SBASAW9 December   2024 ADC168M102R-SEP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Switching Characteristics
    8. 5.8 Timing Diagrams
    9. 5.9 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog
        1. 6.3.1.1 Analog Inputs
        2. 6.3.1.2 Analog-to-Digital Converters (ADCs)
        3. 6.3.1.3 CONVST
        4. 6.3.1.4 CLOCK
        5. 6.3.1.5 RESET
        6. 6.3.1.6 REFIOx
      2. 6.3.2 Digital
        1. 6.3.2.1 Mode Selection Pins M0 and M1
        2. 6.3.2.2 Half-Clock Mode (Default Mode After Power-Up and Reset)
        3. 6.3.2.3 Full-Clock Mode (Allowing Conversion and Data Readout Within 1µs, Supported In Dual Output Modes)
        4. 6.3.2.4 2-Bit Counter
    4. 6.4 Device Functional Modes
      1. 6.4.1 Power-Down Modes and Reset
        1. 6.4.1.1 Power-Down Mode
        2. 6.4.1.2 Sleep Mode
        3. 6.4.1.3 Auto-Sleep Mode
        4. 6.4.1.4 Reset
    5. 6.5 Programming
      1. 6.5.1 Read Data Input (RD)
      2. 6.5.2 Serial Data Outputs (SDOx)
        1. 6.5.2.1 Mode I
        2. 6.5.2.2 Mode II (Half-Clock Mode Only)
        3. 6.5.2.3 Special Read Mode II (Half-Clock Mode Only)
        4. 6.5.2.4 Mode III
        5. 6.5.2.5 Fully Differential Mode IV (Half-Clock Mode Only)
        6. 6.5.2.6 Special Mode IV (Half-Clock Mode Only)
      3. 6.5.3 Programming the Reference DAC
  8. Register Map
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Grounding
        2. 8.4.1.2 Digital Interface
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Electrostatic Discharge Caution
    3. 9.3 Glossary
    4. 9.4 Trademarks
    5. 9.5 Receiving Notification of Documentation Updates
    6. 9.6 Support Resources
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Special Mode IV (Half-Clock Mode Only)

As with special mode II, this device also offers a special read mode for mode IV. In this mode, as shown in Figure 6-10, both data results of a conversion are read by triggering a single RD pulse. In this case, set the SR bit in the CONFIG register to 1. The CONVST and RD pins are still tied together, but are issued every 40 CLOCK cycles instead of 20. Make sure the RD signal in this mode is no longer than one clock cycle to avoid output data corruption.

Data are available on the SDOA pin, accordingly.

If auto-sleep power-down mode is enabled, as shown in Figure 6-10, the conversion results are presented during the next conversion.

Use this mode for fully- or pseudo-differential inputs (in pseudo-differential mode, the sequencer controls the input multiplexer). Channel information is available if the CID is 0 in fully differential mode only (CID is forced to 1 in pseudo-differential mode).

The internal FIFO is available in this mode; when used, a single read pulse allows all stored conversion data to be read. Make sure the FIFO is completely filled when used for the first time to provide proper functionality.

ADC168M102R-SEP Special
                    Read Mode IV Timing (M0 = 1, M1 = 1, PDE = 0, SR = 1, CID = 0, Fully
                    Differential Example) Figure 6-10 Special Read Mode IV Timing (M0 = 1, M1 = 1, PDE = 0, SR = 1, CID = 0, Fully Differential Example)