SLLSFO8C May   2024  – November 2025 TCAN2450-Q1 , TCAN2451-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  IEC ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Supply Characteristics
    7. 6.7  Electrical Characteristics
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  CAN FD Transceiver
        1. 8.3.1.1 Driver and Receiver Function
      2. 8.3.2  VCC1 Regulator
        1. 8.3.2.1 Functional Description of Buck Regulator
          1. 8.3.2.1.1 Fixed Frequency Peak Current Mode Control
          2. 8.3.2.1.2 Minimum ON-Time, Minimum OFF-Time, and Frequency Foldback
          3. 8.3.2.1.3 Overcurrent and Short Circuit Protection
          4. 8.3.2.1.4 Soft Start
        2. 8.3.2.2 Buck Regulator Functional Modes
          1. 8.3.2.2.1 Buck Shutdown Mode
          2. 8.3.2.2.2 Buck Active Modes
      3. 8.3.3  VCC2 Regulator
        1. 8.3.3.1 VCC2 Short to Battery Protection
      4. 8.3.4  Reset Function (nRST Pin)
      5. 8.3.5  LIMP Function
      6. 8.3.6  High Side Switches
      7. 8.3.7  WAKE and ID Inputs
        1. 8.3.7.1 ID Functionality
      8. 8.3.8  Interrupt Function (nINT Pin)
      9. 8.3.9  SPI Communication
        1. 8.3.9.1 Cyclic Redundancy Check
        2. 8.3.9.2 Chip Select Not (nCS):
        3. 8.3.9.3 SPI Clock Input (SCK):
        4. 8.3.9.4 SPI Data Input (SDI):
        5. 8.3.9.5 SPI Data Output (SDO):
      10. 8.3.10 SW Pin
      11. 8.3.11 GFO Pin
      12. 8.3.12 Wake Functions
        1. 8.3.12.1 CAN Bus Wake Using RXD Request (BWRR) in Sleep Mode
        2. 8.3.12.2 Local Wake Up (LWU) via WAKEx Input Terminal
          1. 8.3.12.2.1 Static Wake
          2. 8.3.12.2.2 Cyclic Sensing Wake
        3. 8.3.12.3 Cyclic Wake
        4. 8.3.12.4 Selective Wake-up
          1. 8.3.12.4.1 Selective Wake Mode (TCAN2451-Q1)
          2. 8.3.12.4.2 Frame Detection
          3. 8.3.12.4.3 Wake-Up Frame (WUF) Validation
          4. 8.3.12.4.4 WUF ID Validation
          5. 8.3.12.4.5 WUF DLC Validation
          6. 8.3.12.4.6 WUF Data Validation
          7. 8.3.12.4.7 Frame Error Counter
          8. 8.3.12.4.8 CAN FD Frame Tolerance
          9. 8.3.12.4.9 8Mbps Filtering
      13. 8.3.13 Protection Features
        1. 8.3.13.1 Fail-safe Features
          1. 8.3.13.1.1 Sleep Mode Through Sleep Wake Error
        2. 8.3.13.2 Device Reset
        3. 8.3.13.3 Floating Terminals
        4. 8.3.13.4 TXD Dominant Time Out (DTO)
        5. 8.3.13.5 CAN Bus Short Circuit Current Limiting
        6. 8.3.13.6 Thermal Shutdown
        7. 8.3.13.7 Under and Over Voltage Lockout and Unpowered Device
          1. 8.3.13.7.1 Under-Voltage
            1. 8.3.13.7.1.1 VSUP and VHSS Under-voltage
            2. 8.3.13.7.1.2 VCC1 Under-Voltage
            3. 8.3.13.7.1.3 VCC2 Under-voltage
            4. 8.3.13.7.1.4 VCAN Under-voltage
          2. 8.3.13.7.2 VCC1 and VCC2 Over-voltage
          3. 8.3.13.7.3 VCC1 and VCC2 Short Circuit
        8. 8.3.13.8 Watchdog
          1. 8.3.13.8.1 Watchdog Error Counter and Action
          2. 8.3.13.8.2 Watchdog SPI Programming
            1. 8.3.13.8.2.1 Watchdog Configuration Lock Mechanism
              1. 8.3.13.8.2.1.1 Watchdog Configuration in SPI Two-byte Mode
          3. 8.3.13.8.3 Watchdog Timing
          4. 8.3.13.8.4 Question and Answer Watchdog
            1. 8.3.13.8.4.1 WD Question and Answer Basic Information
            2. 8.3.13.8.4.2 Question and Answer Register and Settings
            3. 8.3.13.8.4.3 WD Question and Answer Value Generation
