-0h
Table 38-20 USBFIFO3 Register Field Descriptions
BitFieldTypeResetDescription
31-0EPDATAR/W0hEndpoint Data.
Writing to this register loads the data into the Transmit FIFO and reading unloads data from the Receive FIFO.

Reset type: SYSRSn

38.6.2.16 USBDEVCTL Register (Offset = 60h) [Reset = 004Eh]

USBDEVCTL is shown in Figure 38-18 and described in Table 38-21.

Return to the Summary Table.

USB Device Control

Figure 38-18 USBDEVCTL Register
15141312111098
RESERVED
R-0h
76543210
DEVFSDEVLSDEVVBUSHOSTHOSTREQSESSION
R-0hR/W-1hR-0hR/W-1hR/W-1hR/W-1hR-0h
Table 38-21 USBDEVCTL Register Field Descriptions
BitFieldTypeResetDescription
15-8RESERVEDR0hReserved
7DEVR0hDevice Mode

Reset type: SYSRSn


0h (R/W) = The USB controller is operating on the OTG A side of the cable.
1h (R/W) = The USB controller is operating on the OTG B side of the cable. Only valid while a session is in progress.
6FSDEVR/W1hFull Speed Device Detected

Reset type: SYSRSn


0h (R/W) = A full-speed Device has not been detected on the port.
1h (R/W) = A full-speed Device has been detected on the port.
5LSDEVR0hLow Speed Device Detected

Reset type: SYSRSn


0h (R/W) = A low-speed Device has not been detected on the port.
1h (R/W) = A low-speed Device has been detected on the port.
4-3VBUSR/W1hVbus Level

Reset type: SYSRSn


0h (R/W) = Above AValid, below VBusValid. VBUS is detected as above 1.5 V and below 4.75 V.
1h (R/W) = Above VBusValid. VBUS is detected as above 4.75 V.
2HOSTR/W1hHost Mode

Reset type: SYSRSn


0h (R/W) = The USB controller is acting as a Device.
1h (R/W) = The USB controller is acting as a Host.
Only valid while a session is in progress.
1HOSTREQR/W1hWhen set, the USB controller will initiate the Host Negotiation when Suspend mode is entered. It is cleared when Host Negotiation is completed.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Initiates the Host Negotiation when SUSPENDmode is entered.
0SESSIONR0hSession Start/End

Reset type: SYSRSn


0h (R/W) = When operating as a Host:
When cleared by software, this bit ends a session.

When operating as a Device:
The USB controller has ended a session. When the USB controller is in SUSPEND mode, this bit may be cleared by software to perform a software disconnect.

1h (R/W) = When operating as a Host:
When set by software, this bit starts a session.

When operating as a Device:
The USB controller has started a session. When set by software, the Session Request Protocol is initiated.

Clearing this bit when the USB controller is not suspended results in undefined behavior.

38.6.2.17 USBTXFIFOSZ Register (Offset = 62h) [Reset = 00h]

USBTXFIFOSZ is shown in Figure 38-19 and described in Table 38-22.

Return to the Summary Table.

USB Transmit Dynamic FIFO Sizing

Figure 38-19 USBTXFIFOSZ Register
76543210
RESERVEDDPBSIZE
R-0hR/W-0hR-0h
Table 38-22 USBTXFIFOSZ Register Field Descriptions
BitFieldTypeResetDescription
7-5RESERVEDR0hReserved
4DPBR/W0hDouble Packet Buffer Support

Reset type: SYSRSn


0h (R/W) = Single packet buffering is supported.
1h (R/W) = Double packet buffering is enabled.
3-0SIZER0hMax Packet Size

Reset type: SYSRSn


0h (R/W) = 8.0
1h (R/W) = 16.0
2h (R/W) = 32.0
3h (R/W) = 64.0
4h (R/W) = 128.0
5h (R/W) = 256.0
6h (R/W) = 512.0
7h (R/W) = 1024.0
8h (R/W) = 2048.0
9h (R/W) = Reserved
Ah (R/W) = Reserved
Bh (R/W) = Reserved
Ch (R/W) = Reserved
Dh (R/W) = Reserved
Eh (R/W) = Reserved
Fh (R/W) = Reserved

38.6.2.18 USBRXFIFOSZ Register (Offset = 63h) [Reset = 00h]

USBRXFIFOSZ is shown in Figure 38-20 and described in Table 38-23.

Return to the Summary Table.

USB Receive Dynamic FIFO Sizing

Figure 38-20 USBRXFIFOSZ Register
76543210
RESERVEDDPBSIZE
R-0hR/W-0hR-0h
Table 38-23 USBRXFIFOSZ Register Field Descriptions
BitFieldTypeResetDescription
7-5RESERVEDR0hReserved
4DPBR/W0hDouble Packet Buffer Support

Reset type: SYSRSn


0h (R/W) = Single packet buffering is supported.
1h (R/W) = Double packet buffering is enabled.
3-0SIZER0hMaximum packet size to be allowed. If DPB = 0, the FIFO also is this size
if DPB = 1, the FIFO is twice this size. Packet size in bytes:

Reset type: SYSRSn


0h (R/W) = 8.0
1h (R/W) = 16.0
2h (R/W) = 32.0
3h (R/W) = 64.0
4h (R/W) = 128.0
5h (R/W) = 256.0
6h (R/W) = 512.0
7h (R/W) = 1024.0
8h (R/W) = 2048.0
9h (R/W) = Reserved
Ah (R/W) = Reserved
Bh (R/W) = Reserved
Ch (R/W) = Reserved
Dh (R/W) = Reserved
Eh (R/W) = Reserved
Fh (R/W) = Reserved

38.6.2.19 USBTXFIFOADD Register (Offset = 64h) [Reset = 0000h]

USBTXFIFOADD is shown in Figure 38-21 and described in Table 38-24.

Return to the Summary Table.

USB Transmit FIFO Start Address

Figure 38-21 USBTXFIFOADD Register
15141312111098
RESERVEDADDR
R-0hR/W-0h
76543210
ADDR
R/W-0h
Table 38-24 USBTXFIFOADD Register Field Descriptions
BitFieldTypeResetDescription
15-9RESERVEDR0hReserved
8-0ADDRR/W0hEndpoint Data

Reset type: SYSRSn


0h (R/W) = 0.0
1h (R/W) = 8.0
2h (R/W) = 16.0
3h (R/W) = 24.0
4h (R/W) = 32.0
5h (R/W) = 40.0
6h (R/W) = 48.0
7h (R/W) = 56.0
8h (R/W) = 64.0
9h (R/W) = 72.0
Ah (R/W) = 80.0
Bh (R/W) = 88.0
Ch (R/W) = 96.0
Dh (R/W) = 104.0
Eh (R/W) = 112.0
Fh (R/W) = 120.0
10h (R/W) = 128.0
11h (R/W) = 136.0
12h (R/W) = 144.0
13h (R/W) = 152.0
14h (R/W) = 160.0
15h (R/W) = 168.0
16h (R/W) = 176.0
17h (R/W) = 184.0
18h (R/W) = 192.0
19h (R/W) = 200.0
1Ah (R/W) = 208.0
1Bh (R/W) = 216.0
1Ch (R/W) = 224.0
1Dh (R/W) = 232.0
1Eh (R/W) = 240.0
1Fh (R/W) = 248.0
20h (R/W) = 256.0
21h (R/W) = 264.0
22h (R/W) = 272.0
23h (R/W) = 280.0
24h (R/W) = 288.0
25h (R/W) = 296.0
26h (R/W) = 304.0
27h (R/W) = 312.0
28h (R/W) = 320.0
29h (R/W) = 328.0
2Ah (R/W) = 336.0
2Bh (R/W) = 344.0
2Ch (R/W) = 352.0
2Dh (R/W) = 360.0
2Eh (R/W) = 368.0
2Fh (R/W) = 376.0
30h (R/W) = 384.0
31h (R/W) = 392.0
32h (R/W) = 400.0
33h (R/W) = 408.0
34h (R/W) = 416.0
35h (R/W) = 424.0
36h (R/W) = 432.0
37h (R/W) = 440.0
38h (R/W) = 448.0
39h (R/W) = 456.0
3Ah (R/W) = 464.0
3Bh (R/W) = 472.0
3Ch (R/W) = 480.0
3Dh (R/W) = 488.0
3Eh (R/W) = 496.0
3Fh (R/W) = 504.0
40h (R/W) = 512.0
41h (R/W) = 520.0
42h (R/W) = 528.0
43h (R/W) = 536.0
44h (R/W) = 544.0
45h (R/W) = 552.0
46h (R/W) = 560.0
47h (R/W) = 568.0
48h (R/W) = 576.0
49h (R/W) = 584.0
4Ah (R/W) = 592.0
4Bh (R/W) = 600.0
4Ch (R/W) = 608.0
4Dh (R/W) = 616.0
4Eh (R/W) = 624.0
4Fh (R/W) = 632.0
50h (R/W) = 640.0
51h (R/W) = 648.0
52h (R/W) = 656.0
53h (R/W) = 664.0
54h (R/W) = 672.0
55h (R/W) = 680.0
56h (R/W) = 688.0
57h (R/W) = 696.0
58h (R/W) = 704.0
59h (R/W) = 712.0
5Ah (R/W) = 720.0
5Bh (R/W) = 728.0
5Ch (R/W) = 736.0
5Dh (R/W) = 744.0
5Eh (R/W) = 752.0
5Fh (R/W) = 760.0
60h (R/W) = 768.0
61h (R/W) = 776.0
62h (R/W) = 784.0
63h (R/W) = 792.0
64h (R/W) = 800.0
65h (R/W) = 808.0
66h (R/W) = 816.0
67h (R/W) = 824.0
68h (R/W) = 832.0
69h (R/W) = 840.0
6Ah (R/W) = 848.0
6Bh (R/W) = 856.0
6Ch (R/W) = 864.0
6Dh (R/W) = 872.0
6Eh (R/W) = 880.0
6Fh (R/W) = 888.0
70h (R/W) = 896.0
71h (R/W) = 904.0
72h (R/W) = 912.0
73h (R/W) = 920.0
74h (R/W) = 928.0
75h (R/W) = 936.0
76h (R/W) = 944.0
77h (R/W) = 952.0
78h (R/W) = 960.0
79h (R/W) = 968.0
7Ah (R/W) = 976.0
7Bh (R/W) = 984.0
7Ch (R/W) = 992.0
7Dh (R/W) = 1000.0
7Eh (R/W) = 1008.0
7Fh (R/W) = 1016.0
80h (R/W) = 1024.0
81h (R/W) = 1032.0
82h (R/W) = 1040.0
83h (R/W) = 1048.0
84h (R/W) = 1056.0
85h (R/W) = 1064.0
86h (R/W) = 1072.0
87h (R/W) = 1080.0
88h (R/W) = 1088.0
89h (R/W) = 1096.0
8Ah (R/W) = 1104.0
8Bh (R/W) = 1112.0
8Ch (R/W) = 1120.0
8Dh (R/W) = 1128.0
8Eh (R/W) = 1136.0
8Fh (R/W) = 1144.0
90h (R/W) = 1152.0
91h (R/W) = 1160.0
92h (R/W) = 1168.0
93h (R/W) = 1176.0
94h (R/W) = 1184.0
95h (R/W) = 1192.0
96h (R/W) = 1200.0
97h (R/W) = 1208.0
98h (R/W) = 1216.0
99h (R/W) = 1224.0
9Ah (R/W) = 1232.0
9Bh (R/W) = 1240.0
9Ch (R/W) = 1248.0
9Dh (R/W) = 1256.0
9Eh (R/W) = 1264.0
9Fh (R/W) = 1272.0
A0h (R/W) = 1280.0
A1h (R/W) = 1288.0
A2h (R/W) = 1296.0
A3h (R/W) = 1304.0
A4h (R/W) = 1312.0
A5h (R/W) = 1320.0
A6h (R/W) = 1328.0
A7h (R/W) = 1336.0
A8h (R/W) = 1344.0
A9h (R/W) = 1352.0
AAh (R/W) = 1360.0
ABh (R/W) = 1368.0
ACh (R/W) = 1376.0
ADh (R/W) = 1384.0
AEh (R/W) = 1392.0
AFh (R/W) = 1400.0
B0h (R/W) = 1408.0
B1h (R/W) = 1416.0
B2h (R/W) = 1424.0
B3h (R/W) = 1432.0
B4h (R/W) = 1440.0
B5h (R/W) = 1448.0
B6h (R/W) = 1456.0
B7h (R/W) = 1464.0
B8h (R/W) = 1472.0
B9h (R/W) = 1480.0
BAh (R/W) = 1488.0
BBh (R/W) = 1496.0
BCh (R/W) = 1504.0
BDh (R/W) = 1512.0
BEh (R/W) = 1520.0
BFh (R/W) = 1528.0
C0h (R/W) = 1536.0
C1h (R/W) = 1544.0
C2h (R/W) = 1552.0
C3h (R/W) = 1560.0
C4h (R/W) = 1568.0
C5h (R/W) = 1576.0
C6h (R/W) = 1584.0
C7h (R/W) = 1592.0
C8h (R/W) = 1600.0
C9h (R/W) = 1608.0
CAh (R/W) = 1616.0
CBh (R/W) = 1624.0
CCh (R/W) = 1632.0
CDh (R/W) = 1640.0
CEh (R/W) = 1648.0
CFh (R/W) = 1656.0
D0h (R/W) = 1664.0
D1h (R/W) = 1672.0
D2h (R/W) = 1680.0
D3h (R/W) = 1688.0
D4h (R/W) = 1696.0
D5h (R/W) = 1704.0
D6h (R/W) = 1712.0
D7h (R/W) = 1720.0
D8h (R/W) = 1728.0
D9h (R/W) = 1736.0
DAh (R/W) = 1744.0
DBh (R/W) = 1752.0
DCh (R/W) = 1760.0
DDh (R/W) = 1768.0
DEh (R/W) = 1776.0
DFh (R/W) = 1784.0
E0h (R/W) = 1792.0
E1h (R/W) = 1800.0
E2h (R/W) = 1808.0
E3h (R/W) = 1816.0
E4h (R/W) = 1824.0
E5h (R/W) = 1832.0
E6h (R/W) = 1840.0
E7h (R/W) = 1848.0
E8h (R/W) = 1856.0
E9h (R/W) = 1864.0
EAh (R/W) = 1872.0
EBh (R/W) = 1880.0
ECh (R/W) = 1888.0
EDh (R/W) = 1896.0
EEh (R/W) = 1904.0
EFh (R/W) = 1912.0
F0h (R/W) = 1920.0
F1h (R/W) = 1928.0
F2h (R/W) = 1936.0
F3h (R/W) = 1944.0
F4h (R/W) = 1952.0
F5h (R/W) = 1960.0
F6h (R/W) = 1968.0
F7h (R/W) = 1976.0
F8h (R/W) = 1984.0
F9h (R/W) = 1992.0
FAh (R/W) = 2000.0
FBh (R/W) = 2008.0
FCh (R/W) = 2016.0
FDh (R/W) = 2024.0
FEh (R/W) = 2032.0
FFh (R/W) = 2040.0
100h (R/W) = 2048.0
101h (R/W) = 2056.0
102h (R/W) = 2064.0
103h (R/W) = 2072.0
104h (R/W) = 2080.0
105h (R/W) = 2088.0
106h (R/W) = 2096.0
107h (R/W) = 2104.0
108h (R/W) = 2112.0
109h (R/W) = 2120.0
10Ah (R/W) = 2128.0
10Bh (R/W) = 2136.0
10Ch (R/W) = 2144.0
10Dh (R/W) = 2152.0
10Eh (R/W) = 2160.0
10Fh (R/W) = 2168.0
110h (R/W) = 2176.0
111h (R/W) = 2184.0
112h (R/W) = 2192.0
113h (R/W) = 2200.0
114h (R/W) = 2208.0
115h (R/W) = 2216.0
116h (R/W) = 2224.0
117h (R/W) = 2232.0
118h (R/W) = 2240.0
119h (R/W) = 2248.0
11Ah (R/W) = 2256.0
11Bh (R/W) = 2264.0
11Ch (R/W) = 2272.0
11Dh (R/W) = 2280.0
11Eh (R/W) = 2288.0
11Fh (R/W) = 2296.0
120h (R/W) = 2304.0
121h (R/W) = 2312.0
122h (R/W) = 2320.0
123h (R/W) = 2328.0
124h (R/W) = 2336.0
125h (R/W) = 2344.0
126h (R/W) = 2352.0
127h (R/W) = 2360.0
128h (R/W) = 2368.0
129h (R/W) = 2376.0
12Ah (R/W) = 2384.0
12Bh (R/W) = 2392.0
12Ch (R/W) = 2400.0
12Dh (R/W) = 2408.0
12Eh (R/W) = 2416.0
12Fh (R/W) = 2424.0
130h (R/W) = 2432.0
131h (R/W) = 2440.0
132h (R/W) = 2448.0
133h (R/W) = 2456.0
134h (R/W) = 2464.0
135h (R/W) = 2472.0
136h (R/W) = 2480.0
137h (R/W) = 2488.0
138h (R/W) = 2496.0
139h (R/W) = 2504.0
13Ah (R/W) = 2512.0
13Bh (R/W) = 2520.0
13Ch (R/W) = 2528.0
13Dh (R/W) = 2536.0
13Eh (R/W) = 2544.0
13Fh (R/W) = 2552.0
140h (R/W) = 2560.0
141h (R/W) = 2568.0
142h (R/W) = 2576.0
143h (R/W) = 2584.0
144h (R/W) = 2592.0
145h (R/W) = 2600.0
146h (R/W) = 2608.0
147h (R/W) = 2616.0
148h (R/W) = 2624.0
149h (R/W) = 2632.0
14Ah (R/W) = 2640.0
14Bh (R/W) = 2648.0
14Ch (R/W) = 2656.0
14Dh (R/W) = 2664.0
14Eh (R/W) = 2672.0
14Fh (R/W) = 2680.0
150h (R/W) = 2688.0
151h (R/W) = 2696.0
152h (R/W) = 2704.0
153h (R/W) = 2712.0
154h (R/W) = 2720.0
155h (R/W) = 2728.0
156h (R/W) = 2736.0
157h (R/W) = 2744.0
158h (R/W) = 2752.0
159h (R/W) = 2760.0
15Ah (R/W) = 2768.0
15Bh (R/W) = 2776.0
15Ch (R/W) = 2784.0
15Dh (R/W) = 2792.0
15Eh (R/W) = 2800.0
15Fh (R/W) = 2808.0
160h (R/W) = 2816.0
161h (R/W) = 2824.0
162h (R/W) = 2832.0
163h (R/W) = 2840.0
164h (R/W) = 2848.0
165h (R/W) = 2856.0
166h (R/W) = 2864.0
167h (R/W) = 2872.0
168h (R/W) = 2880.0
169h (R/W) = 2888.0
16Ah (R/W) = 2896.0
16Bh (R/W) = 2904.0
16Ch (R/W) = 2912.0
16Dh (R/W) = 2920.0
16Eh (R/W) = 2928.0
16Fh (R/W) = 2936.0
170h (R/W) = 2944.0
171h (R/W) = 2952.0
172h (R/W) = 2960.0
173h (R/W) = 2968.0
174h (R/W) = 2976.0
175h (R/W) = 2984.0
176h (R/W) = 2992.0
177h (R/W) = 3000.0
178h (R/W) = 3008.0
179h (R/W) = 3016.0
17Ah (R/W) = 3024.0
17Bh (R/W) = 3032.0
17Ch (R/W) = 3040.0
17Dh (R/W) = 3048.0
17Eh (R/W) = 3056.0
17Fh (R/W) = 3064.0
180h (R/W) = 3072.0
181h (R/W) = 3080.0
182h (R/W) = 3088.0
183h (R/W) = 3096.0
184h (R/W) = 3104.0
185h (R/W) = 3112.0
186h (R/W) = 3120.0
187h (R/W) = 3128.0
188h (R/W) = 3136.0
189h (R/W) = 3144.0
18Ah (R/W) = 3152.0
18Bh (R/W) = 3160.0
18Ch (R/W) = 3168.0
18Dh (R/W) = 3176.0
18Eh (R/W) = 3184.0
18Fh (R/W) = 3192.0
190h (R/W) = 3200.0
191h (R/W) = 3208.0
192h (R/W) = 3216.0
193h (R/W) = 3224.0
194h (R/W) = 3232.0
195h (R/W) = 3240.0
196h (R/W) = 3248.0
197h (R/W) = 3256.0
198h (R/W) = 3264.0
199h (R/W) = 3272.0
19Ah (R/W) = 3280.0
19Bh (R/W) = 3288.0
19Ch (R/W) = 3296.0
19Dh (R/W) = 3304.0
19Eh (R/W) = 3312.0
19Fh (R/W) = 3320.0
1A0h (R/W) = 3328.0
1A1h (R/W) = 3336.0
1A2h (R/W) = 3344.0
1A3h (R/W) = 3352.0
1A4h (R/W) = 3360.0
1A5h (R/W) = 3368.0
1A6h (R/W) = 3376.0
1A7h (R/W) = 3384.0
1A8h (R/W) = 3392.0
1A9h (R/W) = 3400.0
1AAh (R/W) = 3408.0
1ABh (R/W) = 3416.0
1ACh (R/W) = 3424.0
1ADh (R/W) = 3432.0
1AEh (R/W) = 3440.0
1AFh (R/W) = 3448.0
1B0h (R/W) = 3456.0
1B1h (R/W) = 3464.0
1B2h (R/W) = 3472.0
1B3h (R/W) = 3480.0
1B4h (R/W) = 3488.0
1B5h (R/W) = 3496.0
1B6h (R/W) = 3504.0
1B7h (R/W) = 3512.0
1B8h (R/W) = 3520.0
1B9h (R/W) = 3528.0
1BAh (R/W) = 3536.0
1BBh (R/W) = 3544.0
1BCh (R/W) = 3552.0
1BDh (R/W) = 3560.0
1BEh (R/W) = 3568.0
1BFh (R/W) = 3576.0
1C0h (R/W) = 3584.0
1C1h (R/W) = 3592.0
1C2h (R/W) = 3600.0
1C3h (R/W) = 3608.0
1C4h (R/W) = 3616.0
1C5h (R/W) = 3624.0
1C6h (R/W) = 3632.0
1C7h (R/W) = 3640.0
1C8h (R/W) = 3648.0
1C9h (R/W) = 3656.0
1CAh (R/W) = 3664.0
1CBh (R/W) = 3672.0
1CCh (R/W) = 3680.0
1CDh (R/W) = 3688.0
1CEh (R/W) = 3696.0
1CFh (R/W) = 3704.0
1D0h (R/W) = 3712.0
1D1h (R/W) = 3720.0
1D2h (R/W) = 3728.0
1D3h (R/W) = 3736.0
1D4h (R/W) = 3744.0
1D5h (R/W) = 3752.0
1D6h (R/W) = 3760.0
1D7h (R/W) = 3768.0
1D8h (R/W) = 3776.0
1D9h (R/W) = 3784.0
1DAh (R/W) = 3792.0
1DBh (R/W) = 3800.0
1DCh (R/W) = 3808.0
1DDh (R/W) = 3816.0
1DEh (R/W) = 3824.0
1DFh (R/W) = 3832.0
1E0h (R/W) = 3840.0
1E1h (R/W) = 3848.0
1E2h (R/W) = 3856.0
1E3h (R/W) = 3864.0
1E4h (R/W) = 3872.0
1E5h (R/W) = 3880.0
1E6h (R/W) = 3888.0
1E7h (R/W) = 3896.0
1E8h (R/W) = 3904.0
1E9h (R/W) = 3912.0
1EAh (R/W) = 3920.0
1EBh (R/W) = 3928.0
1ECh (R/W) = 3936.0
1EDh (R/W) = 3944.0
1EEh (R/W) = 3952.0
1EFh (R/W) = 3960.0
1F0h (R/W) = 3968.0
1F1h (R/W) = 3976.0
1F2h (R/W) = 3984.0
1F3h (R/W) = 3992.0
1F4h (R/W) = 4000.0
1F5h (R/W) = 4008.0
1F6h (R/W) = 4016.0
1F7h (R/W) = 4024.0
1F8h (R/W) = 4032.0
1F9h (R/W) = 4040.0
1FAh (R/W) = 4048.0
1FBh (R/W) = 4056.0
1FCh (R/W) = 4064.0
1FDh (R/W) = 4072.0
1FEh (R/W) = 4080.0
1FFh (R/W) = 4088.0

