SLLSFO8C May   2024  – November 2025 TCAN2450-Q1 , TCAN2451-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  IEC ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Supply Characteristics
    7. 6.7  Electrical Characteristics
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  CAN FD Transceiver
        1. 8.3.1.1 Driver and Receiver Function
      2. 8.3.2  VCC1 Regulator
        1. 8.3.2.1 Functional Description of Buck Regulator
          1. 8.3.2.1.1 Fixed Frequency Peak Current Mode Control
          2. 8.3.2.1.2 Minimum ON-Time, Minimum OFF-Time, and Frequency Foldback
          3. 8.3.2.1.3 Overcurrent and Short Circuit Protection
          4. 8.3.2.1.4 Soft Start
        2. 8.3.2.2 Buck Regulator Functional Modes
          1. 8.3.2.2.1 Buck Shutdown Mode
          2. 8.3.2.2.2 Buck Active Modes
      3. 8.3.3  VCC2 Regulator
        1. 8.3.3.1 VCC2 Short to Battery Protection
      4. 8.3.4  Reset Function (nRST Pin)
      5. 8.3.5  LIMP Function
      6. 8.3.6  High Side Switches
      7. 8.3.7  WAKE and ID Inputs
        1. 8.3.7.1 ID Functionality
      8. 8.3.8  Interrupt Function (nINT Pin)
      9. 8.3.9  SPI Communication
        1. 8.3.9.1 Cyclic Redundancy Check
        2. 8.3.9.2 Chip Select Not (nCS):
        3. 8.3.9.3 SPI Clock Input (SCK):
        4. 8.3.9.4 SPI Data Input (SDI):
        5. 8.3.9.5 SPI Data Output (SDO):
      10. 8.3.10 SW Pin
      11. 8.3.11 GFO Pin
      12. 8.3.12 Wake Functions
        1. 8.3.12.1 CAN Bus Wake Using RXD Request (BWRR) in Sleep Mode
        2. 8.3.12.2 Local Wake Up (LWU) via WAKEx Input Terminal
          1. 8.3.12.2.1 Static Wake
          2. 8.3.12.2.2 Cyclic Sensing Wake
        3. 8.3.12.3 Cyclic Wake
        4. 8.3.12.4 Selective Wake-up
          1. 8.3.12.4.1 Selective Wake Mode (TCAN2451-Q1)
          2. 8.3.12.4.2 Frame Detection
          3. 8.3.12.4.3 Wake-Up Frame (WUF) Validation
          4. 8.3.12.4.4 WUF ID Validation
          5. 8.3.12.4.5 WUF DLC Validation
          6. 8.3.12.4.6 WUF Data Validation
          7. 8.3.12.4.7 Frame Error Counter
          8. 8.3.12.4.8 CAN FD Frame Tolerance
          9. 8.3.12.4.9 8Mbps Filtering
      13. 8.3.13 Protection Features
        1. 8.3.13.1 Fail-safe Features
          1. 8.3.13.1.1 Sleep Mode Through Sleep Wake Error
        2. 8.3.13.2 Device Reset
        3. 8.3.13.3 Floating Terminals
        4. 8.3.13.4 TXD Dominant Time Out (DTO)
        5. 8.3.13.5 CAN Bus Short Circuit Current Limiting
        6. 8.3.13.6 Thermal Shutdown
        7. 8.3.13.7 Under and Over Voltage Lockout and Unpowered Device
          1. 8.3.13.7.1 Under-Voltage
            1. 8.3.13.7.1.1 VSUP and VHSS Under-voltage
            2. 8.3.13.7.1.2 VCC1 Under-Voltage
            3. 8.3.13.7.1.3 VCC2 Under-voltage
            4. 8.3.13.7.1.4 VCAN Under-voltage
          2. 8.3.13.7.2 VCC1 and VCC2 Over-voltage
          3. 8.3.13.7.3 VCC1 and VCC2 Short Circuit
        8. 8.3.13.8 Watchdog
          1. 8.3.13.8.1 Watchdog Error Counter and Action
          2. 8.3.13.8.2 Watchdog SPI Programming
            1. 8.3.13.8.2.1 Watchdog Configuration Lock Mechanism
              1. 8.3.13.8.2.1.1 Watchdog Configuration in SPI Two-byte Mode
          3. 8.3.13.8.3 Watchdog Timing
          4. 8.3.13.8.4 Question and Answer Watchdog
            1. 8.3.13.8.4.1 WD Question and Answer Basic Information
            2. 8.3.13.8.4.2 Question and Answer Register and Settings
            3. 8.3.13.8.4.3 WD Question and Answer Value Generation
              1. 8.3.13.8.4.3.1 Answer Comparison
              2. 8.3.13.8.4.3.2 Sequence of the 2-bit Watchdog Answer Counter
              3. 8.3.13.8.4.3.3 Question and Answer WD Example
                1. 8.3.13.8.4.3.3.1 Example Configuration for Desired Behavior
                2. 8.3.13.8.4.3.3.2 Example of performing a question and answer sequence
        9. 8.3.13.9 Bus Fault Detection and Communication
      14. 8.3.14 Customer EEPROM Programming
    4. 8.4 Device Functional Modes
      1. 8.4.1 Init Mode
      2. 8.4.2 Normal Mode
      3. 8.4.3 Standby Mode
      4. 8.4.4 Restart Mode
      5. 8.4.5 Fail-safe Mode
        1. 8.4.5.1 SBC Faults
        2. 8.4.5.2 CAN Transceiver Faults
      6. 8.4.6 Sleep Mode
  10. Device Register Tables
    1. 9.1 Device Registers
  11. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 CAN BUS Loading, Length and Number of Nodes
      2. 10.1.2 CAN Termination
        1. 10.1.2.1 CAN Bus Biasing
      3. 10.1.3 Device Brownout Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedures
        1. 10.2.2.1 CAN Detailed Design Procedure
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 CAN Transceiver Physical Layer Standards:
      2. 11.1.2 EMC Requirements:
      3. 11.1.3 Conformance Test Requirements:
      4. 11.1.4 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Timing Requirements

PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
Supply
tPWRUP Time after VSUP exceeds UVSUP3R and VCC1> UVCC1. (4)  5 ms
tUVFLTR Under-voltage detection delay time for VCC1 and VCC2 (4) 25 50 µs
tUVCC1PR Under-voltage filter time for VCC1 pre-warning (4) 2 14 µs
tUVCANFLTR Under-voltage filter time for VCAN (4) 4 10 15 µs
tOVFLTR-VCC1 Over-voltage detect filter time on VCC1 (4) 50 60 75 µs
tOVFLTR-VCC2 Over-voltage detect filter time on VCC2 (4) 20 40 µs
tOVFLTRVHSS Over-voltage detect filter time on VHSS (4) 4 35 µs
tVSC-VCC1 Short to ground on VCC1  detection delay time (4) 75 100 125 µs
tVSC-VCC2 Short to ground on VCC2 detection delay time (4) 75 100 125 µs
tss-VCC2 VCC2 soft-start time (4) VCC2 from 0V to 4.5V 0.75 1.25 ms
tREGON
The short circuit filter time for VCC1 at its startup; VCC1 should clear short-circuit threshold before this timer expires.  (4)
 
See Figure 7-14 3 3.4 3.8 ms
tVCC2ON
The short circuit filter time for VCC2 at its startup; VCC2 should clear short-circuit threshold before this timer expires.  (4)
 