              1. 8.3.13.8.4.3.1 Answer Comparison
              2. 8.3.13.8.4.3.2 Sequence of the 2-bit Watchdog Answer Counter
              3. 8.3.13.8.4.3.3 Question and Answer WD Example
                1. 8.3.13.8.4.3.3.1 Example Configuration for Desired Behavior
                2. 8.3.13.8.4.3.3.2 Example of performing a question and answer sequence
        9. 8.3.13.9 Bus Fault Detection and Communication
      14. 8.3.14 Customer EEPROM Programming
    4. 8.4 Device Functional Modes
      1. 8.4.1 Init Mode
      2. 8.4.2 Normal Mode
      3. 8.4.3 Standby Mode
      4. 8.4.4 Restart Mode
      5. 8.4.5 Fail-safe Mode
        1. 8.4.5.1 SBC Faults
        2. 8.4.5.2 CAN Transceiver Faults
      6. 8.4.6 Sleep Mode
  10. Device Register Tables
    1. 9.1 Device Registers
  11. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 CAN BUS Loading, Length and Number of Nodes
      2. 10.1.2 CAN Termination
        1. 10.1.2.1 CAN Bus Biasing
      3. 10.1.3 Device Brownout Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedures
        1. 10.2.2.1 CAN Detailed Design Procedure
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 CAN Transceiver Physical Layer Standards:
      2. 11.1.2 EMC Requirements:
      3. 11.1.3 Conformance Test Requirements:
      4. 11.1.4 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Supply Characteristics

Over recommended operating conditions with VSUP/VSUPB/VHSS = 5.5V to 28V unless otherwise noted. All typical values are specified at TJ = 25°C, VSUP/VSUPB/VHSS = 12V, VCAN = 5V and RL = 60Ω unless otherwise noted
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Battery Current Consumption (VSUP and VSUPB included)
ISUPNORMAL-150C Normal mode: battery supply current

SBC in Normal mode; CAN transceiver off; VCC1= on (FPWM mode) but no load, VCC2 = off, VSUP = 5.5V to 28V 8 11 mA
ISUPSTDBY-85C Standby mode: Battery supply current up to 85℃ 

VCC1 = on but no load; Spread spectrum modulation disabled; VCC2 = off; All HSS= off; VCC1 sink disabled; CAN transceiver off; Wake pins are off; Selective wake = off; cyclic sensing = off, cyclic wake = off; WD=off, Long Window has expired
VSUP,VSUPB = 6.5V to 12V; T: - 40℃ to 85℃
60 70 µA
ISUPSLP-85C Sleep mode: Battery supply current up to 85℃

Sleep mode; selective wake off; VCC1 and VCC2 = off; 6.5V ≤ VSUP ≤  12V; transceiver is off; all HSS are off; 1 WAKE pin active; cyclic sensing/wake off, VCC1 and VCC2 are off;  TJ <= 85℃
18 31 µA
ISUPSLP-150C Sleep mode: Battery supply current up to 150℃

Sleep mode; VCC1 and VCC2 = off; 1 wake pin active; CAN transceiver = off; cyclic sensing wake = off; cyclic wake = off
VSUP, VSUPB = 6.5V to 28V ; 
T: - 40℃ to 150℃; 
18 50 µA
Feature Incremental Current Consumption (VSUP and VSUPB Included)
ISUPSTDBY-CS-WK-85C Additional current when cyclic sensing wake is enabled in Standby or Sleep mode for WAKE1 or  WAKE2, WAKE3 pins (1) Cyclic sensing wake enabled, VSUP=14V, TJ  ≤ 85℃, TIMERx with ON width = 1ms,  period = 100ms 2.5 8 µA
ISUPSTDBY-CS-WK4-85C Additional current when cyclic sensing wake is enabled in Standby or Sleep mode for WAKE4 pin (1) Cyclic sensing wake enabled, VSUP=14V, TJ  ≤ 85℃, TIMERx with ON width = 1ms,  period = 100ms 45 50 µA
ISUPSTDBY-HSS-NOLOAD Standby mode: Additional supply current draw when each HSS is enabled For each HSS set to ON but no load
VSUP = 6.5V to 12V; T: - 40℃ to 85℃
35 60 µA
ISUPSLP-VCC2-85C Sleep mode: Additional supply current when VCC2 is enabled  Sleep mode; additional current when VCC2 is enabled and no load. 