38.6.2.20 USBRXFIFOADD Register (Offset = 66h) [Reset = 0000h]

USBRXFIFOADD is shown in Figure 38-22 and described in Table 38-25.

Return to the Summary Table.

USB Receive FIFO Start Address

Figure 38-22 USBRXFIFOADD Register
15141312111098
RESERVEDADDR
R-0hR/W-0h
76543210
ADDR
R/W-0h
Table 38-25 USBRXFIFOADD Register Field Descriptions
BitFieldTypeResetDescription
15-9RESERVEDR0hReserved
8-0ADDRR/W0hEndpoint Data

Reset type: SYSRSn


0h (R/W) = 0.0
1h (R/W) = 8.0
2h (R/W) = 16.0
3h (R/W) = 24.0
4h (R/W) = 32.0
5h (R/W) = 40.0
6h (R/W) = 48.0
7h (R/W) = 56.0
8h (R/W) = 64.0
9h (R/W) = 72.0
Ah (R/W) = 80.0
Bh (R/W) = 88.0
Ch (R/W) = 96.0
Dh (R/W) = 104.0
Eh (R/W) = 112.0
Fh (R/W) = 120.0
10h (R/W) = 128.0
11h (R/W) = 136.0
12h (R/W) = 144.0
13h (R/W) = 152.0
14h (R/W) = 160.0
15h (R/W) = 168.0
16h (R/W) = 176.0
17h (R/W) = 184.0
18h (R/W) = 192.0
19h (R/W) = 200.0
1Ah (R/W) = 208.0
1Bh (R/W) = 216.0
1Ch (R/W) = 224.0
1Dh (R/W) = 232.0
1Eh (R/W) = 240.0
1Fh (R/W) = 248.0
20h (R/W) = 256.0
21h (R/W) = 264.0
22h (R/W) = 272.0
23h (R/W) = 280.0
24h (R/W) = 288.0
25h (R/W) = 296.0
26h (R/W) = 304.0
27h (R/W) = 312.0
28h (R/W) = 320.0
29h (R/W) = 328.0
2Ah (R/W) = 336.0
2Bh (R/W) = 344.0
2Ch (R/W) = 352.0
2Dh (R/W) = 360.0
2Eh (R/W) = 368.0
2Fh (R/W) = 376.0
30h (R/W) = 384.0
31h (R/W) = 392.0
32h (R/W) = 400.0
33h (R/W) = 408.0
34h (R/W) = 416.0
35h (R/W) = 424.0
36h (R/W) = 432.0
37h (R/W) = 440.0
38h (R/W) = 448.0
39h (R/W) = 456.0
3Ah (R/W) = 464.0
3Bh (R/W) = 472.0
3Ch (R/W) = 480.0
3Dh (R/W) = 488.0
3Eh (R/W) = 496.0
3Fh (R/W) = 504.0
40h (R/W) = 512.0
41h (R/W) = 520.0
42h (R/W) = 528.0
43h (R/W) = 536.0
44h (R/W) = 544.0
45h (R/W) = 552.0
46h (R/W) = 560.0
47h (R/W) = 568.0
48h (R/W) = 576.0
49h (R/W) = 584.0
4Ah (R/W) = 592.0
4Bh (R/W) = 600.0
4Ch (R/W) = 608.0
4Dh (R/W) = 616.0
4Eh (R/W) = 624.0
4Fh (R/W) = 632.0
50h (R/W) = 640.0
51h (R/W) = 648.0
52h (R/W) = 656.0
53h (R/W) = 664.0
54h (R/W) = 672.0
55h (R/W) = 680.0
56h (R/W) = 688.0
57h (R/W) = 696.0
58h (R/W) = 704.0
59h (R/W) = 712.0
5Ah (R/W) = 720.0
5Bh (R/W) = 728.0
5Ch (R/W) = 736.0
5Dh (R/W) = 744.0
5Eh (R/W) = 752.0
5Fh (R/W) = 760.0
60h (R/W) = 768.0
61h (R/W) = 776.0
62h (R/W) = 784.0
63h (R/W) = 792.0
64h (R/W) = 800.0
65h (R/W) = 808.0
66h (R/W) = 816.0
67h (R/W) = 824.0
68h (R/W) = 832.0
69h (R/W) = 840.0
6Ah (R/W) = 848.0
6Bh (R/W) = 856.0
6Ch (R/W) = 864.0
6Dh (R/W) = 872.0
6Eh (R/W) = 880.0
6Fh (R/W) = 888.0
70h (R/W) = 896.0
71h (R/W) = 904.0
72h (R/W) = 912.0
73h (R/W) = 920.0
74h (R/W) = 928.0
75h (R/W) = 936.0
76h (R/W) = 944.0
77h (R/W) = 952.0
78h (R/W) = 960.0
79h (R/W) = 968.0
7Ah (R/W) = 976.0
7Bh (R/W) = 984.0
7Ch (R/W) = 992.0
7Dh (R/W) = 1000.0
7Eh (R/W) = 1008.0
7Fh (R/W) = 1016.0
80h (R/W) = 1024.0
81h (R/W) = 1032.0
82h (R/W) = 1040.0
83h (R/W) = 1048.0
84h (R/W) = 1056.0
85h (R/W) = 1064.0
86h (R/W) = 1072.0
87h (R/W) = 1080.0
88h (R/W) = 1088.0
89h (R/W) = 1096.0
8Ah (R/W) = 1104.0
8Bh (R/W) = 1112.0
8Ch (R/W) = 1120.0
8Dh (R/W) = 1128.0
8Eh (R/W) = 1136.0
8Fh (R/W) = 1144.0
90h (R/W) = 1152.0
91h (R/W) = 1160.0
92h (R/W) = 1168.0
93h (R/W) = 1176.0
94h (R/W) = 1184.0
95h (R/W) = 1192.0
96h (R/W) = 1200.0
97h (R/W) = 1208.0
98h (R/W) = 1216.0
99h (R/W) = 1224.0
9Ah (R/W) = 1232.0
9Bh (R/W) = 1240.0
9Ch (R/W) = 1248.0
9Dh (R/W) = 1256.0
9Eh (R/W) = 1264.0
9Fh (R/W) = 1272.0
A0h (R/W) = 1280.0
A1h (R/W) = 1288.0
A2h (R/W) = 1296.0
A3h (R/W) = 1304.0
A4h (R/W) = 1312.0
A5h (R/W) = 1320.0
A6h (R/W) = 1328.0
A7h (R/W) = 1336.0
A8h (R/W) = 1344.0
A9h (R/W) = 1352.0
AAh (R/W) = 1360.0
ABh (R/W) = 1368.0
ACh (R/W) = 1376.0
ADh (R/W) = 1384.0
AEh (R/W) = 1392.0
AFh (R/W) = 1400.0
B0h (R/W) = 1408.0
B1h (R/W) = 1416.0
B2h (R/W) = 1424.0
B3h (R/W) = 1432.0
B4h (R/W) = 1440.0
B5h (R/W) = 1448.0
B6h (R/W) = 1456.0
B7h (R/W) = 1464.0
B8h (R/W) = 1472.0
B9h (R/W) = 1480.0
BAh (R/W) = 1488.0
BBh (R/W) = 1496.0
BCh (R/W) = 1504.0
BDh (R/W) = 1512.0
BEh (R/W) = 1520.0
BFh (R/W) = 1528.0
C0h (R/W) = 1536.0
C1h (R/W) = 1544.0
C2h (R/W) = 1552.0
C3h (R/W) = 1560.0
C4h (R/W) = 1568.0
C5h (R/W) = 1576.0
C6h (R/W) = 1584.0
C7h (R/W) = 1592.0
C8h (R/W) = 1600.0
C9h (R/W) = 1608.0
CAh (R/W) = 1616.0
CBh (R/W) = 1624.0
CCh (R/W) = 1632.0
CDh (R/W) = 1640.0
CEh (R/W) = 1648.0
CFh (R/W) = 1656.0
D0h (R/W) = 1664.0
D1h (R/W) = 1672.0
D2h (R/W) = 1680.0
D3h (R/W) = 1688.0
D4h (R/W) = 1696.0
D5h (R/W) = 1704.0
D6h (R/W) = 1712.0
D7h (R/W) = 1720.0
D8h (R/W) = 1728.0
D9h (R/W) = 1736.0
DAh (R/W) = 1744.0
DBh (R/W) = 1752.0
DCh (R/W) = 1760.0
DDh (R/W) = 1768.0
DEh (R/W) = 1776.0
DFh (R/W) = 1784.0
E0h (R/W) = 1792.0
E1h (R/W) = 1800.0
E2h (R/W) = 1808.0
E3h (R/W) = 1816.0
E4h (R/W) = 1824.0
E5h (R/W) = 1832.0
E6h (R/W) = 1840.0
E7h (R/W) = 1848.0
E8h (R/W) = 1856.0
E9h (R/W) = 1864.0
EAh (R/W) = 1872.0
EBh (R/W) = 1880.0
ECh (R/W) = 1888.0
EDh (R/W) = 1896.0
EEh (R/W) = 1904.0
EFh (R/W) = 1912.0
F0h (R/W) = 1920.0
F1h (R/W) = 1928.0
F2h (R/W) = 1936.0
F3h (R/W) = 1944.0
F4h (R/W) = 1952.0
F5h (R/W) = 1960.0
F6h (R/W) = 1968.0
F7h (R/W) = 1976.0
F8h (R/W) = 1984.0
F9h (R/W) = 1992.0
FAh (R/W) = 2000.0
FBh (R/W) = 2008.0
FCh (R/W) = 2016.0
FDh (R/W) = 2024.0
FEh (R/W) = 2032.0
FFh (R/W) = 2040.0
100h (R/W) = 2048.0
101h (R/W) = 2056.0
102h (R/W) = 2064.0
103h (R/W) = 2072.0
104h (R/W) = 2080.0
105h (R/W) = 2088.0
106h (R/W) = 2096.0
107h (R/W) = 2104.0
108h (R/W) = 2112.0
109h (R/W) = 2120.0
10Ah (R/W) = 2128.0
10Bh (R/W) = 2136.0
10Ch (R/W) = 2144.0
10Dh (R/W) = 2152.0
10Eh (R/W) = 2160.0
10Fh (R/W) = 2168.0
110h (R/W) = 2176.0
111h (R/W) = 2184.0
112h (R/W) = 2192.0
113h (R/W) = 2200.0
114h (R/W) = 2208.0
115h (R/W) = 2216.0
116h (R/W) = 2224.0
117h (R/W) = 2232.0
118h (R/W) = 2240.0
119h (R/W) = 2248.0
11Ah (R/W) = 2256.0
11Bh (R/W) = 2264.0
11Ch (R/W) = 2272.0
11Dh (R/W) = 2280.0
11Eh (R/W) = 2288.0
11Fh (R/W) = 2296.0
120h (R/W) = 2304.0
121h (R/W) = 2312.0
122h (R/W) = 2320.0
123h (R/W) = 2328.0
124h (R/W) = 2336.0
125h (R/W) = 2344.0
126h (R/W) = 2352.0
127h (R/W) = 2360.0
128h (R/W) = 2368.0
129h (R/W) = 2376.0
12Ah (R/W) = 2384.0
12Bh (R/W) = 2392.0
12Ch (R/W) = 2400.0
12Dh (R/W) = 2408.0
12Eh (R/W) = 2416.0
12Fh (R/W) = 2424.0
130h (R/W) = 2432.0
131h (R/W) = 2440.0
132h (R/W) = 2448.0
133h (R/W) = 2456.0
134h (R/W) = 2464.0
135h (R/W) = 2472.0
136h (R/W) = 2480.0
137h (R/W) = 2488.0
138h (R/W) = 2496.0
139h (R/W) = 2504.0
13Ah (R/W) = 2512.0
13Bh (R/W) = 2520.0
13Ch (R/W) = 2528.0
13Dh (R/W) = 2536.0
13Eh (R/W) = 2544.0
13Fh (R/W) = 2552.0
140h (R/W) = 2560.0
141h (R/W) = 2568.0
142h (R/W) = 2576.0
143h (R/W) = 2584.0
144h (R/W) = 2592.0
145h (R/W) = 2600.0
146h (R/W) = 2608.0
147h (R/W) = 2616.0
148h (R/W) = 2624.0
149h (R/W) = 2632.0
14Ah (R/W) = 2640.0
14Bh (R/W) = 2648.0
14Ch (R/W) = 2656.0
14Dh (R/W) = 2664.0
14Eh (R/W) = 2672.0
14Fh (R/W) = 2680.0
150h (R/W) = 2688.0
151h (R/W) = 2696.0
152h (R/W) = 2704.0
153h (R/W) = 2712.0
154h (R/W) = 2720.0
155h (R/W) = 2728.0
156h (R/W) = 2736.0
157h (R/W) = 2744.0
158h (R/W) = 2752.0
159h (R/W) = 2760.0
15Ah (R/W) = 2768.0
15Bh (R/W) = 2776.0
15Ch (R/W) = 2784.0
15Dh (R/W) = 2792.0
15Eh (R/W) = 2800.0
15Fh (R/W) = 2808.0
160h (R/W) = 2816.0
161h (R/W) = 2824.0
162h (R/W) = 2832.0
163h (R/W) = 2840.0
164h (R/W) = 2848.0
165h (R/W) = 2856.0
166h (R/W) = 2864.0
167h (R/W) = 2872.0
168h (R/W) = 2880.0
169h (R/W) = 2888.0
16Ah (R/W) = 2896.0
16Bh (R/W) = 2904.0
16Ch (R/W) = 2912.0
16Dh (R/W) = 2920.0
16Eh (R/W) = 2928.0
16Fh (R/W) = 2936.0
170h (R/W) = 2944.0
171h (R/W) = 2952.0
172h (R/W) = 2960.0
173h (R/W) = 2968.0
174h (R/W) = 2976.0
175h (R/W) = 2984.0
176h (R/W) = 2992.0
177h (R/W) = 3000.0
178h (R/W) = 3008.0
179h (R/W) = 3016.0
17Ah (R/W) = 3024.0
17Bh (R/W) = 3032.0
17Ch (R/W) = 3040.0
17Dh (R/W) = 3048.0
17Eh (R/W) = 3056.0
17Fh (R/W) = 3064.0
180h (R/W) = 3072.0
181h (R/W) = 3080.0
182h (R/W) = 3088.0
183h (R/W) = 3096.0
184h (R/W) = 3104.0
185h (R/W) = 3112.0
186h (R/W) = 3120.0
187h (R/W) = 3128.0
188h (R/W) = 3136.0
189h (R/W) = 3144.0
18Ah (R/W) = 3152.0
18Bh (R/W) = 3160.0
18Ch (R/W) = 3168.0
18Dh (R/W) = 3176.0
18Eh (R/W) = 3184.0
18Fh (R/W) = 3192.0
190h (R/W) = 3200.0
191h (R/W) = 3208.0
192h (R/W) = 3216.0
193h (R/W) = 3224.0
194h (R/W) = 3232.0
195h (R/W) = 3240.0
196h (R/W) = 3248.0
197h (R/W) = 3256.0
198h (R/W) = 3264.0
199h (R/W) = 3272.0
19Ah (R/W) = 3280.0
19Bh (R/W) = 3288.0
19Ch (R/W) = 3296.0
19Dh (R/W) = 3304.0
19Eh (R/W) = 3312.0
19Fh (R/W) = 3320.0
1A0h (R/W) = 3328.0
1A1h (R/W) = 3336.0
1A2h (R/W) = 3344.0
1A3h (R/W) = 3352.0
1A4h (R/W) = 3360.0
1A5h (R/W) = 3368.0
1A6h (R/W) = 3376.0
1A7h (R/W) = 3384.0
1A8h (R/W) = 3392.0
1A9h (R/W) = 3400.0
1AAh (R/W) = 3408.0
1ABh (R/W) = 3416.0
1ACh (R/W) = 3424.0
1ADh (R/W) = 3432.0
1AEh (R/W) = 3440.0
1AFh (R/W) = 3448.0
1B0h (R/W) = 3456.0
1B1h (R/W) = 3464.0
1B2h (R/W) = 3472.0
1B3h (R/W) = 3480.0
1B4h (R/W) = 3488.0
1B5h (R/W) = 3496.0
1B6h (R/W) = 3504.0
1B7h (R/W) = 3512.0
1B8h (R/W) = 3520.0
1B9h (R/W) = 3528.0
1BAh (R/W) = 3536.0
1BBh (R/W) = 3544.0
1BCh (R/W) = 3552.0
1BDh (R/W) = 3560.0
1BEh (R/W) = 3568.0
1BFh (R/W) = 3576.0
1C0h (R/W) = 3584.0
1C1h (R/W) = 3592.0
1C2h (R/W) = 3600.0
1C3h (R/W) = 3608.0
1C4h (R/W) = 3616.0
1C5h (R/W) = 3624.0
1C6h (R/W) = 3632.0
1C7h (R/W) = 3640.0
1C8h (R/W) = 3648.0
1C9h (R/W) = 3656.0
1CAh (R/W) = 3664.0
1CBh (R/W) = 3672.0
1CCh (R/W) = 3680.0
1CDh (R/W) = 3688.0
1CEh (R/W) = 3696.0
1CFh (R/W) = 3704.0
1D0h (R/W) = 3712.0
1D1h (R/W) = 3720.0
1D2h (R/W) = 3728.0
1D3h (R/W) = 3736.0
1D4h (R/W) = 3744.0
1D5h (R/W) = 3752.0
1D6h (R/W) = 3760.0
1D7h (R/W) = 3768.0
1D8h (R/W) = 3776.0
1D9h (R/W) = 3784.0
1DAh (R/W) = 3792.0
1DBh (R/W) = 3800.0
1DCh (R/W) = 3808.0
1DDh (R/W) = 3816.0
1DEh (R/W) = 3824.0
1DFh (R/W) = 3832.0
1E0h (R/W) = 3840.0
1E1h (R/W) = 3848.0
1E2h (R/W) = 3856.0
1E3h (R/W) = 3864.0
1E4h (R/W) = 3872.0
1E5h (R/W) = 3880.0
1E6h (R/W) = 3888.0
1E7h (R/W) = 3896.0
1E8h (R/W) = 3904.0
1E9h (R/W) = 3912.0
1EAh (R/W) = 3920.0
1EBh (R/W) = 3928.0
1ECh (R/W) = 3936.0
1EDh (R/W) = 3944.0
1EEh (R/W) = 3952.0
1EFh (R/W) = 3960.0
1F0h (R/W) = 3968.0
1F1h (R/W) = 3976.0
1F2h (R/W) = 3984.0
1F3h (R/W) = 3992.0
1F4h (R/W) = 4000.0
1F5h (R/W) = 4008.0
1F6h (R/W) = 4016.0
1F7h (R/W) = 4024.0
1F8h (R/W) = 4032.0
1F9h (R/W) = 4040.0
1FAh (R/W) = 4048.0
1FBh (R/W) = 4056.0
1FCh (R/W) = 4064.0
1FDh (R/W) = 4072.0
1FEh (R/W) = 4080.0
1FFh (R/W) = 4088.0
200h (R/W) = 4095.0

