SPRAD05E August   2024  – October 2025 AM620-Q1 , AM623 , AM625 , AM625-Q1 , AM625SIP

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
    1. 1.1 Before Getting Started With the Custom Board Design
    2. 1.2 Processor-Specific SDK
    3. 1.3 Peripheral Circuit Implementation - Compatibility Between Processor Families
    4. 1.4 Selection of Required Processor OPN (Orderable Part Number)
      1. 1.4.1 Processor Support for Secure Boot and Functional Safety
      2. 1.4.2 Note on AM625SIP Processor Data Sheet
      3. 1.4.3 AM625 and AM625SIP Custom Boards, Design Compatibility
    5. 1.5 Technical Documentation
      1. 1.5.1 Updated SK Schematic With Design, Review and Cad Notes Added
      2. 1.5.2 Collaterals on TI.com, Processor Product Page
      3. 1.5.3 Schematic Design Guidelines and Schematic Review Checklist - Processor Family Specific User's Guide
      4. 1.5.4 Updates to Hardware Design Considerations User's Guide
      5. 1.5.5 Processor and Peripherals Related FAQs to Support Custom Board Designs
    6. 1.6 Custom Board Design Documentation
    7. 1.7 Processor and Processor Peripherals Design Related Queries During Custom Board Design
  5. Custom Board Design Block Diagram
    1. 2.1 Developing the Custom Board Design Block Diagram
    2. 2.2 Configuring the Boot Mode
    3. 2.3 Configuring the Processor Pins Functionality (PinMux Configuration)
  6. Power Supply
    1. 3.1 Power Supply Architecture
      1. 3.1.1 Integrated Power Architecture
      2. 3.1.2 Discrete Power Architecture
    2. 3.2 Processor Supply (Power) Rails (Operating Voltage)
      1. 3.2.1 Supported Low-Power Modes
        1. 3.2.1.1 Partial IO Support for CAN/GPIO/UART Wakeup
      2. 3.2.2 Core Power Supply
      3. 3.2.3 Peripherals Power Supply
      4. 3.2.4 DDR PHY and SDRAM Power Supply
        1. 3.2.4.1 AM625 / AM623 / AM620-Q1 / AM625-Q1
        2. 3.2.4.2 AM625SIP
      5. 3.2.5 Dual-Voltage IO Supply for IO Group (Processor) Power Supply
      6. 3.2.6 Dynamic Voltage Switching Dual-Voltage Power Supply
      7. 3.2.7 VPP (eFuse ROM Programming) Power Supply
      8. 3.2.8 Internal LDOs for IO Supply for IO Groups (Processor)
    3. 3.3 Power Supply Filtering
    4. 3.4 Power Supply Decoupling and Bulk Capacitors
      1. 3.4.1 AM625 / AM623 / AM620-Q1 / AM625-Q1
      2. 3.4.2 AM625SIP
      3. 3.4.3 Note on PDN Target Impedance
    5. 3.5 Power Supply Sequencing
    6. 3.6 Power Supply Diagnostics (Using Processor Supported External Input Voltage Monitors)
    7. 3.7 Power Supply Diagnostics (Monitoring Using External Monitoring Circuit (Devices))
    8. 3.8 Custom Board Current Requirements Estimation and Supply Sizing
  7. Processor Clock (Input and Output)
    1. 4.1 Processor Clocking (External Crystal or External Oscillator)
      1. 4.1.1 WKUP_LFOSC0 Connection When Unused
      2. 4.1.2 MCU_OSC0 and WKUP_LFOSC0, Crystal Selection
      3. 4.1.3 LVCMOS Compatible Digital Clock Input Source
    2. 4.2 Processor Clock Outputs
      1. 4.2.1 Observation Clock Outputs
    3. 4.3 Clock Tree Tool
  8. JTAG (Joint Test Action Group)
    1. 5.1 JTAG / Emulation
      1. 5.1.1 Configuration of JTAG / Emulation
        1. 5.1.1.1 BSDL File
      2. 5.1.2 Implementation of JTAG / Emulation
      3. 5.1.3 Connection Recommendations for JTAG Interface Signals
      4. 5.1.4 Debug Boot Modes and Boundary Scan Compliance
  9. Configuration (Processor) and Initialization (Processor and Device)
    1. 6.1 Processor Reset
    2. 6.2 Latching of Processor Boot Mode Configuration Inputs
    3. 6.3 Resetting of the Attached Device
    4. 6.4 Watchdog Timer
  10. Processor - Peripherals Connection
    1. 7.1  Supported Processor Cores and MCU Cores
    2. 7.2  Selecting Peripherals Across Domains
    3. 7.3  Memory Controller (DDRSS)
      1. 7.3.1 AM625 / AM623 / AM620-Q1 / AM625-Q1
        1. 7.3.1.1 Processor DDR Subsystem and Device Register Configuration
        2. 7.3.1.2 Calibration Resistor Connection for DDRSS
        3. 7.3.1.3 DDRSS Signals Pin (Package) Delay Information
        4. 7.3.1.4 Attached Memory Device ZQ and Reset_N (Memory Device Reset) Connection
      2. 7.3.2 AM625SIP
        1. 7.3.2.1 AMK Package Reassigned DDRSS Pins
        2. 7.3.2.2 DDRSS and Memory Device Calibration Resistor Connection
        3. 7.3.2.3 LPDDR4 (Internal) Memory Calibration Resistor Connection
    4. 7.4  Media and Data Storage Interfaces (MMC0, MMC1, MMC2, OSPI0/QSPI0 and GPMC0)
    5. 7.5  Ethernet Interface
      1. 7.5.1 Common Platform Ethernet Switch 3-port Gigabit (CPSW3G0)
    6. 7.6  Programmable Real-Time Unit Subsystem (PRUSS)
    7. 7.7  Universal Serial Bus (USB) Subsystem
    8. 7.8  General Connectivity Peripherals
      1. 7.8.1 Inter-Integrated Circuit (I2C) Interface
    9. 7.9  Display Subsystem (DSS)
      1. 7.9.1 AM625 / AM623 / AM625-Q1 / AM625SIP
      2. 7.9.2 AM620-Q1
    10. 7.10 CSI-Rx (Camera Serial interface)
    11. 7.11 Real-Time Clock (RTC) Module
    12. 7.12 Connection of Processor Power Supply Pins, IOs and Peripherals When not Used
      1. 7.12.1 AM625 / AM623 / AM620-Q1 / AM625-Q1
      2. 7.12.2 AM625SIP
      3. 7.12.3 External Interrupt (EXTINTn)
      4. 7.12.4 RSVD Reserved Pins (Signals)
    13. 7.13 SK Specific Circuit Implementation (Reuse)
  11. Interfacing of Processor IOs (LVCMOS or SDIO or Open-Drain, Fail-Safe Type IO Buffers) and Performing Simulations
    1. 8.1 IBIS Model
    2. 8.2 IBIS-AMI Model
  12. Processor Current Draw and Thermal Analysis
    1. 9.1 Power Estimation
    2. 9.2 Maximum Current Rating for Different Supply Rails
    3. 9.3 Supported Power Modes
    4. 9.4 Thermal Design Guidelines
      1. 9.4.1 Thermal Model
      2. 9.4.2 Voltage Thermal Management Module (VTM)
  13. 10Schematic:- Capture, Entry and Review
    1. 10.1 Custom Board Design Passive Components and Values Selection
    2. 10.2 Custom Board Design Electronic Computer Aided Design (ECAD) Tools Considerations
    3. 10.3 Custom Board Design Schematic Capture
    4. 10.4 Custom Board Design Schematic Review
  14. 11Floor Planning, Layout, Routing Guidelines, Board Layers and Simulation
    1. 11.1 Escape Routing for PCB Design
    2. 11.2 DDR Design and Layout Guidelines
      1. 11.2.1 AM625 / AM623 / AM620-Q1 / AM625-Q1
      2. 11.2.2 AM625SIP
    3. 11.3 High-Speed Differential Signal Routing Guidelines
    4. 11.4 Processor-Specific SK Board Layout
    5. 11.5 Custom Board Layer Count and Layer Stack-up
      1. 11.5.1 AM625 / AM623 / AM620-Q1 / AM625-Q1
      2. 11.5.2 AM625SIP
      3. 11.5.3 Simulation Recommendations
    6. 11.6 DDR-MARGIN-FW
    7. 11.7 Reference for Steps to be Followed for Running Board Simulation
    8. 11.8 Software Development Training (Academy) for Processors
  15. 12Custom Board Assembly and Testing
    1. 12.1 Custom Board Bring-up Tips and Debug Guidelines
  16. 13Processor (Device) Handling and Assembly
    1. 13.1 Processor (Device) Soldering Recommendations
      1. 13.1.1 Additional References
  17. 14References
    1. 14.1 AM625SIP
    2. 14.2 AM625 / AM623
    3. 14.3 AM620-Q1 / AM625-Q1
    4. 14.4 AM625 / AM623 / AM620-Q1 / AM625-Q1
    5. 14.5 Common for all AM62x family of processors
  18. 15Terminology
  19. 16Revision History