VSUP = 6.5V to 12V; 
T: - 40℃ to 85℃
25 35 µA
ISUPSLP-VCC1-85C Sleep mode: Additional supply current when VCC1 buck regulator is enabled 

VCC1= on but no load; VCC1 sink = off; Spread Spectrum Modulation = off; 
VSUP = 6.5V to 12V; 
T: - 40℃ to 85℃ 

30 39 µA
ISUPSLP-swk Additional current when selective wake is on and WUP has taken place on CAN bus - bus active Additional sleep current draw when selective wake is enabled and bus active; VCC1 and VCC2 = off 480 550 µA
ISUPSLP-CANWK-85C Sleep mode: Additional supply current when CAN transceiver is wake capable Sleep mode: Additional supply current when CAN transceiver is wake capable; 
VSUP = 6.5V to 12V; 
T: - 40℃ to 85℃
7 10 µA
ISUPSLP-wake-85C Sleep mode: Additional supply current draw from WAKE pin Sleep mode: Additional current from each WAKE pin when wake capable; WAKE pin floating or grounded. 0.5 1 µA
ISUPWD-TO-85C Standby or Sleep mode: Additional supply current when WD type is set to Timeout Standby or Sleep mode: Additional supply current when WD type is set to Timeout.
VSUP = 6.5V to 12V; T: - 40℃ to 85℃
2 2.5 µA
ISUPWD-85C Standby mode: Additional supply current when WD is set to Window or Q/A type Standby mode: Additional supply current when WD is set to Window or Q/A.
VSUP = 6.5V to 12V; T: - 40℃ to 85℃
40 50 µA
VSUP Supply Monitoring
VSUP(PU)R Supply on detection VSUP rising; see Figure 10-6 and Figure 10-4 3.1 3.4 3.7 V
VSUP(PU)F Supply off detection VSUP falling; see Figure 10-6 and Figure 10-4 2.7 3 3.3 V
VSUP(PU)HYS Supply off detection hysteresis 50 150 550 mV
UVSUP5R Supply undervoltage recovery VSUP rising; see Figure 10-3 and Figure 10-4 4.9 5.5 V
UVSUP5F Supply undervoltage detection VSUP falling; see Figure 10-3 and Figure 10-4 4.5 5.1 V
UVSUP5HYS Supply undervoltage detection hysteresis 400 mV
UVSUP33R Supply undervoltage recovery VSUP rising; see Figure 10-5 and Figure 10-6 3.7 4.4 V
UVSUP33F Supply undervoltage detection VSUP falling; see Figure 10-5 and Figure 10-6 3.55 4.25 V
UVSUP33HYS Supply undervoltage detection hysteresis 150 mV
VSUPUVLOVCC1(F) Under-voltage lockout falling VSUP threshold value where VCC1 regulator is turned-off Falling VSUP,  VSUP_UVLO_SEL = 0b 3.1 3.3 V
VSUPUVLOVCC1(R) Under-voltage lockout release value Rising VSUP,  VSUP_UVLO_SEL = 0b 3.3 3.5 V
VSUPUVLOVCC1(F) Under-voltage lockout release value Falling VSUP,  VSUP_UVLO_SEL = 1b 4.9 5.1 V
VSUPUVLOVCC1(R) Under-voltage lockout falling VSUP threshold value where VCC1 regulator is turned-off Rising VSUP,  VSUP_UVLO_SEL = 1b 5.1 5.3 V
VSUPB - Buck regulator input supply

ISUPBVCC1-OFF-85c
 
VSUPB supply current when buck is disabled Sleep mode; VCC1 disabled; VSUPB= 12V; TJ <= 85℃ 1 3 µA
ISUPBVCC1-ON-85c VSUPB supply current when buck is enabled but no load current; VCC1 = 5V VCC1 enabled and no load, VCC1 sink disabled; Buck in Auto mode; VSUPB=12V;  TJ <= 85℃ 3 8 µA
ISUPBVCC1-ON-85c VSUPB supply current when buck is enabled but no load current; VCC1 = 3.3V VCC1 enabled and no load, VCC1 sink disabled; Buck in Auto mode; VSUPB=12V;  TJ <= 85℃ 2.5 5 µA