38.6.2.21 USBCONTIM Register (Offset = 7Ah) [Reset = 11h]

USBCONTIM is shown in Figure 38-23 and described in Table 38-26.

Return to the Summary Table.

USB Connect Timing

Figure 38-23 USBCONTIM Register
76543210
WTCONWTID
R/W-1hR/W-1h
Table 38-26 USBCONTIM Register Field Descriptions
BitFieldTypeResetDescription
7-4WTCONR/W1hThe wait ID field configures the delay required from the enable of the ID detection to when the ID value is valid, in units of 4.369 ms. The default corresponds to 52.43 ms.

Reset type: SYSRSn

3-0WTIDR/W1hThe connect wait field configures the wait required to allow for the user's connect/disconnect filter, in units of 533.3 ns. The default corresponds to 2.667 us.

Reset type: SYSRSn

38.6.2.22 USBFSEOF Register (Offset = 7Dh) [Reset = 77h]

USBFSEOF is shown in Figure 38-24 and described in Table 38-27.

Return to the Summary Table.

USB Full-Speed Last Transaction to End of Frame Timing

Figure 38-24 USBFSEOF Register
76543210
FSEOFG
R/W-77h
Table 38-27 USBFSEOF Register Field Descriptions
BitFieldTypeResetDescription
7-0FSEOFGR/W77hThe full-speed end-of-frame gap field is used during full-speed transactions to configure the gap between the last transaction and the End-of-Frame (EOF), in units of 533.3 ns. The default corresponds to 63.46 us.

Reset type: SYSRSn

38.6.2.23 USBLSEOF Register (Offset = 7Eh) [Reset = 72h]

USBLSEOF is shown in Figure 38-25 and described in Table 38-28.

Return to the Summary Table.

USB Low-Speed Last Transaction to End of Frame Timing

Figure 38-25 USBLSEOF Register
76543210
LSEOFG
R/W-72h
Table 38-28 USBLSEOF Register Field Descriptions
BitFieldTypeResetDescription
7-0LSEOFGR/W72hThe low-speed end-of-frame gap field is used during low-speed transactions to set the gap between the last transaction and the End-of-Frame (EOF), in units of 1.067 us. The default corresponds to 121.6 us.

Reset type: SYSRSn

38.6.2.24 USBTXFUNCADDR0 Register (Offset = 80h) [Reset = 00h]

USBTXFUNCADDR0 is shown in Figure 38-26 and described in Table 38-29.

Return to the Summary Table.

USB Transmit Functional Address Endpoint 0

Figure 38-26 USBTXFUNCADDR0 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-29 USBTXFUNCADDR0 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.25 USBTXHUBADDR0 Register (Offset = 82h) [Reset = 00h]

USBTXHUBADDR0 is shown in Figure 38-27 and described in Table 38-30.

Return to the Summary Table.

USB Transmit Hub Address Endpoint 0

Figure 38-27 USBTXHUBADDR0 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-30 USBTXHUBADDR0 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.26 USBTXHUBPORT0 Register (Offset = 83h) [Reset = 00h]

USBTXHUBPORT0 is shown in Figure 38-28 and described in Table 38-31.

Return to the Summary Table.

USB Transmit Hub Port Endpoint 0

Figure 38-28 USBTXHUBPORT0 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-31 USBTXHUBPORT0 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hHub Port specifies the USB hub port number.

Reset type: SYSRSn

38.6.2.27 USBTXFUNCADDR1 Register (Offset = 88h) [Reset = 00h]

USBTXFUNCADDR1 is shown in Figure 38-29 and described in Table 38-32.

Return to the Summary Table.

USB Transmit Functional Address Endpoint 1

Figure 38-29 USBTXFUNCADDR1 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-32 USBTXFUNCADDR1 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.28 USBTXHUBADDR1 Register (Offset = 8Ah) [Reset = 00h]

USBTXHUBADDR1 is shown in Figure 38-30 and described in Table 38-33.

Return to the Summary Table.

USB Transmit Hub Address Endpoint 1

Figure 38-30 USBTXHUBADDR1 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-33 USBTXHUBADDR1 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.29 USBTXHUBPORT1 Register (Offset = 8Bh) [Reset = 00h]

USBTXHUBPORT1 is shown in Figure 38-31 and described in Table 38-34.

Return to the Summary Table.

USB Transmit Hub Port Endpoint 1

Figure 38-31 USBTXHUBPORT1 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-34 USBTXHUBPORT1 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hHub Port specifies the USB hub port number.

Reset type: SYSRSn

38.6.2.30 USBRXFUNCADDR1 Register (Offset = 8Ch) [Reset = 00h]

USBRXFUNCADDR1 is shown in Figure 38-32 and described in Table 38-35.

Return to the Summary Table.

USB Receive Functional Address Endpoint 1

Figure 38-32 USBRXFUNCADDR1 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-35 USBRXFUNCADDR1 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.31 USBRXHUBADDR1 Register (Offset = 8Eh) [Reset = 00h]

USBRXHUBADDR1 is shown in Figure 38-33 and described in Table 38-36.

Return to the Summary Table.

USB Receive Hub Address Endpoint 1

Figure 38-33 USBRXHUBADDR1 Register
76543210
MULTTRANADDR
R/W-0hR/W-0h
Table 38-36 USBRXHUBADDR1 Register Field Descriptions
BitFieldTypeResetDescription
7MULTTRANR/W0hHub has Multiple Translators

Reset type: SYSRSn


0h (R/W) = Clear to indicate that the hub has a single transaction translator.
1h (R/W) = Set to indicate that the hub has multiple transaction translators.
6-0ADDRR/W0hHub Address

Reset type: SYSRSn

38.6.2.32 USBRXHUBPORT1 Register (Offset = 8Fh) [Reset = 00h]

USBRXHUBPORT1 is shown in Figure 38-34 and described in Table 38-37.

Return to the Summary Table.

USB Receive Hub Port Endpoint 1

Figure 38-34 USBRXHUBPORT1 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-37 USBRXHUBPORT1 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hHub Address

Reset type: SYSRSn

38.6.2.33 USBTXFUNCADDR2 Register (Offset = 90h) [Reset = 00h]

USBTXFUNCADDR2 is shown in Figure 38-35 and described in Table 38-38.

Return to the Summary Table.

USB Transmit Functional Address Endpoint 2

Figure 38-35 USBTXFUNCADDR2 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-38 USBTXFUNCADDR2 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.34 USBTXHUBADDR2 Register (Offset = 92h) [Reset = 00h]

USBTXHUBADDR2 is shown in Figure 38-36 and described in Table 38-39.

Return to the Summary Table.

USB Transmit Hub Address Endpoint 2

Figure 38-36 USBTXHUBADDR2 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-39 USBTXHUBADDR2 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.35 USBTXHUBPORT2 Register (Offset = 93h) [Reset = 00h]

USBTXHUBPORT2 is shown in Figure 38-37 and described in Table 38-40.

Return to the Summary Table.

USB Transmit Hub Port Endpoint 2

Figure 38-37 USBTXHUBPORT2 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-40 USBTXHUBPORT2 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hHub Port specifies the USB hub port number.

Reset type: SYSRSn

38.6.2.36 USBRXFUNCADDR2 Register (Offset = 94h) [Reset = 00h]

USBRXFUNCADDR2 is shown in Figure 38-38 and described in Table 38-41.

Return to the Summary Table.

USB Receive Functional Address Endpoint 2

Figure 38-38 USBRXFUNCADDR2 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-41 USBRXFUNCADDR2 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.37 USBRXHUBADDR2 Register (Offset = 96h) [Reset = 00h]

USBRXHUBADDR2 is shown in Figure 38-39 and described in Table 38-42.

Return to the Summary Table.

USB Receive Hub Address Endpoint 2

Figure 38-39 USBRXHUBADDR2 Register
76543210
MULTTRANADDR
R/W-0hR/W-0h
Table 38-42 USBRXHUBADDR2 Register Field Descriptions
BitFieldTypeResetDescription
7MULTTRANR/W0hHub has Multiple Translators

Reset type: SYSRSn


0h (R/W) = Clear to indicate that the hub has a single transaction translator.
1h (R/W) = Set to indicate that the hub has multiple transaction translators.
6-0ADDRR/W0hHub Address

Reset type: SYSRSn

38.6.2.38 USBRXHUBPORT2 Register (Offset = 97h) [Reset = 00h]

USBRXHUBPORT2 is shown in Figure 38-40 and described in Table 38-43.

Return to the Summary Table.

USB Receive Hub Port Endpoint 2

Figure 38-40 USBRXHUBPORT2 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-43 USBRXHUBPORT2 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hHub Address

Reset type: SYSRSn

38.6.2.39 USBTXFUNCADDR3 Register (Offset = 98h) [Reset = 00h]

USBTXFUNCADDR3 is shown in Figure 38-41 and described in Table 38-44.

Return to the Summary Table.

USB Transmit Functional Address Endpoint 3

Figure 38-41 USBTXFUNCADDR3 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-44 USBTXFUNCADDR3 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.40 USBTXHUBADDR3 Register (Offset = 9Ah) [Reset = 00h]

USBTXHUBADDR3 is shown in Figure 38-42 and described in Table 38-45.

Return to the Summary Table.

USB Transmit Hub Address Endpoint 3

Figure 38-42 USBTXHUBADDR3 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-45 USBTXHUBADDR3 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.41 USBTXHUBPORT3 Register (Offset = 9Bh) [Reset = 00h]

USBTXHUBPORT3 is shown in Figure 38-43 and described in Table 38-46.

Return to the Summary Table.

USB Transmit Hub Port Endpoint 3

Figure 38-43 USBTXHUBPORT3 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-46 USBTXHUBPORT3 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hHub Port specifies the USB hub port number.

Reset type: SYSRSn

38.6.2.42 USBRXFUNCADDR3 Register (Offset = 9Ch) [Reset = 00h]

USBRXFUNCADDR3 is shown in Figure 38-44 and described in Table 38-47.

Return to the Summary Table.

