SNVSCF0 October   2024 LM65680-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Descriptions
      1. 7.3.1  Output Voltage Selection
      2. 7.3.2  EN Pin and Use as VIN UVLO
      3. 7.3.3  Device Configuration
      4. 7.3.4  Single-Output Dual-Phase Operation
      5. 7.3.5  Mode Selection
        1. 7.3.5.1 MODE/SYNC Pin Uses for Synchronization
        2. 7.3.5.2 Clock Locking
      6. 7.3.6  Adjustable Switching Frequency
      7. 7.3.7  Dual Random Spread Spectrum (DRSS)
      8. 7.3.8  Internal LDO, VCC UVLO, and BIAS Input
      9. 7.3.9  Bootstrap Voltage (BST Pin)
      10. 7.3.10 Soft Start and Recovery From Dropout
      11. 7.3.11 Safety Features
        1. 7.3.11.1 Power-Good Monitor
        2. 7.3.11.2 Overcurrent and Short-Circuit Protection
        3. 7.3.11.3 Hiccup
        4. 7.3.11.4 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Active Mode
        1. 7.4.2.1 Peak Current Mode Operation
        2. 7.4.2.2 Auto Mode Operation
          1. 7.4.2.2.1 Diode Emulation
        3. 7.4.2.3 FPWM Mode Operation
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Train Components
        1. 8.1.1.1 Buck Inductor
        2. 8.1.1.2 Output Capacitors
        3. 8.1.1.3 Input Capacitors
        4. 8.1.1.4 EMI Filter
      2. 8.1.2 Error Amplifier and Compensation
      3. 8.1.3 Maximum Ambient Temperature
        1. 8.1.3.1 Derating Curves
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Inductor Selection
        2. 8.2.2.2 Output Capacitors
        3. 8.2.2.3 Feed-forward Capacitor (CFF)
        4. 8.2.2.4 Input Capacitor Selection
        5. 8.2.2.5 Choosing the Switching Frequency
        6. 8.2.2.6 Setting the Output Voltage
        7. 8.2.2.7 Compensation Components
        8. 8.2.2.8 CBST
        9. 8.2.2.9 External UVLO
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Ground and Thermal Considerations
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Development Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
        1. 9.2.1.1 PCB Layout Resources
        2. 9.2.1.2 Thermal Design Resources
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Compensation Components

Choose compensation components for a stable control loop using the procedure outlined as follows.

  1. Based on a specified loop gain crossover frequency, fC, of 50kHz, use Equation 38 to calculate RCOMP, assuming an effective output capacitance of 80μF (2 × 47µF TDK CGA6P1X7S1A476M250AC capacitors). Choose a standard value for RCOMP of 8.66kΩ.
    Equation 38. R C O M P = 2 × π × f C × V O U T V R E F × C O U T g m 1 × G m 2 = 2 × π × 50 k H z × 5 V 0.8 V × 80 µ F 1 m S × 18.6 A / V = 8.44 k Ω  
  2. To provide adequate phase boost at crossover while also allowing a fast settling time during a load or line transient, select CCOMP to place a zero at the higher of (1) one eighth of the crossover frequency, or (2) the load pole. Choose a standard value for CCOMP of 2.2nF.
    Equation 39. C C O M P = 8 2 × π × f C × R C O M P = 8 2 × π × 50 k H z × 8.66 k Ω = 2.94 n F

    Such a low capacitance value also helps to avoid output voltage overshoot when recovering from dropout (when the input voltage is less than the output voltage set point and VCOMP is railed high).

Note:

Set a fast loop with high RCOMP and low CCOMP values to improve the response when recovering from operation in dropout.