SLLSFO8C May   2024  – November 2025 TCAN2450-Q1 , TCAN2451-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  IEC ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Supply Characteristics
    7. 6.7  Electrical Characteristics
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  CAN FD Transceiver
        1. 8.3.1.1 Driver and Receiver Function
      2. 8.3.2  VCC1 Regulator
        1. 8.3.2.1 Functional Description of Buck Regulator
          1. 8.3.2.1.1 Fixed Frequency Peak Current Mode Control
          2. 8.3.2.1.2 Minimum ON-Time, Minimum OFF-Time, and Frequency Foldback
          3. 8.3.2.1.3 Overcurrent and Short Circuit Protection
          4. 8.3.2.1.4 Soft Start
        2. 8.3.2.2 Buck Regulator Functional Modes
          1. 8.3.2.2.1 Buck Shutdown Mode
          2. 8.3.2.2.2 Buck Active Modes
      3. 8.3.3  VCC2 Regulator
        1. 8.3.3.1 VCC2 Short to Battery Protection
      4. 8.3.4  Reset Function (nRST Pin)
      5. 8.3.5  LIMP Function
      6. 8.3.6  High Side Switches
      7. 8.3.7  WAKE and ID Inputs
        1. 8.3.7.1 ID Functionality
      8. 8.3.8  Interrupt Function (nINT Pin)
      9. 8.3.9  SPI Communication
        1. 8.3.9.1 Cyclic Redundancy Check
        2. 8.3.9.2 Chip Select Not (nCS):
        3. 8.3.9.3 SPI Clock Input (SCK):
        4. 8.3.9.4 SPI Data Input (SDI):
        5. 8.3.9.5 SPI Data Output (SDO):
      10. 8.3.10 SW Pin
      11. 8.3.11 GFO Pin
      12. 8.3.12 Wake Functions
        1. 8.3.12.1 CAN Bus Wake Using RXD Request (BWRR) in Sleep Mode
        2. 8.3.12.2 Local Wake Up (LWU) via WAKEx Input Terminal
          1. 8.3.12.2.1 Static Wake
          2. 8.3.12.2.2 Cyclic Sensing Wake
        3. 8.3.12.3 Cyclic Wake
        4. 8.3.12.4 Selective Wake-up
          1. 8.3.12.4.1 Selective Wake Mode (TCAN2451-Q1)
          2. 8.3.12.4.2 Frame Detection
          3. 8.3.12.4.3 Wake-Up Frame (WUF) Validation
          4. 8.3.12.4.4 WUF ID Validation
          5. 8.3.12.4.5 WUF DLC Validation
          6. 8.3.12.4.6 WUF Data Validation
          7. 8.3.12.4.7 Frame Error Counter
          8. 8.3.12.4.8 CAN FD Frame Tolerance
          9. 8.3.12.4.9 8Mbps Filtering
      13. 8.3.13 Protection Features
        1. 8.3.13.1 Fail-safe Features
          1. 8.3.13.1.1 Sleep Mode Through Sleep Wake Error
        2. 8.3.13.2 Device Reset
        3. 8.3.13.3 Floating Terminals
        4. 8.3.13.4 TXD Dominant Time Out (DTO)
        5. 8.3.13.5 CAN Bus Short Circuit Current Limiting
        6. 8.3.13.6 Thermal Shutdown
        7. 8.3.13.7 Under and Over Voltage Lockout and Unpowered Device
          1. 8.3.13.7.1 Under-Voltage
            1. 8.3.13.7.1.1 VSUP and VHSS Under-voltage
            2. 8.3.13.7.1.2 VCC1 Under-Voltage
            3. 8.3.13.7.1.3 VCC2 Under-voltage
            4. 8.3.13.7.1.4 VCAN Under-voltage
          2. 8.3.13.7.2 VCC1 and VCC2 Over-voltage
          3. 8.3.13.7.3 VCC1 and VCC2 Short Circuit
        8. 8.3.13.8 Watchdog
          1. 8.3.13.8.1 Watchdog Error Counter and Action
          2. 8.3.13.8.2 Watchdog SPI Programming
            1. 8.3.13.8.2.1 Watchdog Configuration Lock Mechanism
              1. 8.3.13.8.2.1.1 Watchdog Configuration in SPI Two-byte Mode
          3. 8.3.13.8.3 Watchdog Timing
          4. 8.3.13.8.4 Question and Answer Watchdog
            1. 8.3.13.8.4.1 WD Question and Answer Basic Information
            2. 8.3.13.8.4.2 Question and Answer Register and Settings
            3. 8.3.13.8.4.3 WD Question and Answer Value Generation
              1. 8.3.13.8.4.3.1 Answer Comparison
              2. 8.3.13.8.4.3.2 Sequence of the 2-bit Watchdog Answer Counter
              3. 8.3.13.8.4.3.3 Question and Answer WD Example
                1. 8.3.13.8.4.3.3.1 Example Configuration for Desired Behavior
                2. 8.3.13.8.4.3.3.2 Example of performing a question and answer sequence
        9. 8.3.13.9 Bus Fault Detection and Communication
      14. 8.3.14 Customer EEPROM Programming
    4. 8.4 Device Functional Modes
      1. 8.4.1 Init Mode
      2. 8.4.2 Normal Mode
      3. 8.4.3 Standby Mode
      4. 8.4.4 Restart Mode
      5. 8.4.5 Fail-safe Mode
        1. 8.4.5.1 SBC Faults
        2. 8.4.5.2 CAN Transceiver Faults
      6. 8.4.6 Sleep Mode
  10. Device Register Tables
    1. 9.1 Device Registers
  11. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 CAN BUS Loading, Length and Number of Nodes
      2. 10.1.2 CAN Termination
        1. 10.1.2.1 CAN Bus Biasing
      3. 10.1.3 Device Brownout Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedures
        1. 10.2.2.1 CAN Detailed Design Procedure
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 CAN Transceiver Physical Layer Standards:
      2. 11.1.2 EMC Requirements:
      3. 11.1.3 Conformance Test Requirements:
      4. 11.1.4 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Switching Characteristics