USB Receive Functional Address Endpoint 3

Figure 38-44 USBRXFUNCADDR3 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-47 USBRXFUNCADDR3 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hDevice Address specifies the USB bus address for the target Device.

Reset type: SYSRSn

38.6.2.43 USBRXHUBADDR3 Register (Offset = 9Eh) [Reset = 00h]

USBRXHUBADDR3 is shown in Figure 38-45 and described in Table 38-48.

Return to the Summary Table.

USB Receive Hub Address Endpoint 3

Figure 38-45 USBRXHUBADDR3 Register
76543210
MULTTRANADDR
R/W-0hR/W-0h
Table 38-48 USBRXHUBADDR3 Register Field Descriptions
BitFieldTypeResetDescription
7MULTTRANR/W0hHub has Multiple Translators

Reset type: SYSRSn


0h (R/W) = Clear to indicate that the hub has a single transaction translator.
1h (R/W) = Set to indicate that the hub has multiple transaction translators.
6-0ADDRR/W0hHub Address

Reset type: SYSRSn

38.6.2.44 USBRXHUBPORT3 Register (Offset = 9Fh) [Reset = 00h]

USBRXHUBPORT3 is shown in Figure 38-46 and described in Table 38-49.

Return to the Summary Table.

USB Receive Hub Port Endpoint 3

Figure 38-46 USBRXHUBPORT3 Register
76543210
RESERVEDADDR
R-0hR/W-0h
Table 38-49 USBRXHUBPORT3 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0ADDRR/W0hHub Address

Reset type: SYSRSn

38.6.2.45 USBCSRL0 Register (Offset = 102h) [Reset = 00h]

USBCSRL0 is shown in Figure 38-47 and described in Table 38-50.

Return to the Summary Table.

USB Control and Status Endpoint 0 Low

Figure 38-47 USBCSRL0 Register
76543210
SETENDC_NAKTORXRDYC_STATUSSTALL_RQPKTSETEND_ERRORDATAEND_SETUPSTALLEDTXRDYRXRDY
W1C-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-50 USBCSRL0 Register Field Descriptions
BitFieldTypeResetDescription
7SETENDC_NAKTOW1C0hNAK Timeout. Software must clear this bit to allow the endpoint to continue.

Reset type: SYSRSn


0h (R/W) = No timeout
1h (R/W) = Indicates that endpoint 0 is halted following the receipt of NAK responses for longer than the time set by the USBNAKLMT register
6RXRDYC_STATUSR/W0hStatus Packet.
Setting this bit ensures that the DT bit is set in the USBCSRH0 register so that a DATA1 packet is used for the STATUS stage transaction.

Reset type: SYSRSn


0h (R/W) = No transaction
1h (R/W) = The Endpoint 1 transmit interrupt is asserted.
5STALL_RQPKTR/W0hRequest Packet.
This bit is cleared when the RXRDY bit is set.

Reset type: SYSRSn


0h (R/W) = No request
1h (R/W) = Initiates a STATUS stage transaction. This bit must be set at the same time as the TXRDY or REQPKT bit is set.
This bit is automatically cleared when the STATUS stage is over.
4SETEND_ERRORR/W0hError. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No error
1h (R/W) = Three attempts have been made to perform a transaction with no response from the peripheral. The EP0 bit in the USBTXIS register is also set in this situation.
3DATAEND_SETUPR/W0hSetup Packet.
Setting this bit always clears the DT bit in the USBCSRH0 register to send a DATA0 packet.

Reset type: SYSRSn


0h (R/W) = Sends an OUT token.
1h (R/W) = Sends a SETUP token instead of an OUT token for the transaction. This bit should be set at the same time as the TXRDY bit is set.
2STALLEDR/W0hEndpoint Stalled. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No handshake has been received.
1h (R/W) = A STALL handshake has been received
1TXRDYR/W0hTransmit Packet Ready.
If both the TXRDY and SETUP bits are set, a setup packet is sent. If just TXRDY is set, an OUT packet is sent.

Reset type: SYSRSn


0h (R/W) = No transmit packet is ready.
1h (R/W) = Software sets this bit after loading a data packet into the TX FIFO. The EP0 bit in the USBTXIS register is also set in this situation.
0RXRDYR/W0hReceive Packet Ready.
Software must clear this bit after he packet has been read from the FIFO to acknowledge that the data has been read from the FIFO.

Reset type: SYSRSn


0h (R/W) = No receive packet has been received.
1h (R/W) = Indicates that a data packet has been received in the RX FIFO. The EP0 bit in the USBTXIS register is also set in this situation.

38.6.2.46 USBCSRH0 Register (Offset = 103h) [Reset = 00h]

USBCSRH0 is shown in Figure 38-48 and described in Table 38-51.

Return to the Summary Table.

USB Control and Status Endpoint 0 High

Figure 38-48 USBCSRH0 Register
76543210
RESERVEDDTWEDTFLUSH
R-0hR/W-0hR/W-0hR/W-0h
Table 38-51 USBCSRH0 Register Field Descriptions
BitFieldTypeResetDescription
7-3RESERVEDR0hReserved
2DTWER/W0hData Toggle Write Enable.
This bit is automatically cleared once the new value is written.

Reset type: SYSRSn


0h (R/W) = The DT bit cannot be written.
1h (R/W) = Enables the current state of the endpoint 0 data toggle to be written (see DT bit).
1DTR/W0hData Toggle.
When read, this bit indicates the current state of the endpoint 0 data toggle. If DTWE is set, this bit may be written with the required setting of the data toggle. If DTWE is Low, this bit cannot be written. Care should be taken when writing to this bit as it should only be changed to RESET USB endpoint 0.

Reset type: SYSRSn

0FLUSHR/W0hFlush FIFO.
This bit is automatically cleared after the flush is performed.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Flushes the next packet to be transmitted/read from the endpoint 0 FIFO. The FIFO pointer is reset and the TXRDY/RXRDY bit is cleared.
Note: This bit should only be set when TXRDY/RXRDY is set. At other times, it may cause data to be corrupted..

38.6.2.47 USBCOUNT0 Register (Offset = 108h) [Reset = 00h]

USBCOUNT0 is shown in Figure 38-49 and described in Table 38-52.

Return to the Summary Table.

USB Receive Byte Count Endpoint 0

Figure 38-49 USBCOUNT0 Register
76543210
RESERVEDCOUNT
R-0hR/W-0h
Table 38-52 USBCOUNT0 Register Field Descriptions
BitFieldTypeResetDescription
7RESERVEDR0hReserved
6-0COUNTR/W0hFIFO Count.
COUNT is a read-only value that indicates the number of received data bytes in the endpoint 0 FIFO.

Reset type: SYSRSn

38.6.2.48 USBTYPE0 Register (Offset = 10Ah) [Reset = 00h]

USBTYPE0 is shown in Figure 38-50 and described in Table 38-53.

Return to the Summary Table.

USB Type Endpoint 0

Figure 38-50 USBTYPE0 Register
76543210
SPEEDRESERVED
R/W-0hR-0h
Table 38-53 USBTYPE0 Register Field Descriptions
BitFieldTypeResetDescription
7-6SPEEDR/W0hOperating Speed specifies the operating speed of the target Device. If selected, the target is assumed
to have the same connection speed as the USB controller.

Reset type: SYSRSn


0h (R/W) = Reserved
1h (R/W) = Reserved
2h (R/W) = Full
3h (R/W) = Low
5-0RESERVEDR0hReserved

38.6.2.49 USBNAKLMT Register (Offset = 10Bh) [Reset = 00h]

USBNAKLMT is shown in Figure 38-51 and described in Table 38-54.

Return to the Summary Table.

USB NAK Limit

Figure 38-51 USBNAKLMT Register
76543210
RESERVEDNAKLMT
R-0hR/W-0h
Table 38-54 USBNAKLMT Register Field Descriptions
BitFieldTypeResetDescription
7-5RESERVEDR0hReserved
4-0NAKLMTR/W0hEP0 NAK Limit specifies the number of frames after receiving a stream of NAK responses.

Reset type: SYSRSn

38.6.2.50 USBTXMAXP1 Register (Offset = 110h) [Reset = 0000h]

USBTXMAXP1 is shown in Figure 38-52 and described in Table 38-55.

Return to the Summary Table.

USB Maximum Transmit Data Endpoint 1

Figure 38-52 USBTXMAXP1 Register
15141312111098
RESERVEDMAXLOAD
R-0hR/W-0h
76543210
MAXLOAD
R/W-0h
Table 38-55 USBTXMAXP1 Register Field Descriptions
BitFieldTypeResetDescription
15-11RESERVEDR0hReserved
10-0MAXLOADR/W0hMaximum Payload specifies the maximum payload in bytes per transaction.

Reset type: SYSRSn

38.6.2.51 USBTXCSRL1 Register (Offset = 112h) [Reset = 00h]

USBTXCSRL1 is shown in Figure 38-53 and described in Table 38-56.

Return to the Summary Table.

USB Transmit Control and Status Endpoint 1 Low

Figure 38-53 USBTXCSRL1 Register
76543210
NAKTOCLRDTSTALLEDSTALL_SETUPFLUSHUNDRN_ERROR1FIFONETXRDY
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-56 USBTXCSRL1 Register Field Descriptions
BitFieldTypeResetDescription
7NAKTOR/W0hNAK Timeout.
Software must clear this bit to allow the endpoint to continue.

Reset type: SYSRSn


0h (R/W) = No timeout
1h (R/W) = Bulk endpoints only: Indicates that the transmit endpoint is halted following the receipt of NAK responses for longer than the time set by the NAKLMT field in the USBTXINTERVAL[n] register.
6CLRDTR/W0hClear DataToggle

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Writing a 1 to this bit clears the DT bit in the USBTXCSRH[n] register.
5STALLEDR/W0hEndpoint Stalled. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = A STALL handshake has not been received
1h (R/W) = Indicates that a STALL handshake has been received. When this bit is set, any DMA request that is in progress is stopped, the FIFO is completely flushed, and the TXRDY bit is cleared.
4STALL_SETUPR/W0hSetup Packet.

Reset type: SYSRSn


0h (R/W) = No SETUP token is sent.
1h (R/W) = Sends a SETUP token instead of an OUT token for the transaction. This bit should be set at the same time as the TXRDY bit is set.
Note: Setting this bit also clears the DT bit in the USBTXCSRH[n] register.
3FLUSHR/W0hFlush FIFO.
This bit can be set simultaneously with the TXRDY bit to abort the packet that is currently being loaded into the FIFO. Note that if the FIFO is double-buffered, FLUSH may have to be set twice to completely clear the FIFO.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Flushes the latest packet from the endpoint transmit FIFO. The FIFO pointer is reset and the TXRDY bit is cleared. The EPn bit in the USBTXIS register is also set in this situation.
Note: This bit should only be set when the TXRDY bit is set. At other times, it may cause data to be corrupted.
2UNDRN_ERROR1R/W0hError. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No error
1h (R/W) = Three attempts have been made to send a packet and no handshake packet has been received. The TXRDY bit is cleared, the EPn bit in the USBTXIS register is set, and the FIFO is completely flushed inthis situation.
Note: This bit is valid only when the endpoint is operating in Bulk or Interrupt mode.
1FIFONER/W0hFIFO Not Empty

Reset type: SYSRSn


0h (R/W) = The FIFO is empty
1h (R/W) = At least one packet is in the transmit FIFO.
0TXRDYR/W0hTransmit Packet Ready.
This bit is cleared automatically when a data packet has been transmitted. The EPn bit in the USBTXIS register is also set at this point. TXRDY is also automatically cleared prior to loading a second packet into a double-buffered FIFO.

Reset type: SYSRSn


0h (R/W) = No transmit packet is ready.
1h (R/W) = Software sets this bit after loading a data packet into the TX FIFO.

38.6.2.52 USBTXCSRH1 Register (Offset = 113h) [Reset = 00h]

USBTXCSRH1 is shown in Figure 38-54 and described in Table 38-57.

Return to the Summary Table.

USB Transmit Control and Status Endpoint 1 High

Figure 38-54 USBTXCSRH1 Register
76543210
AUTOSETISOMODEDMAENFDTDMAMODDTWEDT
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-57 USBTXCSRH1 Register Field Descriptions
BitFieldTypeResetDescription
7AUTOSETR/W0hAuto Set

Reset type: SYSRSn


0h (R/W) = The TXRDY bit must be set manually.
1h (R/W) = Enables the TXRDY bit to be automatically set when data of the maximum packet size (value in USBTXMAXP[n]) is loaded into the transmit FIFO. If a packet of less than the maximum packet size is loaded, then the TXRDY bit must be set manually.
6ISOR/W0hIsochronous Transfers

Reset type: SYSRSn


0h (R/W) = Enables the transmit endpoint for bulk or interrupt transfers.
1h (R/W) = Enables the transmit endpoint for isochronous transfers.
5MODER/W0hMode
Note: This bit only has an effect when the same endpoint FIFO is used for both transmit and receive transactions.

Reset type: SYSRSn


0h (R/W) = Enables the endpoint direction as RX.
1h (R/W) = Enables the endpoint direction as TX.
4DMAENR/W0hDMA Request Enable
Note: Three TX and three /RX endpoints can be connected to the DMA module. If this bit is set for a particular endpoint, the DMAATX, DMABTX, or DMACTX field in the USB DMA Select (USBDMASEL) register must be programmed correspondingly

Reset type: SYSRSn


0h (R/W) = Disables the DMA request for the transmit endpoint.
1h (R/W) = Enables the DMA request for the transmit endpoint.
3FDTR/W0hForce Data Toggle

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Forces the endpoint DT bit to switch and the data packet to be cleared from the FIFO, regardless of whether an ACK was received. This bit can be used by interrupt transmit endpoints that are used to communicate rate feedback for isochronous endpoints.
Note: This bit should only be set when the TXRDY bit is set. At other times, it may cause data to be corrupted.
2DMAMODR/W0hDMA Request Mode

Reset type: SYSRSn


0h (R/W) = An interrupt is generated after every DMA packet transfer.
1h (R/W) = An interrupt is generated only after the entire DMA transfer is complete.
Note: This bit is valid only when the endpoint is operating in Bulk or Interrupt mode.
1DTWER/W0hData Toggle Write Enable. This bit is automatically cleared once the new value is written.

Reset type: SYSRSn


0h (R/W) = The DT bit cannot be written.
1h (R/W) = Enables the current state of the transmit endpoint data to be written (see DT bit).
0DTR/W0hData Toggle.
When read, this bit indicates the current state of the transmit endpoint data toggle.
If DTWE is High, this bit can be written with the required setting of the data toggle. If DTWE is Low, any value written to this bit is ignored. Care should be taken when writing to this bit as it should only be changed to RESET the transmit endpoint.

Reset type: SYSRSn

38.6.2.53 USBRXMAXP1 Register (Offset = 114h) [Reset = 0000h]

USBRXMAXP1 is shown in Figure 38-55 and described in Table 38-58.

Return to the Summary Table.

USB Maximum Receive Data Endpoint 1

Figure 38-55 USBRXMAXP1 Register
15141312111098
RESERVEDMAXLOAD
R-0hR/W-0h
76543210
MAXLOAD
R/W-0h
Table 38-58 USBRXMAXP1 Register Field Descriptions
BitFieldTypeResetDescription
15-11RESERVEDR0hReserved
10-0MAXLOADR/W0hMaximum Payload specifies the maximum payload in bytes per transaction.

Reset type: SYSRSn

38.6.2.54 USBRXCSRL1 Register (Offset = 116h) [Reset = 00h]

USBRXCSRL1 is shown in Figure 38-56 and described in Table 38-59.

Return to the Summary Table.

USB Receive Control and Status Endpoint 1 Low

Figure 38-56 USBRXCSRL1 Register
76543210
CLRDTSTALLEDSTALLREQPKTFLUSHDATAERRNAKTOOVERERROR1FULLRXRDY
W1C-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-59 USBRXCSRL1 Register Field Descriptions
BitFieldTypeResetDescription
7CLRDTW1C0hClear Data Toggle.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Writing a 1 to this bit clears the DT bit in the USBRXCSRH[n] register.
6STALLEDR/W0hEndpoint Stalled. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No handshake has been received.
1h (R/W) = A STALL handshake has been received. The EPn bit in the USBRXIS register is also set.
5STALLREQPKTR/W0hRequest Packet.
This bit is cleared when the RXRDY bit is set.

Reset type: SYSRSn


0h (R/W) = No request
1h (R/W) = Requests an IN transaction.
4FLUSHR/W0hFlush FIFO.
If the FIFO is double-buffered, FLUSH may have to be set twice to completely clear the FIFO.
Note:This bit should only be set when the RXRDY bit is set. At other times, it may cause data to be corrupted.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Flushes the next packet to be read from the endpoint receive FIFO. The FIFO pointer is reset and the RXRDY bit is cleared
3DATAERRNAKTOR/W0hData Error / NAK Timeout

Reset type: SYSRSn


0h (R/W) = Normal operation
1h (R/W) = Isochronous endpoints only: I
ndicates that RXRDY is set and the data packet has a CRC or bit-stuff error. This bit is cleared when RXRDY is cleared.
Bulk endpoints only: Indicates that the receive endpoint is halted following the receipt of NAK responses for longer than the time set by the NAKLMT field in the USBRXINTERVAL[n] register. Software must clear this bit to allow the endpoint to continue.
2OVERERROR1R/W0hError. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No error
1h (R/W) = Three attempts have been made to receive a packet and no data packet has been received. The Epn bit in the USBRXIS register is set in this situation.
1FULLR/W0hFIFO Full

Reset type: SYSRSn


0h (R/W) = The receive FIFO is not full.
1h (R/W) = No more packets can be loaded into the receive FIFO.
0RXRDYR/W0hReceive Packet Ready.
If the AUTOCLR bit in the USBRXCSRH[n] register is set, then the this bit is automatically cleared when a packet of USBRXMAXP[n] bytes has been unloaded from the receive FIFO. If the AUTOCLR bit is clear, or if packets of less than the maximum packet size are unloaded, then software must clear this bit manually when the packet has been unloaded from the receive FIFO

Reset type: SYSRSn


0h (R/W) = No data packet has been received.
1h (R/W) = Indicates that a data packet has been received. The EPn bit in the USBTXIS register is also set in this situation

38.6.2.55 USBRXCSRH1 Register (Offset = 117h) [Reset = 00h]

USBRXCSRH1 is shown in Figure 38-57 and described in Table 38-60.

