SBOSA39A April   2025  – October 2025 THS3470

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics ±VS = ±30V
    6. 5.6 Electrical Characteristics ±VS = ±20V
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Output Current Limit
      2. 6.3.2 Output Current Enable
      3. 6.3.3 Over Temperature Flag
      4. 6.3.4 Output Current Flags
      5. 6.3.5 Output Current Monitoring
      6. 6.3.6 Die Temperature Monitoring
      7. 6.3.7 External Compensation
    4. 6.4 Device Functional Modes
      1. 6.4.1 Power Modes
      2. 6.4.2 Choosing a Feedback Resistor
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 High-Voltage, High-Precision, Composite Amplifier
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curves
      2. 7.2.2 120V Bootstrap Amplifier
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Performance Plots
    3. 7.3 Short Circuit Protection
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Thermal Considerations
        1. 7.5.1.1 Top-Side Cooling Benefits
        2. 7.5.1.2 THS3470 Safe Operating Area
      2. 7.5.2 Layout Guidelines
      3. 7.5.3 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 TAPE AND REEL INFORMATION

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • REB|42
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Die Temperature Monitoring

The THS3470 DIE_TEMP pins converts the die junction temperature to an ADC-readable voltage between 0V and 3.3V. To convert the DIE_TEMP voltage to the die junction temperature, use Equation 8. Use DIE_TEMP to monitor the health of the device and shut down the device using the P0 and P1 pins, or to limit the output current using the output current enable pins. For more information about using these diagnostic functions in tandem with the DIE_TEMP, see also Section 6.3.1 and Section 6.3.2.

Equation 8. J u n c t i o n   T e m p e r a t u r e   T J = 208 × V D I E _ T E M P - 1.415

For application where the DIE_TEMP is not used, or is only used for debug purposes, designers can simply connect a test point to the pin. The output of the DIE_TEMP pin is internally buffered, so passive scope probes or digital multimeter can be connected without impacting the accuracy of the pin.

Certain applications, such as split-supply operation, require additional circuitry to level-shift the DIE_TEMP voltage into an on board ADC. To level shift, use the difference amplifier circuit in Figure 6-7. Depending on the voltage span of the supply pins, use the TLV9351 (40V) or OPA596 (85V) with the positive supply tied to the ADC supply and the negative supply tied to VEE.

THS3470 DIE_TEMP Level-Shifting
                    Circuit Figure 6-7 DIE_TEMP Level-Shifting Circuit