Over recommended operating conditions with VSUP/VSUPB = 5.5V to 28V unless otherwise noted. All typical values are specified at TJ = 25°C, VSUP/VSUPB = 12V, VCAN = 5V and RL = 60Ω unless otherwise noted
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Transmitter and Receiver Characteristics
tprop(TxD-busrec) Propagation delay time, low-to-high CTXD edge to driver recessive (dominant to recessive) 45Ω ≤ RL ≤ 65Ω, CL = 100pF, RCM = open; See Figure 7-4 50 80 ns
tprop(TxD-busdom) Propagation delay time, high-to-low CTXD edge to driver dominant (recessive to dominant) 50 80 ns
tsk(p) Pulse skew (|tprop(TxD-busrec) – tprop(TxD-busdom)|) 10 25 ns
tR Differential output signal rise time: 30 50 ns
tF Differential output signal fall time: 35 55 ns
tprop(busrec-RXD) Propagation delay time, bus recessive input to CRXD high output (dominant to recessive) 45Ω ≤ RL ≤ 65Ω, CL = 100pF, RCM = open, CRXD = 15pF
see Figure 7-5
75 110 ns
tprop(busdom-RXD) Propagation delay time, bus dominant input to CRXD low output (recessive to dominant) 75 110 ns
tLOOP Loop Delay(1) 45Ω ≤ RL ≤ 65Ω, CL = 100pF, CRXD = 15pF,  VCC1 ± 2%, see Section 7 170 ns
CAN FD timing characteristics according to ISO 11898-2:2024 including Signal Improvement Characteristics (SIC); tbit(TXD) ≥ 125ns. Typical conditions: RL = 45Ω to 65Ω, CL = 100pF, CCRXD = 15pF; See Section 7
tΔBit(Bus) Transmitted bit width variation Bus recessive bit length variation relative to TXD bit length, ΔtBit(Bus) = tBit(Bus) - tBit(TXD) –10 10 ns
tΔBit(RXD) Received bit width variation RXD recessive bit length variation relative to TXD bit length, ΔtBit(RXD) = tBit(RXD) - tBit(TXD) –30 20 ns
tΔREC Receiver timing symmetry RXD recessive bit length variation relative to bus bit length, ΔtREC = tBit(RXD) - tBit(Bus) –20 15 ns
tREC_START Delay time from TXD rising edge to the start of passive recessive phase See Figure 7-17