Return to the Summary Table.

USB Receive Control and Status Endpoint 1 High

Figure 38-57 USBRXCSRH1 Register
76543210
AUTOCLISOAUTORQDMAENDISNYETPIDERRDMAMODDTWEDTRESERVED
W1C-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-60 USBRXCSRH1 Register Field Descriptions
BitFieldTypeResetDescription
7AUTOCLW1C0hAuto Clear

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Enables the RXRDY bit to be automatically cleared when a packet of USBRXMAXP[n] bytes has been unloaded from the receive FIFO. When packets of less than the maximum packet size are unloaded, RXRDY must be cleared manually. Care must be taken when using DMA to unload the receive FIFO as data is read from the receive FIFO in 4-byte chunks regardless of the value of the MAXLOAD field in the USBRXMAXP[n] register,
6ISOAUTORQR/W0hAuto Request
Note: This bit is automatically cleared when a short packet is received.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Enables the REQPKT bit to be automatically set when the RXRDY bit is cleared
5DMAENR/W0hDMA Request Enable
Note: Three TX and three RX endpoints can be connected to the DMA module. If this bit is set for a particular endpoint, the DMAARX, DMABRX, or DMACRX field in the USB DMA Select (USBDMASEL) register must be programmed correspondingly

Reset type: SYSRSn


0h (R/W) = Disables the DMA request for the receive endpoint.
1h (R/W) = Enables the DMA request for the receive endpoint.
4DISNYETPIDERRR/W0hPID Error. This bit is ignored in bulk or interrupt transactions.

Reset type: SYSRSn


0h (R/W) = No error
1h (R/W) = Indicates a PID error in the received packet of an isochronous transaction.
3DMAMODR/W0hDMAMOD
Note: This bit must not be cleared either before or in the same cycle as the above DMAEN bit is cleared.

Reset type: SYSRSn


0h (R/W) = An interrupt is generated after every DMA packet transfer.
1h (R/W) = An interrupt is generated only after the entire DMA transfer is complete.
2DTWER/W0hData Toggle Write Enable.
This bit is automatically cleared once the new value is written.

Reset type: SYSRSn


0h (R/W) = The DT bit cannot be written.
1h (R/W) = Enables the current state of the receive endpoint data to be written (see DT bit).
1DTR/W0hData Toggle.
When read, this bit indicates the current state of the receive data toggle. If DTWE is High, this bit may be written with the required setting of the data toggle. If DTWE is Low, any value written to this bit is ignored. Care should be taken when writing to this bit as it should only be changed to RESET the receive endpoint.

Reset type: SYSRSn

0RESERVEDR/W0hReserved

38.6.2.56 USBRXCOUNT1 Register (Offset = 118h) [Reset = 0000h]

USBRXCOUNT1 is shown in Figure 38-58 and described in Table 38-61.

Return to the Summary Table.

USB Receive Byte Count Endpoint 1

Figure 38-58 USBRXCOUNT1 Register
15141312111098
RESERVEDCOUNT
R-0hR-0h
76543210
COUNT
R-0h
Table 38-61 USBRXCOUNT1 Register Field Descriptions
BitFieldTypeResetDescription
15-13RESERVEDR0hReserved
12-0COUNTR0hReceive Packet Count indicates the number of bytes in the receive packet.

Reset type: SYSRSn

38.6.2.57 USBTXTYPE1 Register (Offset = 11Ah) [Reset = 00h]

USBTXTYPE1 is shown in Figure 38-59 and described in Table 38-62.

Return to the Summary Table.

USB Host Transmit Configure Type Endpoint 1

Figure 38-59 USBTXTYPE1 Register
76543210
SPEEDPROTOTEP
R/W-0hR/W-0hR/W-0h
Table 38-62 USBTXTYPE1 Register Field Descriptions
BitFieldTypeResetDescription
7-6SPEEDR/W0hOperating Speed.
This bit field specifies the operating speed of the target Device:

Reset type: SYSRSn


0h (R/W) = Default. The target is assumed to be using the same connection speed as the USB controller.
1h (R/W) = Reserved
2h (R/W) = Full
3h (R/W) = Low
5-4PROTOR/W0hProtocol.
Software must configure this bit field to select the required protocol for the transmit endpoint:

Reset type: SYSRSn


0h (R/W) = Control
1h (R/W) = isochronous
2h (R/W) = Bulk
3h (R/W) = Interrupt
3-0TEPR/W0hTarget Endpoint Number.
Software must configure this value to the endpoint number contained in the transmit endpoint descriptor returned to the USB controller during Device enumeration.

Reset type: SYSRSn

38.6.2.58 USBTXINTERVAL1 Register (Offset = 11Bh) [Reset = 00h]

USBTXINTERVAL1 is shown in Figure 38-60 and described in Table 38-63.

Return to the Summary Table.

USB Host Transmit Interval Endpoint 1

Figure 38-60 USBTXINTERVAL1 Register
76543210
TXPOLLNAKLMT
R/W-0h
Table 38-63 USBTXINTERVAL1 Register Field Descriptions
BitFieldTypeResetDescription
7-0TXPOLLNAKLMTR/W0hTX Polling / NAK Limit The polling interval for interrupt/isochronous transfers
the NAK limit for bulk transfers.

Reset type: SYSRSn

38.6.2.59 USBRXTYPE1 Register (Offset = 11Ch) [Reset = 00h]

USBRXTYPE1 is shown in Figure 38-61 and described in Table 38-64.

Return to the Summary Table.

USB Host Configure Receive Type Endpoint 1

Figure 38-61 USBRXTYPE1 Register
76543210
SPEEDPROTOTEP
R/W-0hR/W-0hR/W-0h
Table 38-64 USBRXTYPE1 Register Field Descriptions
BitFieldTypeResetDescription
7-6SPEEDR/W0hOperating Speed.
This bit field specifies the operating speed of the target Device:

Reset type: SYSRSn


0h (R/W) = Default. The target is assumed to be using the same connection speed as the USB controller.
1h (R/W) = Reserved
2h (R/W) = Full
3h (R/W) = Low
5-4PROTOR/W0hProtocol.
Software must configure this bit field to select the required protocol for the transmit endpoint:

Reset type: SYSRSn


0h (R/W) = Control
1h (R/W) = isochronous
2h (R/W) = Bulk
3h (R/W) = Interrupt
3-0TEPR/W0hTarget Endpoint Number.
Software must configure this value to the endpoint number contained in the transmit endpoint descriptor returned to the USB controller during Device enumeration.

Reset type: SYSRSn

38.6.2.60 USBRXINTERVAL1 Register (Offset = 11Dh) [Reset = 00h]

USBRXINTERVAL1 is shown in Figure 38-62 and described in Table 38-65.

Return to the Summary Table.

USB Host Receive Polling Interval Endpoint 1

Figure 38-62 USBRXINTERVAL1 Register
76543210
RXPOLLNAKLMT
R/W-0h
Table 38-65 USBRXINTERVAL1 Register Field Descriptions
BitFieldTypeResetDescription
7-0RXPOLLNAKLMTR/W0hRX Polling / NAK Limit The polling interval for interrupt/isochronous transfers
the NAK limit for bulk transfers.

Reset type: SYSRSn

38.6.2.61 USBTXMAXP2 Register (Offset = 120h) [Reset = 0000h]

USBTXMAXP2 is shown in Figure 38-63 and described in Table 38-66.

Return to the Summary Table.

USB Maximum Transmit Data Endpoint 2

Figure 38-63 USBTXMAXP2 Register
15141312111098
RESERVEDMAXLOAD
R-0hR/W-0h
76543210
MAXLOAD
R/W-0h
Table 38-66 USBTXMAXP2 Register Field Descriptions
BitFieldTypeResetDescription
15-11RESERVEDR0hReserved
10-0MAXLOADR/W0hMaximum Payload specifies the maximum payload in bytes per transaction.

Reset type: SYSRSn

38.6.2.62 USBTXCSRL2 Register (Offset = 122h) [Reset = 00h]

USBTXCSRL2 is shown in Figure 38-64 and described in Table 38-67.

Return to the Summary Table.

USB Transmit Control and Status Endpoint 2 Low

Figure 38-64 USBTXCSRL2 Register
76543210
NAKTOCLRDTSTALLEDSTALL_SETUPFLUSHUNDRNERROR2FIFONETXRDY
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-67 USBTXCSRL2 Register Field Descriptions
BitFieldTypeResetDescription
7NAKTOR/W0hNAK Timeout.
Software must clear this bit to allow the endpoint to continue.

Reset type: SYSRSn


0h (R/W) = No timeout
1h (R/W) = Bulk endpoints only: Indicates that the transmit endpoint is halted following the receipt of NAK responses for longer than the time set by the NAKLMT field in the USBTXINTERVAL[n] register.
6CLRDTR/W0hClear DataToggle

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Writing a 1 to this bit clears the DT bit in the USBTXCSRH[n] register.
5STALLEDR/W0hEndpoint Stalled. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = A STALL handshake has not been received
1h (R/W) = Indicates that a STALL handshake has been received. When this bit is set, any DMA request that is in progress is stopped, the FIFO is completely flushed, and the TXRDY bit is cleared.
4STALL_SETUPR/W0hSetup Packet.

Reset type: SYSRSn


0h (R/W) = No SETUP token is sent.
1h (R/W) = Sends a SETUP token instead of an OUT token for the transaction. This bit should be set at the same time as the TXRDY bit is set.
Note: Setting this bit also clears the DT bit in the USBTXCSRH[n] register.
3FLUSHR/W0hFlush FIFO.
This bit can be set simultaneously with the TXRDY bit to abort the packet that is currently being loaded into the FIFO. Note that if the FIFO is double-buffered, FLUSH may have to be set twice to completely clear the FIFO.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Flushes the latest packet from the endpoint transmit FIFO. The FIFO pointer is reset and the TXRDY bit is cleared. The EPn bit in the USBTXIS register is also set in this situation.
Note: This bit should only be set when the TXRDY bit is set. At other times, it may cause data to be corrupted.
2UNDRNERROR2R/W0hError. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No error
1h (R/W) = Three attempts have been made to send a packet and no handshake packet has been received. The TXRDY bit is cleared, the EPn bit in the USBTXIS register is set, and the FIFO is completely flushed inthis situation.
Note: This bit is valid only when the endpoint is operating in Bulk or Interrupt mode.
1FIFONER/W0hFIFO Not Empty

Reset type: SYSRSn


0h (R/W) = The FIFO is empty
1h (R/W) = At least one packet is in the transmit FIFO.
0TXRDYR/W0hTransmit Packet Ready.
This bit is cleared automatically when a data packet has been transmitted. The EPn bit in the USBTXIS register is also set at this point. TXRDY is also automatically cleared prior to loading a second packet into a double-buffered FIFO.

Reset type: SYSRSn


0h (R/W) = No transmit packet is ready.
1h (R/W) = Software sets this bit after loading a data packet into the TX FIFO.

38.6.2.63 USBTXCSRH2 Register (Offset = 123h) [Reset = 00h]

USBTXCSRH2 is shown in Figure 38-65 and described in Table 38-68.

Return to the Summary Table.

USB Transmit Control and Status Endpoint 2 High

Figure 38-65 USBTXCSRH2 Register
76543210
AUTOSETISOMODEDMAENFDTDMAMODDTWEDT
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-68 USBTXCSRH2 Register Field Descriptions
BitFieldTypeResetDescription
7AUTOSETR/W0hAuto Set

Reset type: SYSRSn


0h (R/W) = The TXRDY bit must be set manually.
1h (R/W) = Enables the TXRDY bit to be automatically set when data of the maximum packet size (value in USBTXMAXP[n]) is loaded into the transmit FIFO. If a packet of less than the maximum packet size is loaded, then the TXRDY bit must be set manually.
6ISOR/W0hIsochronous Transfers

Reset type: SYSRSn


0h (R/W) = Enables the transmit endpoint for bulk or interrupt transfers.
1h (R/W) = Enables the transmit endpoint for isochronous transfers.
5MODER/W0hMode
Note: This bit only has an effect when the same endpoint FIFO is used for both transmit and receive transactions.

Reset type: SYSRSn


0h (R/W) = Enables the endpoint direction as RX.
1h (R/W) = Enables the endpoint direction as TX.
4DMAENR/W0hDMA Request Enable
Note: Three TX and three /RX endpoints can be connected to the DMA module. If this bit is set for a particular endpoint, the DMAATX, DMABTX, or DMACTX field in the USB DMA Select (USBDMASEL) register must be programmed correspondingly

Reset type: SYSRSn


0h (R/W) = Disables the DMA request for the transmit endpoint.
1h (R/W) = Enables the DMA request for the transmit endpoint.
3FDTR/W0hForce Data Toggle

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Forces the endpoint DT bit to switch and the data packet to be cleared from the FIFO, regardless of whether an ACK was received. This bit can be used by interrupt transmit endpoints that are used to communicate rate feedback for isochronous endpoints.
Note: This bit should only be set when the TXRDY bit is set. At other times, it may cause data to be corrupted.
2DMAMODR/W0hDMA Request Mode

Reset type: SYSRSn


0h (R/W) = An interrupt is generated after every DMA packet transfer.
1h (R/W) = An interrupt is generated only after the entire DMA transfer is complete.
Note: This bit is valid only when the endpoint is operating in Bulk or Interrupt mode.
1DTWER/W0hData Toggle Write Enable. This bit is automatically cleared once the new value is written.

Reset type: SYSRSn


0h (R/W) = The DT bit cannot be written.
1h (R/W) = Enables the current state of the transmit endpoint data to be written (see DT bit).
0DTR/W0hData Toggle.
When read, this bit indicates the current state of the transmit endpoint data toggle.
If DTWE is High, this bit can be written with the required setting of the data toggle. If DTWE is Low, any value written to this bit is ignored. Care should be taken when writing to this bit as it should only be changed to RESET the transmit endpoint.

Reset type: SYSRSn

38.6.2.64 USBRXMAXP2 Register (Offset = 124h) [Reset = 0000h]

USBRXMAXP2 is shown in Figure 38-66 and described in Table 38-69.

Return to the Summary Table.

USB Maximum Receive Data Endpoint 2

Figure 38-66 USBRXMAXP2 Register
15141312111098
RESERVEDMAXLOAD
R-0hR/W-0h
76543210
MAXLOAD
R/W-0h
Table 38-69 USBRXMAXP2 Register Field Descriptions
BitFieldTypeResetDescription
15-11RESERVEDR0hReserved
10-0MAXLOADR/W0hMaximum Payload specifies the maximum payload in bytes per transaction.

Reset type: SYSRSn

38.6.2.65 USBRXCSRL2 Register (Offset = 126h) [Reset = 00h]

USBRXCSRL2 is shown in Figure 38-67 and described in Table 38-70.

Return to the Summary Table.

USB Receive Control and Status Endpoint 2 Low

Figure 38-67 USBRXCSRL2 Register
76543210
CLRDTSTALLEDSTALLREQPKTFLUSHDATAERRNAKTOOVERERROR2FULLRXRDY
W1C-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-70 USBRXCSRL2 Register Field Descriptions
BitFieldTypeResetDescription
7CLRDTW1C0hClear Data Toggle.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Writing a 1 to this bit clears the DT bit in the USBRXCSRH[n] register.
6STALLEDR/W0hEndpoint Stalled. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No handshake has been received.
1h (R/W) = A STALL handshake has been received. The EPn bit in the USBRXIS register is also set.
5STALLREQPKTR/W0hRequest Packet.
This bit is cleared when the RXRDY bit is set.

Reset type: SYSRSn


0h (R/W) = No request
1h (R/W) = Requests an IN transaction.
4FLUSHR/W0hFlush FIFO.
If the FIFO is double-buffered, FLUSH may have to be set twice to completely clear the FIFO.
Note:This bit should only be set when the RXRDY bit is set. At other times, it may cause data to be corrupted.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Flushes the next packet to be read from the endpoint receive FIFO. The FIFO pointer is reset and the RXRDY bit is cleared
3DATAERRNAKTOR/W0hData Error / NAK Timeout

Reset type: SYSRSn


0h (R/W) = Normal operation
1h (R/W) = Isochronous endpoints only: I
ndicates that RXRDY is set and the data packet has a CRC or bit-stuff error. This bit is cleared when RXRDY is cleared.
Bulk endpoints only: Indicates that the receive endpoint is halted following the receipt of NAK responses for longer than the time set by the NAKLMT field in the USBRXINTERVAL[n] register. Software must clear this bit to allow the endpoint to continue.
2OVERERROR2R/W0hError. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No error
1h (R/W) = Three attempts have been made to receive a packet and no data packet has been received. The Epn bit in the USBRXIS register is set in this situation.
1FULLR/W0hFIFO Full

Reset type: SYSRSn


0h (R/W) = The receive FIFO is not full.
1h (R/W) = No more packets can be loaded into the receive FIFO.
0RXRDYR/W0hReceive Packet Ready.
If the AUTOCLR bit in the USBRXCSRH[n] register is set, then the this bit is automatically cleared when a packet of USBRXMAXP[n] bytes has been unloaded from the receive FIFO. If the AUTOCLR bit is clear, or if packets of less than the maximum packet size are unloaded, then software must clear this bit manually when the packet has been unloaded from the receive FIFO

Reset type: SYSRSn


0h (R/W) = No data packet has been received.
1h (R/W) = Indicates that a data packet has been received. The EPn bit in the USBTXIS register is also set in this situation

38.6.2.66 USBRXCSRH2 Register (Offset = 127h) [Reset = 00h]

USBRXCSRH2 is shown in Figure 38-68 and described in Table 38-71.

