SLVAE87B December   2020  – June 2025 BQ79600-Q1 , BQ79612-Q1 , BQ79614-Q1 , BQ79616-Q1 , BQ79652-Q1 , BQ79654-Q1 , BQ79656-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. NPN LDO Supply
  5. AVDD, CVDD Outputs and DVDD, NEG5, REFHP and REFHM
    1. 2.1 Base Device
    2. 2.2 Design Summary
  6. OTP Programming
  7. Cell Voltage Sense (VCn) and Cell Balancing (CBn)
    1. 4.1 Cell Voltage Sense (VCn)
    2. 4.2 Cell Balancing (CBn)
      1. 4.2.1 Non-Adjacent Cell Balancing
      2. 4.2.2 Adjacent Cell Balancing
      3. 4.2.3 Cell Balancing With External FET
    3. 4.3 Using Fewer Than 16 Cells
      1. 4.3.1 Design Summary
  8. Bus Bar Support
    1. 5.1 Bus Bar on BBP or BBN
    2. 5.2 Typical Connection
      1. 5.2.1 Cell Balancing Handling
    3. 5.3 Bus Bar on Individual VC Channel
    4. 5.4 Multiple Bus Bar Connections
      1. 5.4.1 Two Bus Bar Connections to One Device
      2. 5.4.2 Three Bus Bar Connections to One Device
      3. 5.4.3 Cell Balancing Handling
  9. TSREF
  10. General Purpose Input-Output (GPIO) Configurations
    1. 7.1 Ratiometric Temperature Measurement
    2. 7.2 SPI Mode
      1. 7.2.1 Support 8 NTC Thermistors With SPI Slave Device
      2. 7.2.2 Design Summary
  11. Base and Bridge Device Configuration
    1. 8.1 Power Mode Pings and Tones
      1. 8.1.1 Power Mode Pings
      2. 8.1.2 Power Mode Tones
      3. 8.1.3 Ping and Tone Propagation
    2. 8.2 UART Physical Layer
      1. 8.2.1 Design Considerations
  12. Daisy-Chain Stack Configuration
    1. 9.1 Communication Line Isolation
      1. 9.1.1 Capacitor Only Isolation
      2. 9.1.2 Capacitor and Choke Isolation
      3. 9.1.3 Transformer Isolation
      4. 9.1.4 Design Summary
    2. 9.2 Ring Communication
    3. 9.3 Reclocking
      1. 9.3.1 Design Summary
  13. 10Multidrop Configuration
  14. 11Main ADC Digital LPF
  15. 12AUX Anti Aliasing Filter (AAF)
  16. 13Layout Guidelines
    1. 13.1 Ground Planes
    2. 13.2 Bypass Capacitors for Power Supplies and References
    3. 13.3 Cell Voltage Sensing
    4. 13.4 Daisy Chain Communication
  17. 14BCI Performance
  18. 15Common and Differential Mode Noise
    1. 15.1 Design Consideration
  19. 16Summary
  20. 17References
  21. 18Revision History

Transformer Isolation

Transformer isolation is the most effective method for removing common mode noise from the system. The two options for this implementation can be seen in Figure 9-6. The following parameters are recommended for the transformer selection:

  • Inductance = 150-600µH
  • Isolation Voltage = 2500V, AC

The HMU1228 transformer is recommended and is recommended to be center tapped with a 100pF capacitor. ESD562-Q1 TVS diode can be added optionally for ESD protection.

 Components Required for Transformer Coupled Daisy ChainFigure 9-6 Components Required for Transformer Coupled Daisy Chain

Regardless of which isolation method is chosen, there are a few things that are common among all of them. First, is the 220pF capacitor and 49Ω resistor before the ESD isolation on both the high and low side on both the positive and negative lines.

Lastly, each design has a termination resistor. The purpose of this resistor is to prevent reflected signals from interfering in the communication. The recommendation is that a 1kΩ be used.

In all of these situations, the recommendation is based off how long the cable between boards is, and in all cases, twisted pair cabling is used between modules. The main purpose of these noise isolation methods is to remove common mode noise from the signal. More details can be found in Section 15.

The recommendation is that with any design that is chosen, that additional ESD protection is added. The ESD562-Q1 is shown in the following sections to provide ESD isolation on the communication lines.