VHSS - High Side Switch Supply Input
IVHSSSLP High-side switch supply (VHSS) current consumption in Sleep mode Sleep Mode; cyclic sensing wake = off; -40℃  ≤ TJ ≤ 85℃ 1 2 µA
IHSSNOLOAD Additional current draw for each HSS turned ON For each HSS turned ON,  No load on HSS output 100 140 µA
UVHSSR High-side switches supply undervoltage recovery VHSS rising 4.6 4.9 V
UVHSSF High-side switches supply undervoltage detection VHSS falling 4.4 4.7 V
UVHSSHYS High-side switches supply undervoltage detection hysteresis 100 mV
OVHSSF VHSS over-voltage falling threshold; VHSS must be below this threshold to enable the high-side switches again VHSS falling 18.8 21.2 V
OVHSSR VHSS over-voltage rising threshold; high-side switches turn-off if HSS_OV_DIS = 0b VHSS rising 20 22 V
OVHSSHYS VHSS over-voltage threshold hysteresis 800 1200 mV
VCC1 - Buck Regulator Output
VCC15 Regulated output range, 5V version VSUPB = 6V to 28 V, ICC1 = 0 to 1A, PWM Mode 4.9 5 5.1 V
VCC15 Regulated output range, 5V version VSUPB = 6V to 28 V, ICC1 = 0 to 1A, PFM Mode 4.85 5 5.15 V
VCC133 Regulated output range, 3.3V version VSUPB = 4.5V to 28 V, ICC1 = 0 to 1A, PWM Mode 3.23 3.3 3.37 V
VCC133 Regulated output range, 3.3V version VSUPB = 4.5V to 28 V, ICC1 = 0 to 1A, PFM Mode 3.20 3.3 3.40 V
VCC1EFF Buck converter efficiency ICC1 = 500mA; VCC1 current sink disabled. VCC1= 3.3V, VSUPB = 12V; PWM Mode 0.85
VCC1EFF Buck converter efficiency ICC1 = 100mA; VCC1 current sink disabled. VCC1= 3.3V, VSUPB = 12V; PFM Mode 0.80
ICC1 = 10mA; VCC1 current sink disabled. VCC1= 3.3V, VSUPB = 12V; PFM Mode 0.8
ICC1 = 1mA; VCC1 current sink disabled. VCC1= 3.3V, VSUPB = 12V; PFM Mode 0.7
ICC1 = 0.1mA; VCC1 current sink disabled. VCC1= 3.3V, VSUPB = 12V; PFM Mode 0.4
RDS-ON-LS Low-side MOSFET on-resistance ICC1= 0.3A, VSUPB = 12V 0.24
RDS-ON-HS High-side MOSFET on-resistance ICC1= 0.3A, VSUPB = 12V 0.45
ICC1 VCC1 output current VCC1 in regulation; VSUPB= 12V 0 1 A
ICC1SINK VCC1 current sink capability (if enabled), when VCC1 is ON VSUPB = 12V and register 8'h0C[4] = 0b and 8'h0D[3] = 0b –10 µA
VSUPB = 12V and register 8'h0C[4] = 0b and 8'h0D[3] = 1b –1000 µA
RQOD-VCC1 Output discharge resistor on VCC1 when VCC1 is disabled VCC1 is disabled and VCC1=100mV externally (for 3.3V VCC1 option) 0.9 kΩ
RQOD-VCC1 Output discharge resistor on VCC1 when VCC1 is disabled VCC1 is disabled and VCC1=100mV externally (for 5V VCC1 option) 0.9 kΩ
ICC1SC Buck high-side current limit Register 8'h65[0]=0 1.2 1.6 1.95 A
ICC1SC Buck high-side current limit Register 8'h65[0]=1 0.6 0.8 1 A
ICC1LS Buck low-side current limit  Register 8'h65[0]=0 0.9 1.1 1.3 A
ICC1LS Buck low-side current limit  Register 8'h65[0]=1 0.45 0.55 0.65 A
UVCC15FPR VCC1 undervoltage recovery threshold pre-warning VCC1 rising 4.65 4.78 4.9 V
VCC1 undervoltage detection threshold pre-warning VCC1 falling 4.55 4.67 4.80 V