See Figure 7-14 3 3.4 3.8 ms
tREGOFF Time VCC1 is off in fail-safe mode before accepting wake events and checking for fault conditions (4) Time VCC1 is off in fail-safe mode before accepting wake events and checking for fault conditions 250 300 350 ms
Buck Regulator
tON-MIN Minimum switch on-time (4) ICC1 = 1A 70 ns
tOFF-MIN Minimum switch off-time (4) ICC1 = 1A 125 ns
tON-max Maximum switch on-time (4) 7.5 µs
DMAX Maximum switch duty cycle (4) 98 %
tss-VCC1 VCC1 soft-start time VCC1 from 0V to 90% of VCC1  1.8 2.1 ms
fSW Switching Frequency, register setting 1 (4) BUCK_FSW Register field 65h[5:4] = 00b 1.62 1.8 2.1 MHz
fSW Switching Frequency, register setting 2 (4) BUCK_FSW Register field 65h[5:4] = 01b 1.8 2.0 2.3 MHz
fSW Switching Frequency, register setting 3, default setting (4) BUCK_FSW Register field 65h[5:4] = 10b 1.98 2.2 2.42 MHz
fSW Switching Frequency, register setting 4 (4) BUCK_FSW Register field 65h[5:4] = 11b 2.1 2.4 2.7 MHz
fSS-MOD Spread Spectrum Modulation Frequency, Setting 1 (4) SS_MOD_FREQ Register field 65h[7:6]=00b 0 %
fSS-MOD Spread Spectrum Modulation Frequency, Setting 2 (4) SS_MOD_FREQ Register field 65h[7:6]=01b (6) 4 %
fSS-MOD Spread Spectrum Modulation Frequency, Setting 3 (4) SS_MOD_FREQ Register field 65h[7:6]=10b (6) 8 %
Mode Change
tMODE_STBY_NOM_CTRX CAN transceiver state change time based upon SPI write from off or wake capable to on or listen state where CRXD mirror CAN bus (4) CAN transceiver state change time based upon SPI write from off or wake capable to on or listen state where CRXD mirrors CAN bus 20 µs
tMODE_NOM_SLP Time from SPI sleep command where CAN transceiver is off and CRXD doesn't reflect the bus (4) See Figure 7-15 5 µs
tMODE_NOM_STBY  
SPI write to go to standby from normal mode (4)
 
See Figure 7-16 5 µs
Device Timing
tRSTN_act
Time required for VCC1 ≥ UVCC1 to leave Restart mode (4)
reg 29h[5] = 0b (default);
See Figure 7-13Figure 7-14, Figure 8-16 and Figure 10-3 as examples
1.5 2 2.5 ms
tRSTN_act
Time required for VCC1 ≥ UVCC1 to leave Restart mode (4)
 
reg 29h[5] = 1b;
See Figure 7-13Figure 7-14, Figure 8-16 and Figure 10-3 as examples
10 15 20 ms
tNRSTIN
Input pulse required on the nRST pin to recognize a device reset (4)
 
See Figure 8-59. 75 100 125 µs
tRSTTO Restart timer timeout. Time required after UVCC1 event before the device enters fail-safe mode (if enabled) or Sleep mode (if fail-safe mode disabled) (4) 120 150 180 ms
tNRST_TOG  
nRST output pulse width  (4)
 
reg 29h[5] = 0, see Figure 8-59 1.5 2 2.5 ms
reg 29h[5] = 1, see Figure 8-59 10 15 20 ms
tWK_TIMEOUT  
Bus wake-up timeout value(4)
 
See Figure 8-16 0.8 2 ms
tWK_FILTER
Bus time to meet filtered bus requirements for wake up request

See Figure 8-16 0.5 0.95 µs
tWK_WIDTH_MIN (2) (3) (5)
Minimum WAKE Pin pulse width (4)
 
 WAKE_WIDTH_INVALID = 00b; See Figure 8-20 and Figure 8-21 10 ms
Minimum WAKE Pin pulse width WAKE_WIDTH_INVALID = 01b; See Figure 8-20 and Figure 8-21 20 ms
Minimum WAKE Pin pulse width  WAKE_WIDTH_INVALID = 10b; See Figure 8-20 and Figure 8-21 40 ms
Minimum WAKE Pin pulse width WAKE_WIDTH_INVALID = 11b; See Figure 8-20 and Figure 8-21 80 ms
tWK_WIDTH_INVALID (2) (3) (5)
Maximum WAKE Pin pulse width that is considered invalid (4)
 
WAKE_WIDTH_INVALID = 00b; See Figure 8-20 and Figure 8-21 5 ms
Maximum WAKE Pin pulse width that is considered invalid WAKE_WIDTH_INVALID = 01b; See Figure 8-20 and Figure 8-21 10 ms
Maximum WAKE Pin pulse width that is considered invalid WAKE_WIDTH_INVALID = 10b; See Figure 8-20 and Figure 8-21 20 ms
Maximum WAKE Pin pulse width that is considered invalid WAKE_WIDTH_INVALID = 11b; See Figure 8-20 and Figure 8-21 40 ms
tWK_WIDTH_MAX (2)
Maximum WAKE Pin pulse window (4)
 