Return to the Summary Table.

USB Receive Control and Status Endpoint 2 High

Figure 38-68 USBRXCSRH2 Register
76543210
AUTOCLISOAUTORQDMAENDISNYETPIDERRDMAMODDTWEDTRESERVED
W1C-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-71 USBRXCSRH2 Register Field Descriptions
BitFieldTypeResetDescription
7AUTOCLW1C0hAuto Clear

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Enables the RXRDY bit to be automatically cleared when a packet of USBRXMAXP[n] bytes has been unloaded from the receive FIFO. When packets of less than the maximum packet size are unloaded, RXRDY must be cleared manually. Care must be taken when using DMA to unload the receive FIFO as data is read from the receive FIFO in 4-byte chunks regardless of the value of the MAXLOAD field in the USBRXMAXP[n] register,
6ISOAUTORQR/W0hAuto Request
Note: This bit is automatically cleared when a short packet is received.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Enables the REQPKT bit to be automatically set when the RXRDY bit is cleared
5DMAENR/W0hDMA Request Enable
Note: Three TX and three RX endpoints can be connected to the DMA module. If this bit is set for a particular endpoint, the DMAARX, DMABRX, or DMACRX field in the USB DMA Select (USBDMASEL) register must be programmed correspondingly

Reset type: SYSRSn


0h (R/W) = Disables the DMA request for the receive endpoint.
1h (R/W) = Enables the DMA request for the receive endpoint.
4DISNYETPIDERRR/W0hPID Error. This bit is ignored in bulk or interrupt transactions.

Reset type: SYSRSn


0h (R/W) = No error
1h (R/W) = Indicates a PID error in the received packet of an isochronous transaction.
3DMAMODR/W0hDMAMOD
Note: This bit must not be cleared either before or in the same cycle as the above DMAEN bit is cleared.

Reset type: SYSRSn


0h (R/W) = An interrupt is generated after every DMA packet transfer.
1h (R/W) = An interrupt is generated only after the entire DMA transfer is complete.
2DTWER/W0hData Toggle Write Enable.
This bit is automatically cleared once the new value is written.

Reset type: SYSRSn


0h (R/W) = The DT bit cannot be written.
1h (R/W) = Enables the current state of the receive endpoint data to be written (see DT bit).
1DTR/W0hData Toggle.
When read, this bit indicates the current state of the receive data toggle. If DTWE is High, this bit may be written with the required setting of the data toggle. If DTWE is Low, any value written to this bit is ignored. Care should be taken when writing to this bit as it should only be changed to RESET the receive endpoint.

Reset type: SYSRSn

0RESERVEDR/W0hReserved

38.6.2.67 USBRXCOUNT2 Register (Offset = 128h) [Reset = 0000h]

USBRXCOUNT2 is shown in Figure 38-69 and described in Table 38-72.

Return to the Summary Table.

USB Receive Byte Count Endpoint 2

Figure 38-69 USBRXCOUNT2 Register
15141312111098
RESERVEDCOUNT
R-0hR-0h
76543210
COUNT
R-0h
Table 38-72 USBRXCOUNT2 Register Field Descriptions
BitFieldTypeResetDescription
15-13RESERVEDR0hReserved
12-0COUNTR0hReceive Packet Count indicates the number of bytes in the receive packet.

Reset type: SYSRSn

38.6.2.68 USBTXTYPE2 Register (Offset = 12Ah) [Reset = 00h]

USBTXTYPE2 is shown in Figure 38-70 and described in Table 38-73.

Return to the Summary Table.

USB Host Transmit Configure Type Endpoint 2

Figure 38-70 USBTXTYPE2 Register
76543210
SPEEDPROTOTEP
R/W-0hR/W-0hR/W-0h
Table 38-73 USBTXTYPE2 Register Field Descriptions
BitFieldTypeResetDescription
7-6SPEEDR/W0hOperating Speed.
This bit field specifies the operating speed of the target Device:

Reset type: SYSRSn


0h (R/W) = Default. The target is assumed to be using the same connection speed as the USB controller.
1h (R/W) = Reserved
2h (R/W) = Full
3h (R/W) = Low
5-4PROTOR/W0hProtocol.
Software must configure this bit field to select the required protocol for the transmit endpoint:

Reset type: SYSRSn


0h (R/W) = Control
1h (R/W) = isochronous
2h (R/W) = Bulk
3h (R/W) = Interrupt
3-0TEPR/W0hTarget Endpoint Number.
Software must configure this value to the endpoint number contained in the transmit endpoint descriptor returned to the USB controller during Device enumeration.

Reset type: SYSRSn

38.6.2.69 USBTXINTERVAL2 Register (Offset = 12Bh) [Reset = 00h]

USBTXINTERVAL2 is shown in Figure 38-71 and described in Table 38-74.

Return to the Summary Table.

USB Host Transmit Interval Endpoint 2

Figure 38-71 USBTXINTERVAL2 Register
76543210
TXPOLLNAKLMT
R/W-0h
Table 38-74 USBTXINTERVAL2 Register Field Descriptions
BitFieldTypeResetDescription
7-0TXPOLLNAKLMTR/W0hTX Polling / NAK Limit The polling interval for interrupt/isochronous transfers
the NAK limit for bulk transfers.

Reset type: SYSRSn

38.6.2.70 USBRXTYPE2 Register (Offset = 12Ch) [Reset = 00h]

USBRXTYPE2 is shown in Figure 38-72 and described in Table 38-75.

Return to the Summary Table.

USB Host Configure Receive Type Endpoint 2

Figure 38-72 USBRXTYPE2 Register
76543210
SPEEDPROTOTEP
R/W-0hR/W-0hR/W-0h
Table 38-75 USBRXTYPE2 Register Field Descriptions
BitFieldTypeResetDescription
7-6SPEEDR/W0hOperating Speed.
This bit field specifies the operating speed of the target Device:

Reset type: SYSRSn


0h (R/W) = Default. The target is assumed to be using the same connection speed as the USB controller.
1h (R/W) = Reserved
2h (R/W) = Full
3h (R/W) = Low
5-4PROTOR/W0hProtocol.
Software must configure this bit field to select the required protocol for the transmit endpoint:

Reset type: SYSRSn


0h (R/W) = Control
1h (R/W) = isochronous
2h (R/W) = Bulk
3h (R/W) = Interrupt
3-0TEPR/W0hTarget Endpoint Number.
Software must configure this value to the endpoint number contained in the transmit endpoint descriptor returned to the USB controller during Device enumeration.

Reset type: SYSRSn

38.6.2.71 USBRXINTERVAL2 Register (Offset = 12Dh) [Reset = 00h]

USBRXINTERVAL2 is shown in Figure 38-73 and described in Table 38-76.

Return to the Summary Table.

USB Host Receive Polling Interval Endpoint 2

Figure 38-73 USBRXINTERVAL2 Register
76543210
RXPOLLNAKLMT
R/W-0h
Table 38-76 USBRXINTERVAL2 Register Field Descriptions
BitFieldTypeResetDescription
7-0RXPOLLNAKLMTR/W0hRX Polling / NAK Limit The polling interval for interrupt/isochronous transfers
the NAK limit for bulk transfers.

Reset type: SYSRSn

38.6.2.72 USBTXMAXP3 Register (Offset = 130h) [Reset = 0000h]

USBTXMAXP3 is shown in Figure 38-74 and described in Table 38-77.

Return to the Summary Table.

USB Maximum Transmit Data Endpoint 3

Figure 38-74 USBTXMAXP3 Register
15141312111098
RESERVEDMAXLOAD
R-0hR/W-0h
76543210
MAXLOAD
R/W-0h
Table 38-77 USBTXMAXP3 Register Field Descriptions
BitFieldTypeResetDescription
15-11RESERVEDR0hReserved
10-0MAXLOADR/W0hMaximum Payload specifies the maximum payload in bytes per transaction.

Reset type: SYSRSn

38.6.2.73 USBTXCSRL3 Register (Offset = 132h) [Reset = 00h]

USBTXCSRL3 is shown in Figure 38-75 and described in Table 38-78.

Return to the Summary Table.

USB Transmit Control and Status Endpoint 3 Low

Figure 38-75 USBTXCSRL3 Register
76543210
NAKTOCLRDTSTALLEDSTALL_SETUPFLUSHUNDRNERROR3FIFONETXRDY
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-78 USBTXCSRL3 Register Field Descriptions
BitFieldTypeResetDescription
7NAKTOR/W0hNAK Timeout.
Software must clear this bit to allow the endpoint to continue.

Reset type: SYSRSn


0h (R/W) = No timeout
1h (R/W) = Bulk endpoints only: Indicates that the transmit endpoint is halted following the receipt of NAK responses for longer than the time set by the NAKLMT field in the USBTXINTERVAL[n] register.
6CLRDTR/W0hClear DataToggle

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Writing a 1 to this bit clears the DT bit in the USBTXCSRH[n] register.
5STALLEDR/W0hEndpoint Stalled. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = A STALL handshake has not been received
1h (R/W) = Indicates that a STALL handshake has been received. When this bit is set, any DMA request that is in progress is stopped, the FIFO is completely flushed, and the TXRDY bit is cleared.
4STALL_SETUPR/W0hSetup Packet.

Reset type: SYSRSn


0h (R/W) = No SETUP token is sent.
1h (R/W) = Sends a SETUP token instead of an OUT token for the transaction. This bit should be set at the same time as the TXRDY bit is set.
Note: Setting this bit also clears the DT bit in the USBTXCSRH[n] register.
3FLUSHR/W0hFlush FIFO.
This bit can be set simultaneously with the TXRDY bit to abort the packet that is currently being loaded into the FIFO. Note that if the FIFO is double-buffered, FLUSH may have to be set twice to completely clear the FIFO.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Flushes the latest packet from the endpoint transmit FIFO. The FIFO pointer is reset and the TXRDY bit is cleared. The EPn bit in the USBTXIS register is also set in this situation.
Note: This bit should only be set when the TXRDY bit is set. At other times, it may cause data to be corrupted.
2UNDRNERROR3R/W0hError. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No error
1h (R/W) = Three attempts have been made to send a packet and no handshake packet has been received. The TXRDY bit is cleared, the EPn bit in the USBTXIS register is set, and the FIFO is completely flushed inthis situation.
Note: This bit is valid only when the endpoint is operating in Bulk or Interrupt mode.
1FIFONER/W0hFIFO Not Empty

Reset type: SYSRSn


0h (R/W) = The FIFO is empty
1h (R/W) = At least one packet is in the transmit FIFO.
0TXRDYR/W0hTransmit Packet Ready.
This bit is cleared automatically when a data packet has been transmitted. The EPn bit in the USBTXIS register is also set at this point. TXRDY is also automatically cleared prior to loading a second packet into a double-buffered FIFO.

Reset type: SYSRSn


0h (R/W) = No transmit packet is ready.
1h (R/W) = Software sets this bit after loading a data packet into the TX FIFO.

38.6.2.74 USBTXCSRH3 Register (Offset = 133h) [Reset = 00h]

USBTXCSRH3 is shown in Figure 38-76 and described in Table 38-79.

Return to the Summary Table.

USB Transmit Control and Status Endpoint 3 High

Figure 38-76 USBTXCSRH3 Register
76543210
AUTOSETISOMODEDMAENFDTDMAMODDTWEDT
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-79 USBTXCSRH3 Register Field Descriptions
BitFieldTypeResetDescription
7AUTOSETR/W0hAuto Set

Reset type: SYSRSn


0h (R/W) = The TXRDY bit must be set manually.
1h (R/W) = Enables the TXRDY bit to be automatically set when data of the maximum packet size (value in USBTXMAXP[n]) is loaded into the transmit FIFO. If a packet of less than the maximum packet size is loaded, then the TXRDY bit must be set manually.
6ISOR/W0hIsochronous Transfers

Reset type: SYSRSn


0h (R/W) = Enables the transmit endpoint for bulk or interrupt transfers.
1h (R/W) = Enables the transmit endpoint for isochronous transfers.
5MODER/W0hMode
Note: This bit only has an effect when the same endpoint FIFO is used for both transmit and receive transactions.

Reset type: SYSRSn


0h (R/W) = Enables the endpoint direction as RX.
1h (R/W) = Enables the endpoint direction as TX.
4DMAENR/W0hDMA Request Enable
Note: Three TX and three /RX endpoints can be connected to the DMA module. If this bit is set for a particular endpoint, the DMAATX, DMABTX, or DMACTX field in the USB DMA Select (USBDMASEL) register must be programmed correspondingly

Reset type: SYSRSn


0h (R/W) = Disables the DMA request for the transmit endpoint.
1h (R/W) = Enables the DMA request for the transmit endpoint.
3FDTR/W0hForce Data Toggle

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Forces the endpoint DT bit to switch and the data packet to be cleared from the FIFO, regardless of whether an ACK was received. This bit can be used by interrupt transmit endpoints that are used to communicate rate feedback for isochronous endpoints.
Note: This bit should only be set when the TXRDY bit is set. At other times, it may cause data to be corrupted.
2DMAMODR/W0hDMA Request Mode

Reset type: SYSRSn


0h (R/W) = An interrupt is generated after every DMA packet transfer.
1h (R/W) = An interrupt is generated only after the entire DMA transfer is complete.
Note: This bit is valid only when the endpoint is operating in Bulk or Interrupt mode.
1DTWER/W0hData Toggle Write Enable. This bit is automatically cleared once the new value is written.

Reset type: SYSRSn


0h (R/W) = The DT bit cannot be written.
1h (R/W) = Enables the current state of the transmit endpoint data to be written (see DT bit).
0DTR/W0hData Toggle.
When read, this bit indicates the current state of the transmit endpoint data toggle.
If DTWE is High, this bit can be written with the required setting of the data toggle. If DTWE is Low, any value written to this bit is ignored. Care should be taken when writing to this bit as it should only be changed to RESET the transmit endpoint.

Reset type: SYSRSn

38.6.2.75 USBRXMAXP3 Register (Offset = 134h) [Reset = 0000h]

USBRXMAXP3 is shown in Figure 38-77 and described in Table 38-80.

Return to the Summary Table.

USB Maximum Receive Data Endpoint 3

Figure 38-77 USBRXMAXP3 Register
15141312111098
RESERVEDMAXLOAD
R-0hR/W-0h
76543210
MAXLOAD
R/W-0h
Table 38-80 USBRXMAXP3 Register Field Descriptions
BitFieldTypeResetDescription
15-11RESERVEDR0hReserved
10-0MAXLOADR/W0hMaximum Payload specifies the maximum payload in bytes per transaction.

Reset type: SYSRSn

38.6.2.76 USBRXCSRL3 Register (Offset = 136h) [Reset = 00h]

USBRXCSRL3 is shown in Figure 38-78 and described in Table 38-81.

Return to the Summary Table.

USB Receive Control and Status Endpoint 3 Low

Figure 38-78 USBRXCSRL3 Register
76543210
CLRDTSTALLEDSTALLREQPKTFLUSHDATAERRNAKTOOVERERROR3FULLRXRDY
W1C-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-81 USBRXCSRL3 Register Field Descriptions
BitFieldTypeResetDescription
7CLRDTW1C0hClear Data Toggle.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Writing a 1 to this bit clears the DT bit in the USBRXCSRH[n] register.
6STALLEDR/W0hEndpoint Stalled. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No handshake has been received.
1h (R/W) = A STALL handshake has been received. The EPn bit in the USBRXIS register is also set.
5STALLREQPKTR/W0hRequest Packet.
This bit is cleared when the RXRDY bit is set.

Reset type: SYSRSn


0h (R/W) = No request
1h (R/W) = Requests an IN transaction.
4FLUSHR/W0hFlush FIFO.
If the FIFO is double-buffered, FLUSH may have to be set twice to completely clear the FIFO.
Note:This bit should only be set when the RXRDY bit is set. At other times, it may cause data to be corrupted.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Flushes the next packet to be read from the endpoint receive FIFO. The FIFO pointer is reset and the RXRDY bit is cleared
3DATAERRNAKTOR/W0hData Error / NAK Timeout

Reset type: SYSRSn


0h (R/W) = Normal operation
1h (R/W) = Isochronous endpoints only: I
ndicates that RXRDY is set and the data packet has a CRC or bit-stuff error. This bit is cleared when RXRDY is cleared.
Bulk endpoints only: Indicates that the receive endpoint is halted following the receipt of NAK responses for longer than the time set by the NAKLMT field in the USBRXINTERVAL[n] register. Software must clear this bit to allow the endpoint to continue.
2OVERERROR3R/W0hError. Software must clear this bit.

Reset type: SYSRSn


0h (R/W) = No error
1h (R/W) = Three attempts have been made to receive a packet and no data packet has been received. The Epn bit in the USBRXIS register is set in this situation.
1FULLR/W0hFIFO Full

Reset type: SYSRSn


0h (R/W) = The receive FIFO is not full.
1h (R/W) = No more packets can be loaded into the receive FIFO.
0RXRDYR/W0hReceive Packet Ready.
If the AUTOCLR bit in the USBRXCSRH[n] register is set, then the this bit is automatically cleared when a packet of USBRXMAXP[n] bytes has been unloaded from the receive FIFO. If the AUTOCLR bit is clear, or if packets of less than the maximum packet size are unloaded, then software must clear this bit manually when the packet has been unloaded from the receive FIFO

Reset type: SYSRSn


0h (R/W) = No data packet has been received.
1h (R/W) = Indicates that a data packet has been received. The EPn bit in the USBTXIS register is also set in this situation

38.6.2.77 USBRXCSRH3 Register (Offset = 137h) [Reset = 00h]

USBRXCSRH3 is shown in Figure 38-79 and described in Table 38-82.

