SNAS849 December   2024 LMX2624-SP

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagrams
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Reference Oscillator Input
      2. 6.3.2  Reference Path
        1. 6.3.2.1 OSCin Doubler (OSC_2X)
        2. 6.3.2.2 Pre-R Divider (PLL_R_PRE)
        3. 6.3.2.3 Post-R Divider (PLL_R)
      3. 6.3.3  State Machine Clock
      4. 6.3.4  PLL Phase Detector and Charge Pump
      5. 6.3.5  N Divider and Fractional Circuitry
      6. 6.3.6  MUXout Pin
        1. 6.3.6.1 Serial Data Output for Readback
        2. 6.3.6.2 Lock Detect Indicator Set as Type “VCOcal” or "Vtune and VCOcal"
      7. 6.3.7  VCO (Voltage-Controlled Oscillator)
        1. 6.3.7.1 VCO Calibration
          1. 6.3.7.1.1 Double Buffering (Shadow Registers)
        2. 6.3.7.2 Watchdog Feature
        3. 6.3.7.3 RECAL Feature
        4. 6.3.7.4 Determining the VCO Gain
      8. 6.3.8  Channel Divider
      9. 6.3.9  Output Mute Pin and Ping Pong Approaches
      10. 6.3.10 Output Frequency Doubler
      11. 6.3.11 Output Buffer
      12. 6.3.12 Power-Down Modes
      13. 6.3.13 Pin-Mode Integer Frequency Generation
      14. 6.3.14 Treatment of Unused Pins
      15. 6.3.15 Phase Synchronization
        1. 6.3.15.1 General Concept
        2. 6.3.15.2 Categories of Applications for SYNC
        3. 6.3.15.3 Procedure for Using SYNC
        4. 6.3.15.4 SYNC Input Pin
      16. 6.3.16 Phase Adjust
      17. 6.3.17 Fine Adjustments for Phase Adjust and Phase SYNC
      18. 6.3.18 SYSREF
        1. 6.3.18.1 Programmable Fields
        2. 6.3.18.2 Input and Output Pin Formats
          1. 6.3.18.2.1 SYSREF Output Format
        3. 6.3.18.3 Examples
        4. 6.3.18.4 SYSREF Procedure
    4. 6.4 Device Functional Modes
    5. 6.5 Programming
      1. 6.5.1 Recommended Initial Power-Up Sequence
      2. 6.5.2 Recommended Sequence for Changing Frequencies
  8. Register Maps
    1. 7.1 Device Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 OSCin Configuration
      2. 8.1.2 OSCin Slew Rate
      3. 8.1.3 RF Output Buffer Power Control
      4. 8.1.4 RF Output Buffer Pullup
      5. 8.1.5 RF Output Treatment for the Complimentary Side
        1. 8.1.5.1 Single-ended Termination of Unused Output
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
      3. 8.4.3 Footprint Example on PCB Layout
      4. 8.4.4 Radiation Environments
        1. 8.4.4.1 Total Ionizing Dose
        2. 8.4.4.2 Single Event Effect
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Engineering Samples
    2. 11.2 Package Option Addendum
    3. 11.3 Tape and Reel Information

Timing Diagrams

LMX2624-SP Serial
                    Data Input Timing Diagram Figure 5-1 Serial Data Input Timing Diagram

There are several other considerations for writing on the SPI:

  • The R/W bit must be set to 0.
  • The data on SDI pin is clocked into a shift register on each rising edge on the SCK pin.
  • The CSB must be held low for data to be clocked. Device is ignore clock pulses if CSB is held high.
  • The CSB transition from high to low must occur when SCK is low.
  • When SCK and SDI lines are shared between devices, TI recommends hold the CSB line high on the device that is not to be clocked.

LMX2624-SP Serial Data Readback Timing
                    Diagram Figure 5-2 Serial Data Readback Timing Diagram

There are several other considerations for SPI readback:

  • The R/W bit must be set to 1.
  • The MUXout pin is tristated for the address portion of the transaction, and when there is no transaction
  • The data on MUXout becomes available momentarily after the falling edge of SCK and therefore must be read back on the rising edge of SCK.
  • The data portion of the transition on the SDI line is always ignored.