 WAKE_WIDTH_MAX = 00b; See Figure 8-20 750 950 ms
Maximum WAKE Pin pulse window  WAKE_WIDTH_MAX = 01b; See Figure 8-20 1000 1250 ms
Maximum WAKE Pin pulse window  WAKE_WIDTH_MAX = 10b; See Figure 8-20 1500 1875 ms
Maximum WAKE Pin pulse window  WAKE_WIDTH_MAX = 11b; See Figure 8-20 2000 2500 ms
tWK_CYC tWK_CYC  (4) Sampling window for cyclic sensing; Standby or Sleep mode, Register 8'h12[5] = 0b; see Figure 8-23 10 25 35 µs
Sampling window for cyclic sensing; Standby or Sleep mode, Register 8'h12[5] = 1b; see Figure 8-23 55 70 85 µs
tSILENCE_CAN tSILENCE_CAN (4) Timeout for bus inactivity Timer is reset and restarted, when bus changes from dominant to recessive or vice versa. 0.6 1.2 s
tINACTIVE tINACTIVE (4) SWE timer used for fails-safe and mode inactivity.  Can be programmed to different values using register 8'h1C[6:3] 4 5 6 min
tBias tBias (4) Time from the start of a dominant-recessive-dominant sequence. Each phase 6µs until Vsym ≥ 0.1. See Figure 7-10 250 µs
tSW SW pin filter time for a state change to be recognized (4) SW pin filter time for a state change to be recognized 130 µs
tINITWD Initial long window for watchdog  (4) Initial long window for watchdog, see Figure 8-43 127 150 173 ms
WD_CONFIG_1 register 8'h13[1:0] = 01b; see Figure 8-42 255 300 345 ms
WD_CONFIG_1 register 8'h13[1:0] = 10b (default); see Figure 8-42 510 600 690 ms
WD_CONFIG_1 register 8'h13[1:0] = 11b; see Figure 8-42 850 1000 1150 ms
tCTXD_DTO tCTXD_DTO (4) Dominant time out (1) See , RL = 60Ω, CL = open; See Figure 7-7 1 5 ms
tTOGGLE tTOGGLE (4) CRXD pin toggle timing when programmed after a WUP; See Figure 8-16 5 10 15 µs
tWD-ACC Timeout watchdog timing accuracy(4) Timeout watchdog enabled. Typical values for watchdog timer selected per Table 8-16 –15  tWD 15 %
fPWM-ACC HSS1-4 PWM Frequency accuracy (4) HSS set to PWM and PWM frequency set to 200Hz or 400Hz per PWMx_FREQ bit –10 10 %
tWD-ACC Window and Q&A watchdog timing accuracy (4) Window watchdog or Q&A watchdog enabled. Typical values for watchdog timer selected per Table 8-16 –10  tWD 10 %
tTMRACC Timer1, Timer2 period/on-time accuracy OR  SWE timer accuracy(4) Typical value of Timer1 or Timer2 configured per register 8'h25 (TIMER1_CONFIG) or 8'h26 (TIMER2_CONFIG); Typical value of SWE timer configured per 8'h25 (SWE_TIMER_SET) –15 15 %
FOSC-16M 16MHz clock frequency 15.36 16 16.64 MHz
FOSC-1M 1MHz clock frequency 0.94 1.04 1.14 MHz
FOSC-10k 10kHz clock frequency 8.8 10.4 12 kHz
The CTXD dominant time out (tCTXD_DTO) disables the driver of the transceiver once the CTXD has been dominant longer than tCTXD_DTO, which releases the CAN bus lines to recessive, preventing a local failure from locking the bus dominant. The driver may only transmit dominant again after CTXD has been returned HIGH (recessive). While this protects the CAN bus from local faults, locking the bus dominant, it limits the minimum data rate possible. The CAN protocol allows a maximum of eleven successive dominant bits (on CTXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the tCTXD_DTO minimum, limits the minimum bit rate. The minimum bit rate may be calculated by: Minimum Bit Rate = 11÷ tCTXD_DTO = 11 bits ÷ 1.2ms = 9.2kbps.
This parameter is valid only when register 11h[7:6] = 11b
This is the minimum pulse width for a WAKE pin input that device detects as a good pulse. Values between the minimum tWK_WIDTH_MINand maximum tWK_WIDTH_INVALID is indeterminate and is or is not considered as valid.
Specified by design 
This parameter is set based upon the programmed value for tWK_WIDTH_INVALID register 11h[3:2]
Not applicable for devices with REV_ID=20h