UVCC15R1 VCC1 undervoltage recovery threshold 1 VCC1 rising, Register 8'h0E[4:3] = 00b 4.60 4.72 4.85 V
UVCC15F1 VCC1 undervoltage detection threshold 1 VCC1 falling, Register 8'h0E[4:3] = 00b 4.50 4.62 4.75 V
UVCC15R2 VCC1 undervoltage recovery threshold 2 VCC1 rising, Register 8'h0E[4:3] = 01b 3.85 4.00 4.15 V
UVCC15F2 VCC1 undervoltage detection threshold 2 VCC1 falling, Register 8'h0E[4:3] = 01b 3.75 3.90 4.05 V
UVCC15R3 VCC1 undervoltage recovery threshold 3 VCC1 rising, Register 8'h0E[4:3] = 10b 3.25 3.40 3.55 V
UVCC15F3 VCC1 undervoltage detection threshold 3 VCC1 falling, Register 8'h0E[4:3] = 10b 3.15 3.30 3.45 V
UVCC15R4 VCC1 undervoltage recovery threshold 4 VCC1 rising, Register 8'h0E[4:3] = 11b 4.60 4.72 4.85 V
UVCC15F4 VCC1 undervoltage detection threshold 4 VCC1 falling, Register 8'h0E[4:3] = 11b 3.45 3.6 3.75 V
UVCC15HYS Undervoltage detection 5V hysteresis, VCC1 set to 5V Register 8'h0E[4:3] = 00b, 01b or 10b 50.00 150.00 mV
UVCC15HYS4 Undervoltage detection 5V hysteresis, VCC1 set to 5V Register 8'h0E[4:3] = 11b 1200 mV
UVCC133RPR VCC1 undervoltage recovery threshold pre-warning VCC1 rising 3.1 3.2 3.28 V
UVCC133FPR VCC1 undervoltage detection threshold pre-warning VCC1 falling 3 3.1 3.2 V
UVCC133R1 VCC1 undervoltage recovery threshold 1 VCC1 rising, Register 8'h0E[4:3] = 00b 3 3.1 3.2 V
UVCC133F1 VCC1 undervoltage detection threshold 1 VCC1 falling, Register 8'h0E[4:3] = 00b 2.95 3.05 3.15 V
UVCC133R2 VCC1 undervoltage recovery threshold 2 VCC1 rising, Register 8'h0E[4:3] = 01b 2.55 2.65 2.75 V
UVCC133F2 VCC1 undervoltage detection threshold 2 VCC1 falling, Register 8'h0E[4:3] = 01b 2.5 2.6 2.7 V
UVCC133R3 VCC1 undervoltage recovery threshold 3 VCC1 rising, Register 8'h0E[4:3] = 10b 2.25 2.35 2.45 V
UVCC133F3 VCC1 undervoltage detection threshold 3 VCC1 falling, Register 8'h0E[4:3] = 10b 2.2 2.3 2.4 V
UVCC133R4 VCC1 undervoltage recovery threshold 4 VCC1 rising, Register 8'h0E[4:3] = 11b 3 3.1 3.2 V
UVCC133F4 VCC1 undervoltage detection threshold 4 VCC1 falling, Register 8'h0E[4:3] = 11b 2.2 2.3 2.4 V
UVCC133HYS Undervoltage detection  hysteresis, VCC1 set to 3.3V Register 8'h0E[4:3] = 00b, 01b or 10b 30 140 mV
UVCC133HYS4 Undervoltage detection  hysteresis, VCC1 set to 3.3V Register 8'h0E[4:3] = 11b 800 mV
VDROP-OUT-33  Drop-out voltage. VCC1 set to 3.3V VSUPB = 3.5V, ICC1 = 0.5A, FSW= 2.2MHz,  LOUT-ESR = 50mΩ 0.35 V
VDROP-OUT-33  Drop-out voltage. VCC1 set to 3.3V VSUPB = 3.5V, ICC1 = 1A, FSW= 2.2MHz,  LOUT-ESR = 50mΩ 0.7 V
VDROP-OUT-5  Drop-out voltage. VCC1 set to 5V VSUPB = 5V, ICC1 = 0.5A, FSW= 2.2MHz,  LOUT-ESR = 50mΩ 0.35 V
VDROP-OUT-5  Drop-out voltage. VCC1 set to 5V VSUPB = 5V, ICC1 = 1A, FSW= 2.2MHz,  LOUT-ESR = 50mΩ 0.7 V
OVCC15R1 Over voltage 5V VCC1 threshold to enter sleep mode or fail-safe mode Ramp up, Register 8'h0C[7] = 0b   5.3 5.45 5.6 V
OVCC15F1 Over voltage 5V VCC1 threshold Ramp down, Register 8'h0C[7] = 0b   5.2 5.35 5.5 V