Return to the Summary Table.

USB Receive Control and Status Endpoint 3 High

Figure 38-79 USBRXCSRH3 Register
76543210
AUTOCLISOAUTORQDMAENDISNYETPIDERRDMAMODDTWEDTRESERVED
W1C-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 38-82 USBRXCSRH3 Register Field Descriptions
BitFieldTypeResetDescription
7AUTOCLW1C0hAuto Clear

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Enables the RXRDY bit to be automatically cleared when a packet of USBRXMAXP[n] bytes has been unloaded from the receive FIFO. When packets of less than the maximum packet size are unloaded, RXRDY must be cleared manually. Care must be taken when using DMA to unload the receive FIFO as data is read from the receive FIFO in 4-byte chunks regardless of the value of the MAXLOAD field in the USBRXMAXP[n] register,
6ISOAUTORQR/W0hAuto Request
Note: This bit is automatically cleared when a short packet is received.

Reset type: SYSRSn


0h (R/W) = No effect
1h (R/W) = Enables the REQPKT bit to be automatically set when the RXRDY bit is cleared
5DMAENR/W0hDMA Request Enable
Note: Three TX and three RX endpoints can be connected to the DMA module. If this bit is set for a particular endpoint, the DMAARX, DMABRX, or DMACRX field in the USB DMA Select (USBDMASEL) register must be programmed correspondingly

Reset type: SYSRSn


0h (R/W) = Disables the DMA request for the receive endpoint.
1h (R/W) = Enables the DMA request for the receive endpoint.
4DISNYETPIDERRR/W0hPID Error. This bit is ignored in bulk or interrupt transactions.

Reset type: SYSRSn


0h (R/W) = No error
1h (R/W) = Indicates a PID error in the received packet of an isochronous transaction.
3DMAMODR/W0hDMAMOD
Note: This bit must not be cleared either before or in the same cycle as the above DMAEN bit is cleared.

Reset type: SYSRSn


0h (R/W) = An interrupt is generated after every DMA packet transfer.
1h (R/W) = An interrupt is generated only after the entire DMA transfer is complete.
2DTWER/W0hData Toggle Write Enable.
This bit is automatically cleared once the new value is written.

Reset type: SYSRSn


0h (R/W) = The DT bit cannot be written.
1h (R/W) = Enables the current state of the receive endpoint data to be written (see DT bit).
1DTR/W0hData Toggle.
When read, this bit indicates the current state of the receive data toggle. If DTWE is High, this bit may be written with the required setting of the data toggle. If DTWE is Low, any value written to this bit is ignored. Care should be taken when writing to this bit as it should only be changed to RESET the receive endpoint.

Reset type: SYSRSn

0RESERVEDR/W0hReserved

38.6.2.78 USBRXCOUNT3 Register (Offset = 138h) [Reset = 0000h]

USBRXCOUNT3 is shown in Figure 38-80 and described in Table 38-83.

Return to the Summary Table.

USB Receive Byte Count Endpoint 3

Figure 38-80 USBRXCOUNT3 Register
15141312111098
RESERVEDCOUNT
R-0hR-0h
76543210
COUNT
R-0h
Table 38-83 USBRXCOUNT3 Register Field Descriptions
BitFieldTypeResetDescription
15-13RESERVEDR0hReserved
12-0COUNTR0hReceive Packet Count indicates the number of bytes in the receive packet.

Reset type: SYSRSn

38.6.2.79 USBTXTYPE3 Register (Offset = 13Ah) [Reset = 00h]

USBTXTYPE3 is shown in Figure 38-81 and described in Table 38-84.

Return to the Summary Table.

USB Host Transmit Configure Type Endpoint 3

Figure 38-81 USBTXTYPE3 Register
76543210
SPEEDPROTOTEP
R/W-0hR/W-0hR/W-0h
Table 38-84 USBTXTYPE3 Register Field Descriptions
BitFieldTypeResetDescription
7-6SPEEDR/W0hOperating Speed.
This bit field specifies the operating speed of the target Device:

Reset type: SYSRSn


0h (R/W) = Default. The target is assumed to be using the same connection speed as the USB controller.
1h (R/W) = Reserved
2h (R/W) = Full
3h (R/W) = Low
5-4PROTOR/W0hProtocol.
Software must configure this bit field to select the required protocol for the transmit endpoint:

Reset type: SYSRSn


0h (R/W) = Control
1h (R/W) = isochronous
2h (R/W) = Bulk
3h (R/W) = Interrupt
3-0TEPR/W0hTarget Endpoint Number.
Software must configure this value to the endpoint number contained in the transmit endpoint descriptor returned to the USB controller during Device enumeration.

Reset type: SYSRSn

38.6.2.80 USBTXINTERVAL3 Register (Offset = 13Bh) [Reset = 00h]

USBTXINTERVAL3 is shown in Figure 38-82 and described in Table 38-85.

Return to the Summary Table.

USB Host Transmit Interval Endpoint 3

Figure 38-82 USBTXINTERVAL3 Register
76543210
TXPOLLNAKLMT
R/W-0h
Table 38-85 USBTXINTERVAL3 Register Field Descriptions
BitFieldTypeResetDescription
7-0TXPOLLNAKLMTR/W0hTX Polling / NAK Limit The polling interval for interrupt/isochronous transfers
the NAK limit for bulk transfers.

Reset type: SYSRSn

38.6.2.81 USBRXTYPE3 Register (Offset = 13Ch) [Reset = 00h]

USBRXTYPE3 is shown in Figure 38-83 and described in Table 38-86.

Return to the Summary Table.

USB Host Configure Receive Type Endpoint 3

Figure 38-83 USBRXTYPE3 Register
76543210
SPEEDPROTOTEP
R/W-0hR/W-0hR/W-0h
Table 38-86 USBRXTYPE3 Register Field Descriptions
BitFieldTypeResetDescription
7-6SPEEDR/W0hOperating Speed.
This bit field specifies the operating speed of the target Device:

Reset type: SYSRSn


0h (R/W) = Default. The target is assumed to be using the same connection speed as the USB controller.
1h (R/W) = Reserved
2h (R/W) = Full
3h (R/W) = Low
5-4PROTOR/W0hProtocol.
Software must configure this bit field to select the required protocol for the transmit endpoint:

Reset type: SYSRSn


0h (R/W) = Control
1h (R/W) = isochronous
2h (R/W) = Bulk
3h (R/W) = Interrupt
3-0TEPR/W0hTarget Endpoint Number.
Software must configure this value to the endpoint number contained in the transmit endpoint descriptor returned to the USB controller during Device enumeration.

Reset type: SYSRSn

38.6.2.82 USBRXINTERVAL3 Register (Offset = 13Dh) [Reset = 00h]

USBRXINTERVAL3 is shown in Figure 38-84 and described in Table 38-87.

Return to the Summary Table.

USB Host Receive Polling Interval Endpoint 3

Figure 38-84 USBRXINTERVAL3 Register
76543210
RXPOLLNAKLMT
R/W-0h
Table 38-87 USBRXINTERVAL3 Register Field Descriptions
BitFieldTypeResetDescription
7-0RXPOLLNAKLMTR/W0hRX Polling / NAK Limit The polling interval for interrupt/isochronous transfers
the NAK limit for bulk transfers.

Reset type: SYSRSn

38.6.2.83 USBRQPKTCOUNT1 Register (Offset = 304h) [Reset = 0000h]

USBRQPKTCOUNT1 is shown in Figure 38-85 and described in Table 38-88.

Return to the Summary Table.

USB Request Packet Count in Block Transfer Endpoint 1

Figure 38-85 USBRQPKTCOUNT1 Register
15141312111098
RESERVEDCOUNT
R-0hR/W-0h
76543210
COUNT
R/W-0h
Table 38-88 USBRQPKTCOUNT1 Register Field Descriptions
BitFieldTypeResetDescription
15-13RESERVEDR0hReserved
12-0COUNTR/W0hBlock Transfer Packet Count sets the number of packets of the size defined by the MAXLOAD bit field that are to be transferred in a block transfer.
Note: This is only used in Host mode when AUTORQ is set. The bit has no effect in Device mode or when AUTORQ is not set.

Reset type: SYSRSn

38.6.2.84 USBRQPKTCOUNT2 Register (Offset = 308h) [Reset = 0000h]

USBRQPKTCOUNT2 is shown in Figure 38-86 and described in Table 38-89.

Return to the Summary Table.

USB Request Packet Count in Block Transfer Endpoint 2

Figure 38-86 USBRQPKTCOUNT2 Register
15141312111098
RESERVEDCOUNT
R-0hR/W-0h
76543210
COUNT
R/W-0h
Table 38-89 USBRQPKTCOUNT2 Register Field Descriptions
BitFieldTypeResetDescription
15-13RESERVEDR0hReserved
12-0COUNTR/W0hBlock Transfer Packet Count sets the number of packets of the size defined by the MAXLOAD bit field that are to be transferred in a block transfer.
Note: This is only used in Host mode when AUTORQ is set. The bit has no effect in Device mode or when AUTORQ is not set.

Reset type: SYSRSn

38.6.2.85 USBRQPKTCOUNT3 Register (Offset = 30Ch) [Reset = 0000h]

USBRQPKTCOUNT3 is shown in Figure 38-87 and described in Table 38-90.

Return to the Summary Table.

USB Request Packet Count in Block Transfer Endpoint 3

Figure 38-87 USBRQPKTCOUNT3 Register
15141312111098
RESERVEDCOUNT
R-0hR/W-0h
76543210
COUNT
R/W-0h
Table 38-90 USBRQPKTCOUNT3 Register Field Descriptions
BitFieldTypeResetDescription
15-13RESERVEDR0hReserved
12-0COUNTR/W0hBlock Transfer Packet Count sets the number of packets of the size defined by the MAXLOAD bit field that are to be transferred in a block transfer.
Note: This is only used in Host mode when AUTORQ is set. The bit has no effect in Device mode or when AUTORQ is not set.

Reset type: SYSRSn

38.6.2.86 USBRXDPKTBUFDIS Register (Offset = 340h) [Reset = 0000h]

USBRXDPKTBUFDIS is shown in Figure 38-88 and described in Table 38-91.

Return to the Summary Table.

USB Receive Double Packet Buffer Disable

Figure 38-88 USBRXDPKTBUFDIS Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDEP3EP2EP1RESERVED
R-0hR-0hR-0hR-0hR-0h
Table 38-91 USBRXDPKTBUFDIS Register Field Descriptions
BitFieldTypeResetDescription
15-4RESERVEDR0hReserved
3EP3R0hEP3 RX Double Packet Buffer Disable

Reset type: SYSRSn


0h (R/W) = Disables double-packet buffering.
1h (R/W) = Enables double-packet buffering.
2EP2R0hEP2 RX Double Packet Buffer Disable

Reset type: SYSRSn


0h (R/W) = Disables double-packet buffering.
1h (R/W) = Enables double-packet buffering.
1EP1R0hEP1 RX Double Packet Buffer Disable

Reset type: SYSRSn


0h (R/W) = Disables double-packet buffering.
1h (R/W) = Enables double-packet buffering.
0RESERVEDR0hReserved

38.6.2.87 USBTXDPKTBUFDIS Register (Offset = 342h) [Reset = 0000h]

USBTXDPKTBUFDIS is shown in Figure 38-89 and described in Table 38-92.

Return to the Summary Table.

USB Transmit Double Packet Buffer Disable

Figure 38-89 USBTXDPKTBUFDIS Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDEP3EP2EP1RESERVED
R-0hR-0hR-0hR-0hR-0h
Table 38-92 USBTXDPKTBUFDIS Register Field Descriptions
BitFieldTypeResetDescription
15-4RESERVEDR0hReserved
3EP3R0hEP3 TX Double Packet Buffer Disable

Reset type: SYSRSn


0h (R/W) = Disables double-packet buffering.
1h (R/W) = Enables double-packet buffering.
2EP2R0hEP2 TX Double Packet Buffer Disable

Reset type: SYSRSn


0h (R/W) = Disables double-packet buffering.
1h (R/W) = Enables double-packet buffering.
1EP1R0hEP1 TX Double Packet Buffer Disable

Reset type: SYSRSn


0h (R/W) = Disables double-packet buffering.
1h (R/W) = Enables double-packet buffering.
0RESERVEDR0hReserved

38.6.2.88 USBEPC Register (Offset = 400h) [Reset = 00000000h]

USBEPC is shown in Figure 38-90 and described in Table 38-93.

Return to the Summary Table.

USB External Power Control

Figure 38-90 USBEPC Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDPFLTACT
R-0hR/W-0h
76543210
RESERVEDPFLTAENPFLTSENPFLTENRESERVEDEPENDEEPEN
R-0hR/W-0hR/W-0hR/W-0hR-0hR/W-0hR/W-0h
Table 38-93 USBEPC Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-10RESERVEDR0hReserved
9-8PFLTACTR/W0hPower Fault Action.
This bit field specifies how the USB0EPEN signal is changed when detecting a USB power fault

Reset type: SYSRSn


0h (R/W) = Unchanged. USB0EPEN is controlled by the combination of the EPEN and EPENDE bits.
1h (R/W) = Tristate. USB0EPEN is undriven (tristate).
2h (R/W) = Low. USB0EPEN is driven Low.
3h (R/W) = High. USB0EPEN is driven High.
7RESERVEDR0hReserved
6PFLTAENR/W0hPower Fault Action Enable.
This bit specifies whether a USB power fault triggers any automatic corrective action regarding the driven state of the USB0EPEN signal.

Reset type: SYSRSn


0h (R/W) = Disabled. USB0EPEN is controlled by the combination of the EPEN and EPENDE bits.
1h (R/W) = Enabled. The USB0EPEN output is automatically changed to the state specified by the PFLTACT field.
5PFLTSENR/W0hPower Fault Sense.
This bit specifies the logical sense of the USB0PFLT input signal that indicates an error condition.
The complementary state is the inactive state.

Reset type: SYSRSn


0h (R/W) = Low Fault. If USB0PFLT is driven Low, the power fault is signaled internally (if enabled by the PFLTEN bit).
1h (R/W) = High Fault. If USB0PFLT is driven High, the power fault is signaled internally (if enabled by the PFLTEN bit).
4PFLTENR/W0hPower Fault Input Enable. This bit specifies whether the USB0PFLT input signal is used in internal logic.

Reset type: SYSRSn


0h (R/W) = Not Used. The USB0PFLT signal is ignored.
1h (R/W) = Used. The USB0PFLT signal is used internally
3RESERVEDR0hReserved
2EPENDER/W0hEPEN Drive Enable.
This bit specifies whether the USB0EPEN signal is driven or undriven (tristate). When driven, the signal value is specified by the EPEN field. When not driven, the EPEN field is ignored and the USB0EPEN signal is placed in a high-impedance state.
The USB0EPEN signal is undriven at reset because the sense of the external power supply enable is unknown. By adding the high-impedance state, system designers can bias the power supply enable to the disabled state using a large resistor (100 kOhm) and later configure and drive the output signal to enable the power supply.

Reset type: SYSRSn


0h (R/W) = Not Driven. The USB0EPEN signal is high impedance.
1h (R/W) = Driven. The USB0EPEN signal is driven to the logical value specified by the value of the EPEN field.
1-0EPENR/W0hExternal Power Supply Enable Configuration. This bit field specifies and controls the logical value driven on the USB0EPEN signal.

Reset type: SYSRSn


0h (R/W) = Power Enable Active Low. The USB0EPEN signal is driven Low if the EPENDE bit is set.
1h (R/W) = Power Enable Active High. The USB0EPEN signal is driven High if the EPENDE bit is set.
2h (R/W) = Power Enable High if VBUS Low. The USB0EPEN signal is driven High when the A device is not recognized.
3h (R/W) = Power Enable High if VBUS High. The USB0EPEN signal is driven High when the A device is recognized.

38.6.2.89 USBEPCRIS Register (Offset = 404h) [Reset = 00000000h]

USBEPCRIS is shown in Figure 38-91 and described in Table 38-94.

Return to the Summary Table.

USB External Power Control Raw Interrupt Status

Figure 38-91 USBEPCRIS Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDPF
R-0hR-0h
Table 38-94 USBEPCRIS Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0PFR0hUSB Power Fault Interrupt Status.
This bit is cleared by writing a 1 to the PF bit in the USBEPCISC register

Reset type: SYSRSn


0h (R/W) = A Power Fault status has been detected.
1h (R/W) = An interrupt has not occurred.

38.6.2.90 USBEPCIM Register (Offset = 408h) [Reset = 00000000h]

USBEPCIM is shown in Figure 38-92 and described in Table 38-95.

Return to the Summary Table.

USB External Power Control Interrupt Mask

Figure 38-92 USBEPCIM Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDPF
R-0hR-0h
Table 38-95 USBEPCIM Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0PFR0hUSB Power Fault Interrupt Mask.

Reset type: SYSRSn


0h (R/W) = The raw interrupt signal from a detected power fault is sent to the interrupt controller.
1h (R/W) = A detected power fault does not affect the interrupt status.

38.6.2.91 USBEPCISC Register (Offset = 40Ch) [Reset = 00000000h]

USBEPCISC is shown in Figure 38-93 and described in Table 38-96.

Return to the Summary Table.

USB External Power Control Interrupt Status and Clear

Figure 38-93 USBEPCISC Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDPF
R-0hR-0h
Table 38-96 USBEPCISC Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0PFR0hPower Fault Interrupt Status and Clear
This bit is cleared by writing a 1. Clearing this bit also clears the PF bit in the USBEPCISC register.

Reset type: SYSRSn


0h (R/W) = The PF bits in the USBEPCRIS and USBEPCIM registers are set, providing an interrupt to the interrupt controller
1h (R/W) = No interrupt has occurred or the interrupt is masked.

38.6.2.92 USBDRRIS Register (Offset = 410h) [Reset = 00000000h]

USBDRRIS is shown in Figure 38-94 and described in Table 38-97.

Return to the Summary Table.

