SNAS849 December   2024 LMX2624-SP

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagrams
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Reference Oscillator Input
      2. 6.3.2  Reference Path
        1. 6.3.2.1 OSCin Doubler (OSC_2X)
        2. 6.3.2.2 Pre-R Divider (PLL_R_PRE)
        3. 6.3.2.3 Post-R Divider (PLL_R)
      3. 6.3.3  State Machine Clock
      4. 6.3.4  PLL Phase Detector and Charge Pump
      5. 6.3.5  N Divider and Fractional Circuitry
      6. 6.3.6  MUXout Pin
        1. 6.3.6.1 Serial Data Output for Readback
        2. 6.3.6.2 Lock Detect Indicator Set as Type “VCOcal” or "Vtune and VCOcal"
      7. 6.3.7  VCO (Voltage-Controlled Oscillator)
        1. 6.3.7.1 VCO Calibration
          1. 6.3.7.1.1 Double Buffering (Shadow Registers)
        2. 6.3.7.2 Watchdog Feature
        3. 6.3.7.3 RECAL Feature
        4. 6.3.7.4 Determining the VCO Gain
      8. 6.3.8  Channel Divider
      9. 6.3.9  Output Mute Pin and Ping Pong Approaches
      10. 6.3.10 Output Frequency Doubler
      11. 6.3.11 Output Buffer
      12. 6.3.12 Power-Down Modes
      13. 6.3.13 Pin-Mode Integer Frequency Generation
      14. 6.3.14 Treatment of Unused Pins
      15. 6.3.15 Phase Synchronization
        1. 6.3.15.1 General Concept
        2. 6.3.15.2 Categories of Applications for SYNC
        3. 6.3.15.3 Procedure for Using SYNC
        4. 6.3.15.4 SYNC Input Pin
      16. 6.3.16 Phase Adjust
      17. 6.3.17 Fine Adjustments for Phase Adjust and Phase SYNC
      18. 6.3.18 SYSREF
        1. 6.3.18.1 Programmable Fields
        2. 6.3.18.2 Input and Output Pin Formats
          1. 6.3.18.2.1 SYSREF Output Format
        3. 6.3.18.3 Examples
        4. 6.3.18.4 SYSREF Procedure
    4. 6.4 Device Functional Modes
    5. 6.5 Programming
      1. 6.5.1 Recommended Initial Power-Up Sequence
      2. 6.5.2 Recommended Sequence for Changing Frequencies
  8. Register Maps
    1. 7.1 Device Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 OSCin Configuration
      2. 8.1.2 OSCin Slew Rate
      3. 8.1.3 RF Output Buffer Power Control
      4. 8.1.4 RF Output Buffer Pullup
      5. 8.1.5 RF Output Treatment for the Complimentary Side
        1. 8.1.5.1 Single-ended Termination of Unused Output
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
      3. 8.4.3 Footprint Example on PCB Layout
      4. 8.4.4 Radiation Environments
        1. 8.4.4.1 Total Ionizing Dose
        2. 8.4.4.2 Single Event Effect
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Engineering Samples
    2. 11.2 Package Option Addendum
    3. 11.3 Tape and Reel Information

VCO Calibration

To reduce the VCO tuning gain and therefore improve the VCO phase-noise performance, the VCO frequency range is divided into several different frequency bands. The entire range, 7500MHz to 15000MHz, covers an octave that allows the divider to take care of frequencies below the lower bound. This creates the need for frequency calibration to determine the correct frequency band given a desired output frequency. The frequency calibration routine is activated any time that the R0 register is programmed with the FCAL_EN = 1. A valid OSCin signal must present before VCO calibration begins.

The VCO also has an internal amplitude calibration algorithm to optimize the phase noise which is also activated any time the R0 register is programmed.

The optimum internal settings for this are temperature dependent. If the temperature is allowed to drift too much without being re-calibrated, some minor phase noise degradation can result. The maximum allowable drift for continuous lock, ΔTCL, is stated in the electrical specifications. For this device, temperature of 125°C means the device never loses lock if the device is operated under recommended operating conditions.

The LMX2624-SP allows the user to assist the VCO calibration. In general, there are four kinds of assistance, as shown in Table 6-4:

Table 6-4 Assisting the VCO Calibration Speed
ASSISTANCE LEVELDESCRIPTIONVCO_SELVCO_SEL_FORCE
VCO_CAPCTRL_FORCE
VCO_DACISET_FORCE
VCO_CAPCTRL
VCO_DACISET
No assistUser does nothing to improve VCO calibration speed.70Don't Care
Partial assistUpon every frequency change, before the FCAL_EN bit is checked, the user provides the initial starting VCO_SELChoose by table0Don't Care
Full assistThe user forces the VCO core (VCO_SEL), amplitude settings (VCO_DACISET), and frequency band (VCO_CAPCTRL) and manually sets the value. If the two frequency points are no more than 5MHz apart and on the same VCO core, the user can set the VCO amplitude and capcode for any frequency between those two points using linear interpolationChoose by readback1Choose by readback