OVCC15R2 Over voltage 5V VCC1 threshold to enter sleep mode or fail-safe mode Ramp up, Register 8'h0C[7] = 1b   5.47 5.6 5.73 V
OVCC15F2 Over voltage 5V VCC1 threshold Ramp down, Register 8'h0C[7] = 1b   5.37 5.5 5.63 V
OVCC15HYS Over voltage 5V VCC1 threshold hysteresis 100 mV
OVCC133R1 Over voltage 3.3V VCC threshold to enter sleep mode or fail-safe mode Ramp Up, Register 8'h0C[7] = 0b 3.5 3.6 3.7 V
OVCC133F1 Over voltage 3.3V VCC threshold Ramp Down, Register 8'h0C[7] = 0b 3.4 3.5 3.6 V
OVCC133R2 Over voltage 3.3V VCC threshold to enter sleep mode or fail-safe mode Ramp Up, Register 8'h0C[7] = 1b 3.6 3.7 3.8 V
OVCC133F2 Over voltage 3.3V VCC threshold Ramp Down, Register 8'h0C[7] = 1b 3.55 3.65 3.75 V
OVCC133HYS1 Over voltage 3.3V VCC threshold hysteresis Register 8'h0C[7] = 0b 100 mV
OVCC133HYS2 Over voltage 3.3V VCC threshold hysteresis Register 8'h0C[7] = 1b 50 mV
VCC15SC VCC1 short circuit threshold to enter sleep mode or fail-safe mode for 5V version 1.7 2 2.3 V
VCC133SC VCC1 short circuit threshold to enter sleep mode or fail-safe mode for 3.3V version 1.12 1.22 1.26 V
VCC2 - LDO Regulator Output
VCC2nom Regulated output voltage including load regulation VSUP = 14V, ICC2 = 5 to 200mA 4.9 5 5.1 V
VCC2reg Regulated output voltage including load and line regulation VSUP = 8V to 18V, ICC2 = 10µA to 200mA 4.85 5 5.15 V
VCC2red Regulated output voltage for reduced load range VSUP = 8V - 18V; ICC2 = 10µA - 5mA; TJ= -40℃ - 125℃ 4.95 5 5.05 V
ICC2LIM VCC2 output current limit VCC2 = 2.5V 250 650 mA
UVCC2R Undervoltage recovery VCC2 VCC2 rising 4.6 4.9 V
UVCC2F Undervoltage detection VCC2 VCC2 falling 4.5 4.75 V
UVCC2HYS Undervoltage detection VCC2 hysteresis 70 125 175 mV
OVCC2R Over voltage CAN LDO threshold Ramp Up 5.37 5.5 5.63 V
OVCC2F Over voltage CAN LDO threshold Ramp Down  5.25 5.38 5.5 V
OVCC2HYS Over voltage CAN LDO threshold hysteresis 125 mV
VCC2SC VCC2 LDO short circuit threshold VSUP ≥ UVSUP 1.7 2.3 V
V5DROP2 Dropout voltage (5V LDO output VCC2) VSUP = 5V, ICC2 = 100mA 750 mV
VCAN - CAN Supply Input
ICAN-NORMAL-REC Normal mode: CAN FD bus recessive Normal mode: Recessive, VTXD = VCC1 , VCC1 and VCC2 = no load 3 5 mA
ICAN-NORMAL-DOM Normal mode: CAN FD bus dominant Normal mode: Dominant, VTXD = 0V, RL = 60Ω and CL = open, typical bus load, VCC1 and VCC2 = no load 60 mA
Normal mode: Dominant, VTXD = 0V, RL = 50Ω and CL = open, high bus load, VCC1 and VCC2 = no load 65 mA
Normal mode: Dominant with bus fault, VTXD = 0V, CANH = - 25V, RL and CL = open, VCC1 and VCC2 = no load 100 mA
UVCANR Supply undervoltage recovery VCAN rising 4.6 4.85 V
UVCANF Supply undervoltage detection VCAN falling 4.5 4.75 V
UVCANHYS VCAN Supply undervoltage detections hysteresis 100 mV
Cyclic sensing for WAKE1, WAKE2 and WAKE3 pin uses a low power 10kHz internal clock to reduce the current consumption. Cyclic sensing for WAKE4 pin uses the 1MHz internal clock that consumes more current than the 10kHz clock. It is recommended to use WAKE1-3 pins for cyclic sensing for lower current consumption.