Custom Board Design Schematic Review

After the completion of the schematic capture, the recommendation is to perform a self review using the AM625, AM623, AM620-Q1, AM625-Q1, AM625SIP Processor Family Schematic Design Guidelines and Schematic Review Checklist.

The below FAQ lists the collaterals and steps that can be followed for performing self-review of the custom board schematic design:

[FAQ] AM625 / AM623 / AM620-Q1 / AM625-Q1 / AM625SIP Design Recommendations / Custom board hardware design - Custom board schematics self-review

Additionally, the below FAQ can be used that includes schematic review checklist for AM62x processor families:

[FAQ] AM625 / AM623 / AM620-Q1 / AM62Ax / AM62Px / AM62D-Q1 / AM62L / AM64x / AM243x (ALV) / AM335x Design Recommendations / Custom board hardware design - Schematics review checklists

Refer below FAQ for information related to some of the common errors observed during schematic updates:

[FAQ] AM625 / AM623 / AM620-Q1 / AM62Ax / AM62Px / AM62D-Q1 / AM62L Design Recommendations / Commonly Observed Errors during Custom board hardware design – SK Schematics updates for Design Update Note

For information on connecting used/unused processor pins, and peripherals, see the following FAQ:

[FAQ] AM62x, AM62Ax, AM62D-Q1, AM62L, AM62Px, AM64x, AM243x, Custom board hardware design – How to handle Used / Unused Pins / Peripherals and add pullup or pulldown? (e.g. GPIOs, SERDES, USB, CSI, MMC (eMMC, SD-card), CSI, OLDI, DSI, CAP_VDDSx, .....)

The recommendation is to plan a formal schematic review internally to review the custom board schematics with reference to the Schematic Design Guidelines and Schematic Review Checklist. The recommendation is to review custom board design implementation for possible design errors, change in component values, connection errors, missing net connections, and other design recommendations (not being followed).

In case a schematics review request is required to be submitted to TI, the recommendation is to follow the below FAQ:

[FAQ] Sitara MPU Hardware Applications Support - Schematics review request

The FAQ is generic and can also be used for AM625, AM623, AM620-Q1, AM625-Q1, AM625SIP processor family.

As part of the review, recommendation is to verify if the custom board schematic design follows the recommendations as per the Pin Connectivity Requirements section of the device-specific data sheet.