 
530 ns
tSIC_START Delay time from TXD rising edge to the start of active recessive phase 120 ns
tSIC_END Delay time from TXD rising edge to the end of active recessive phase 355 ns
SPI Switching Characteristics
fSCK SPI clock frequency (2) Normal and standby modes, Sleep mode - if VCC1 is present, if register BYTE_CNT, 09h[3]=0b (single byte mode) 4 MHz
fSCK SPI clock frequency (2) Normal and standby modes, Sleep mode - if VCC1 is present, if register BYTE_CNT, 09h[3]=1b (two-byte mode) 2 MHz
tSCK SPI clock period (2) Normal and standby modes and  Sleep mode - if VCC1 is present; if register BYTE_CNT, 09h[3]=0b (single byte mode)

See Figure 7-12
250 ns
tSCK SPI clock period (2) Normal and standby modes and  Sleep mode - if VCC1 is present; if register BYTE_CNT, 09h[3]=1b (two-byte mode)

See Figure 7-12
500 ns
tSCKR SPI clock rise time  (2) Normal and standby modes and  Sleep mode - if VCC1 is present; See Figure 7-11 40 ns
tSCKF SPI clock fall time (2) Normal and standby modes and  Sleep mode - if VCC1 is present; See Figure 7-12 40 ns
tSCKH SPI clock high (2) Normal and standby modes and  Sleep mode - if VCC1 is present;
if register BYTE_CNT, 09h[3]=0b (single byte mode)

See Figure 7-12
125 ns
tSCKH SPI clock high (2) Normal and standby modes and  Sleep mode - if VCC1 is present;
if register BYTE_CNT, 09h[3]=1b (two-byte mode)

See Figure 7-12
250 ns
tSCKL SPI clock low (2) Normal and standby modes and  Sleep mode - if VCC1 is present;

if register BYTE_CNT, 09h[3]=0b (single byte mode)

See Figure 7-12
125 ns
tSCKL SPI clock low (2) Normal and standby modes and  Sleep mode - if VCC1 is present;

if register BYTE_CNT, 09h[3]=1b (two-byte mode)

See Figure 7-12
250 ns
tnCSS nCS chip select setup time (2) Normal and standby modes and  Sleep mode - if VCC1 is present; See Figure 7-12 100 ns
tnCSH nCS chip select hold time (2) Normal and standby modes and  Sleep mode - if VCC1 is present; See Figure 7-12 100 ns
tnCSD nCS chip select disable time (2) Normal and standby modes and  Sleep mode - if VCC1 is present; See Figure 7-11 50 ns
tSISU Data in setup time (2) Normal and standby modes and  Sleep mode - if VCC1 is present; See Figure 7-11 50 ns
tSIH Data in hold time (2) Normal and standby modes and  Sleep mode - if VCC1 is present; See Figure 7-11 50 ns
tSOV Data out valid (2) Normal and standby modes and  Sleep mode - if VCC1 is present; See Figure 7-12 80 ns
tRSO SDO rise time (2), CLOAD <= 20pF   Normal and standby modes and  Sleep mode - if VCC1 is present; See Figure 7-12 40 ns
tFSO SDO fall time (2),CLOAD <= 20pF   Normal and standby modes and  Sleep mode - if VCC1 is present; See Figure 7-12 40 ns
Time span from signal edge on TXD input to next signal edge with same polarity on RXD output, the maximum of delay of both signal edges is to be considered.
Specified by design