USB Device RESUME Raw Interrupt Status

Figure 38-94 USBDRRIS Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRESUME
R-0hR-0h
Table 38-97 USBDRRIS Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0RESUMER0hRESUME Interrupt Status
This bit is cleared by writing a 1 to the RESUME bit in the USBDRISC register.

Reset type: SYSRSn


0h (R/W) = A RESUME status has been detected.
1h (R/W) = An interrupt has not occurred.

38.6.2.93 USBDRIM Register (Offset = 414h) [Reset = 00000000h]

USBDRIM is shown in Figure 38-95 and described in Table 38-98.

Return to the Summary Table.

USB Device RESUME Interrupt Mask

Figure 38-95 USBDRIM Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRESUME
R-0hR-0h
Table 38-98 USBDRIM Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0RESUMER0hResume Interrupt Mask

Reset type: SYSRSn


0h (R/W) = The raw interrupt signal from a detected RESUME is sent to the interrupt controller. This bit should only be set when a SUSPEND has been detected (the SUSPEND bit in the USBIS register is set).
1h (R/W) = A detected RESUME does not affect the interrupt status.

38.6.2.94 USBDRISC Register (Offset = 418h) [Reset = 00000000h]

USBDRISC is shown in Figure 38-96 and described in Table 38-99.

Return to the Summary Table.

USB Device RESUME Interrupt Status and Clear

Figure 38-96 USBDRISC Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRESUME
R-0hW1C-0h
Table 38-99 USBDRISC Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0RESUMEW1C0hRESUME Interrupt Status and Clear.
This bit is cleared by writing a 1. Clearing this bit also clears the RESUME bit in the USBDRCRIS register

Reset type: SYSRSn


0h (R/W) = The RESUME bits in the USBDRRIS and USBDRCIM registers are set, providing an interrupt to the interrupt controller.
1h (R/W) = No interrupt has occurred or the interrupt is masked.

38.6.2.95 USBGPCS Register (Offset = 41Ch) [Reset = 00000000h]

USBGPCS is shown in Figure 38-97 and described in Table 38-100.

Return to the Summary Table.

USB General-Purpose Control and Status

Figure 38-97 USBGPCS Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDDEVMODOTGDEVMOD
R-0hR/W-0hR/W-0h
Table 38-100 USBGPCS Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-2RESERVEDR0hReserved
1DEVMODOTGR/W0hEnable Device Mode.
This bit enables the DEVMOD bit to control the state of the internal ID signal in G OTG mode.

Reset type: SYSRSn


0h (R/W) = The RESUME bits in the USBDRRIS and USBDRCIM registers are set, providing an interrupt to the interrupt controller.
1h (R/W) = No interrupt has occurred or the interrupt is masked.
0DEVMODR/W0hDevice Mode
This bit specifies the state of the internal ID signal in Host mode and in OTG mode when the DEVMODOTG bit is set.
In Device mode this bit is ignored (assumed set).

Reset type: SYSRSn


0h (R/W) = The RESUME bits in the USBDRRIS and USBDRCIM registers are set, providing an interrupt to the interrupt controller.
1h (R/W) = No interrupt has occurred or the interrupt is masked.

38.6.2.96 USBVDC Register (Offset = 430h) [Reset = 00000000h]

USBVDC is shown in Figure 38-98 and described in Table 38-101.

Return to the Summary Table.

USB VBUS Droop Control

Figure 38-98 USBVDC Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDVBDEN
R-0hR/W-0h
Table 38-101 USBVDC Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0VBDENR/W0hVbus Droop Enable

Reset type: SYSRSn

38.6.2.97 USBVDCRIS Register (Offset = 434h) [Reset = 00000000h]

USBVDCRIS is shown in Figure 38-99 and described in Table 38-102.

Return to the Summary Table.

USB VBUS Droop Control Raw Interrupt Status

Figure 38-99 USBVDCRIS Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDVD
R-0hR-0h
Table 38-102 USBVDCRIS Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0VDR0hVbus Droop Raw Interrupt Status

Reset type: SYSRSn

38.6.2.98 USBVDCIM Register (Offset = 438h) [Reset = 00000000h]

USBVDCIM is shown in Figure 38-100 and described in Table 38-103.

Return to the Summary Table.

USB VBUS Droop Control Interrupt Mask

Figure 38-100 USBVDCIM Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDVD
R-0hR-0h
Table 38-103 USBVDCIM Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0VDR0hVbus Droop Interrupt Mask

Reset type: SYSRSn

38.6.2.99 USBVDCISC Register (Offset = 43Ch) [Reset = 00000000h]

USBVDCISC is shown in Figure 38-101 and described in Table 38-104.

Return to the Summary Table.

USB VBUS Droop Control Interrupt Status and Clear

Figure 38-101 USBVDCISC Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDVD
R-0hW1C-0h
Table 38-104 USBVDCISC Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0VDW1C0hVbus Droop Interrupt Status and Clear

Reset type: SYSRSn

38.6.2.100 USBIDVRIS Register (Offset = 444h) [Reset = 00000000h]

USBIDVRIS is shown in Figure 38-102 and described in Table 38-105.

Return to the Summary Table.

USB ID Valid Detect Raw Interrupt Status

Figure 38-102 USBIDVRIS Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDID
R-0hW1C-0h
Table 38-105 USBIDVRIS Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0IDW1C0hID Valid Detect Raw Interrupt Status

Reset type: SYSRSn

38.6.2.101 USBIDVIM Register (Offset = 448h) [Reset = 00000000h]

USBIDVIM is shown in Figure 38-103 and described in Table 38-106.

Return to the Summary Table.

USB ID Valid Detect Interrupt Mask

Figure 38-103 USBIDVIM Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDID
R-0hW1C-0h
Table 38-106 USBIDVIM Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0IDW1C0hID Valid Detect Interrupt mask

Reset type: SYSRSn

38.6.2.102 USBIDVISC Register (Offset = 44Ch) [Reset = 00000000h]

USBIDVISC is shown in Figure 38-104 and described in Table 38-107.

Return to the Summary Table.

USB ID Valid Detect Interrupt Status and Clear

Figure 38-104 USBIDVISC Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDID
R-0hW1C-0h
Table 38-107 USBIDVISC Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0IDW1C0hID Valid Detect Interrupt Status and Clear

Reset type: SYSRSn

38.6.2.103 USBDMASEL Register (Offset = 450h) [Reset = 00000000h]

USBDMASEL is shown in Figure 38-105 and described in Table 38-108.

Return to the Summary Table.

USB DMA Select

Figure 38-105 USBDMASEL Register
31302928272625242322212019181716
RESERVEDDMACTXDMACRX
R-0hR/W-0hR/W-0h
1514131211109876543210
DMABTXDMABRXDMAATXDMAARX
R/W-0hR/W-0hR/W-0hR/W-0h
Table 38-108 USBDMASEL Register Field Descriptions
BitFieldTypeResetDescription
31-24RESERVEDR0hReserved
23-20DMACTXR/W0hDMA C TX Select specifies the TX mapping of the third USB endpoint on DMA channel 5

Reset type: SYSRSn


0h (R/W) = Reserved
1h (R/W) = Endpoint 1 TX
2h (R/W) = Endpoint 2 TX
3h (R/W) = Endpoint 3 TX
19-16DMACRXR/W0hDMA C RX Select specifies the RX and TX mapping of the third USB endpoint on DMA channel 4

Reset type: SYSRSn


0h (R/W) = Reserved
1h (R/W) = Endpoint 1 RX
2h (R/W) = Endpoint 2 RX
3h (R/W) = Endpoint 3 RX
15-12DMABTXR/W0hDMA B TX Select specifies the TX mapping of the second USB endpoint on DMA channel 3

Reset type: SYSRSn


0h (R/W) = Reserved
1h (R/W) = Endpoint 1 TX
2h (R/W) = Endpoint 2 TX
3h (R/W) = Endpoint 3 TX
11-8DMABRXR/W0hDMA B RX Select Specifies the RX mapping of the second USB endpoint on DMA channel 2

Reset type: SYSRSn


0h (R/W) = Reserved
1h (R/W) = Endpoint 1 RX
2h (R/W) = Endpoint 2 RX
3h (R/W) = Endpoint 3 RX
7-4DMAATXR/W0hDMA A TX Select specifies the TX mapping of the first USB endpoint on DMA channel 1

Reset type: SYSRSn


0h (R/W) = Reserved
1h (R/W) = Endpoint 1 TX
2h (R/W) = Endpoint 2 TX
3h (R/W) = Endpoint 3 TX
3-0DMAARXR/W0hDMA A RX Select specifies the RX mapping of the first USB endpoint on DMA channel 0

Reset type: SYSRSn


0h (R/W) = Reserved
1h (R/W) = Endpoint 1 RX
2h (R/W) = Endpoint 2 RX
3h (R/W) = Endpoint 3 RX

38.6.2.104 USB_GLB_INT_EN Register (Offset = 480h) [Reset = 00000000h]

USB_GLB_INT_EN is shown in Figure 38-106 and described in Table 38-109.

Return to the Summary Table.

USB Global Interrupt Enable Register
Note: This Register is applicable only when USB is mapped to CPU1

Figure 38-106 USB_GLB_INT_EN Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDINTEN
R-0hR/W-0h
Table 38-109 USB_GLB_INT_EN Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0INTENR/W0h1: Interrupt enabled, USB interrupt is passed on.
0: Interrupt disabled, USB interrupt is blocked.

Reset type: SYSRSn

38.6.2.105 USB_GLB_INT_FLG Register (Offset = 484h) [Reset = 00000000h]

USB_GLB_INT_FLG is shown in Figure 38-107 and described in Table 38-110.

Return to the Summary Table.

USB Global Interrupt Flag Register
Note: This Register is applicable only when USB is mapped to CPU1

Figure 38-107 USB_GLB_INT_FLG Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDINTFLG
R-0hR/W-0h
Table 38-110 USB_GLB_INT_FLG Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0INTFLGR/W0h1: Once USB interrupt has been fired, no other interrupt will be fired unless this flag is cleared by writing to USB_GLB_INT_FLG_CLR register.
0: No interrupt has been fired.

Reset type: SYSRSn

38.6.2.106 USB_GLB_INT_FLG_CLR Register (Offset = 488h) [Reset = 00000000h]

USB_GLB_INT_FLG_CLR is shown in Figure 38-108 and described in Table 38-111.

Return to the Summary Table.

USB Global Interrupt Flag Clear Register
Note: This Register is applicable only when USB is mapped to CPU1

Figure 38-108 USB_GLB_INT_FLG_CLR Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDINTFLG
R-0hR-0/W1S-0h
Table 38-111 USB_GLB_INT_FLG_CLR Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0INTFLGR-0/W1S0hWrite of 1 to this field clears the corresponding bit in USB_GLB_INT_FLG register.
Write of 0 has no effect.

Reset type: SYSRSn

38.6.2.107 USBDMARIS Register (Offset = 500h) [Reset = 00000000h]

USBDMARIS is shown in Figure 38-109 and described in Table 38-112.

Return to the Summary Table.

USB uDMA Raw Interrupt Status register.
Note: This Register is applicable only when USB is mapped to CM

Figure 38-109 USBDMARIS Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDUSB_DMAC_TX_DONEUSB_DMAC_RX_DONEUSB_DMAB_TX_DONEUSB_DMAB_RX_DONEUSB_DMAA_TX_DONEUSB_DMAA_Rx_DONE
R-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 38-112 USBDMARIS Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR0hReserved
5USB_DMAC_TX_DONER0h1: USB uDMA transfer complete indication of USB_DMAC_TX trigger
0: No USB uDMA transfer complete indication of USB_DMAC_TXtrigger

Reset type: PER.RESET

4USB_DMAC_RX_DONER0h1: USB uDMA transfer complete indication of USB_DMAC_RX trigger
0: No USB uDMA transfer complete indication of USB_DMAC_RXtrigger

Reset type: PER.RESET

3USB_DMAB_TX_DONER0h1: USB uDMA transfer complete indication of USB_DMAB_TX trigger
0: No USB uDMA transfer complete indication of USB_DMAB_TXtrigger

Reset type: PER.RESET

2USB_DMAB_RX_DONER0h1: USB uDMA transfer complete indication of USB_DMAB_RX trigger
0: No USB uDMA transfer complete indication of USB_DMAB_RXtrigger

Reset type: PER.RESET

1USB_DMAA_TX_DONER0h1: USB uDMA transfer complete indication of USB_DMAA_TX trigger
0: No USB uDMA transfer complete indication of USB_DMAA_TXtrigger

Reset type: PER.RESET

0USB_DMAA_Rx_DONER0h1: USB uDMA transfer complete indication of USB_DMAA_Rx trigger
0: No USB uDMA transfer complete indication of USB_DMAA_Rxtrigger

Reset type: PER.RESET

38.6.2.108 USBDMAIM Register (Offset = 504h) [Reset = 0000003Fh]

USBDMAIM is shown in Figure 38-110 and described in Table 38-113.

Return to the Summary Table.

USB uDMA Interrupt Mask Register
Note: This Register is applicable only when USB is mapped to CM

Figure 38-110 USBDMAIM Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDUSB_DMAC_TX_DONEUSB_DMAC_RX_DONEUSB_DMAB_TX_DONEUSB_DMAB_RX_DONEUSB_DMAA_TX_DONEUSB_DMAA_Rx_DONE
R-0hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
Table 38-113 USBDMAIM Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR0hReserved
5USB_DMAC_TX_DONER/W1h0: USB_DMAC_TX_DONE does not trigger a USB interrupt.
1: USB_DMAC_TX_DONE triggers a USB interrupt.
Note: The reset value of this bit is 1 to keep compatibility with Concerto USB software model.

Reset type: PER.RESET

4USB_DMAC_RX_DONER/W1h0: USB_DMAC_RX_DONE does not trigger a USB interrupt.
1: USB_DMAC_RX_DONE triggers a USB interrupt.
Note: The reset value of this bit is 1 to keep compatibility with Concerto USB software model.

Reset type: PER.RESET

3USB_DMAB_TX_DONER/W1h0: USB_DMAB_TX_DONE does not trigger a USB interrupt.
1: USB_DMAB_TX_DONE triggers a USB interrupt.
Note: The reset value of this bit is 1 to keep compatibility with Concerto USB software model.

Reset type: PER.RESET

2USB_DMAB_RX_DONER/W1h0: USB_DMAB_RX_DONE does not trigger a USB interrupt.
1: USB_DMAB_RX_DONE triggers a USB interrupt.
Note: The reset value of this bit is 1 to keep compatibility with Concerto USB software model.

Reset type: PER.RESET

1USB_DMAA_TX_DONER/W1h0: USB_DMAA_TX_DONE does not trigger a USB interrupt.
1: USB_DMAA_TX_DONE triggers a USB interrupt.
Note: The reset value of this bit is 1 to keep compatibility with Concerto USB software model.

Reset type: PER.RESET

0USB_DMAA_Rx_DONER/W1h0: USB_DMAA_Rx_DONE does not trigger a USB interrupt.
1: USB_DMAA_Rx_DONE triggers a USB interrupt.
Note: The reset value of this bit is 1 to keep compatibility with Concerto USB software model.

Reset type: PER.RESET

38.6.2.109 USBDMAISC Register (Offset = 508h) [Reset = 0000003Fh]

USBDMAISC is shown in Figure 38-111 and described in Table 38-114.

Return to the Summary Table.

USB uDMA Interrupt Status and Clear Register
Note: This Register is applicable only when USB is mapped to CM

Figure 38-111 USBDMAISC Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDUSB_DMAC_TX_DONEUSB_DMAC_RX_DONEUSB_DMAB_TX_DONEUSB_DMAB_RX_DONEUSB_DMAA_TX_DONEUSB_DMAA_Rx_DONE
R-0hR/W1S-1hR/W1S-1hR/W1S-1hR/W1S-1hR/W1S-1hR/W1S-1h
Table 38-114 USBDMAISC Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR0hReserved
5USB_DMAC_TX_DONER/W1S1h0: USB_DMAC_TX_DONE has not triggered a USB interrupt.
1: USB_DMAC_TX_DONE triggered a USB interrupt.
Note: This bit is cleared by writing a 1. Clearing this bit also clears the DMADONE
bit in the USBDMARIS register.

Reset type: PER.RESET

4USB_DMAC_RX_DONER/W1S1h0: USB_DMAC_RX_DONE has not triggered a USB interrupt.
1: USB_DMAC_RX_DONE triggered a USB interrupt.
Note: This bit is cleared by writing a 1. Clearing this bit also clears the DMADONE
bit in the USBDMARIS register.

Reset type: PER.RESET

3USB_DMAB_TX_DONER/W1S1h0: USB_DMAB_TX_DONE has not triggered a USB interrupt.
1: USB_DMAB_TX_DONE triggered a USB interrupt.
Note: This bit is cleared by writing a 1. Clearing this bit also clears the DMADONE
bit in the USBDMARIS register.

Reset type: PER.RESET

2USB_DMAB_RX_DONER/W1S1h0: USB_DMAB_RX_DONE has not triggered a USB interrupt.
1: USB_DMAB_RX_DONE triggered a USB interrupt.
Note: This bit is cleared by writing a 1. Clearing this bit also clears the DMADONE
bit in the USBDMARIS register.

Reset type: PER.RESET

1USB_DMAA_TX_DONER/W1S1h0: USB_DMAA_TX_DONE has not triggered a USB interrupt.
1: USB_DMAA_TX_DONE triggered a USB interrupt.
Note: This bit is cleared by writing a 1. Clearing this bit also clears the DMADONE
bit in the USBDMARIS register.

Reset type: PER.RESET

0USB_DMAA_Rx_DONER/W1S1h0: USB_DMAA_Rx_DONE has not triggered a USB interrupt.
1: USB_DMAA_Rx_DONE triggered a USB interrupt.
Note: This bit is cleared by writing a 1. Clearing this bit also clears the DMADONE
bit in the USBDMARIS register.

Reset type: PER.RESET