SNAS849 December   2024 LMX2624-SP

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagrams
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Reference Oscillator Input
      2. 6.3.2  Reference Path
        1. 6.3.2.1 OSCin Doubler (OSC_2X)
        2. 6.3.2.2 Pre-R Divider (PLL_R_PRE)
        3. 6.3.2.3 Post-R Divider (PLL_R)
      3. 6.3.3  State Machine Clock
      4. 6.3.4  PLL Phase Detector and Charge Pump
      5. 6.3.5  N Divider and Fractional Circuitry
      6. 6.3.6  MUXout Pin
        1. 6.3.6.1 Serial Data Output for Readback
        2. 6.3.6.2 Lock Detect Indicator Set as Type “VCOcal” or "Vtune and VCOcal"
      7. 6.3.7  VCO (Voltage-Controlled Oscillator)
        1. 6.3.7.1 VCO Calibration
          1. 6.3.7.1.1 Double Buffering (Shadow Registers)
        2. 6.3.7.2 Watchdog Feature
        3. 6.3.7.3 RECAL Feature
        4. 6.3.7.4 Determining the VCO Gain
      8. 6.3.8  Channel Divider
      9. 6.3.9  Output Mute Pin and Ping Pong Approaches
      10. 6.3.10 Output Frequency Doubler
      11. 6.3.11 Output Buffer
      12. 6.3.12 Power-Down Modes
      13. 6.3.13 Pin-Mode Integer Frequency Generation
      14. 6.3.14 Treatment of Unused Pins
      15. 6.3.15 Phase Synchronization
        1. 6.3.15.1 General Concept
        2. 6.3.15.2 Categories of Applications for SYNC
        3. 6.3.15.3 Procedure for Using SYNC
        4. 6.3.15.4 SYNC Input Pin
      16. 6.3.16 Phase Adjust
      17. 6.3.17 Fine Adjustments for Phase Adjust and Phase SYNC
      18. 6.3.18 SYSREF
        1. 6.3.18.1 Programmable Fields
        2. 6.3.18.2 Input and Output Pin Formats
          1. 6.3.18.2.1 SYSREF Output Format
        3. 6.3.18.3 Examples
        4. 6.3.18.4 SYSREF Procedure
    4. 6.4 Device Functional Modes
    5. 6.5 Programming
      1. 6.5.1 Recommended Initial Power-Up Sequence
      2. 6.5.2 Recommended Sequence for Changing Frequencies
  8. Register Maps
    1. 7.1 Device Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 OSCin Configuration
      2. 8.1.2 OSCin Slew Rate
      3. 8.1.3 RF Output Buffer Power Control
      4. 8.1.4 RF Output Buffer Pullup
      5. 8.1.5 RF Output Treatment for the Complimentary Side
        1. 8.1.5.1 Single-ended Termination of Unused Output
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
      3. 8.4.3 Footprint Example on PCB Layout
      4. 8.4.4 Radiation Environments
        1. 8.4.4.1 Total Ionizing Dose
        2. 8.4.4.2 Single Event Effect
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Engineering Samples
    2. 11.2 Package Option Addendum
    3. 11.3 Tape and Reel Information
Double Buffering (Shadow Registers)

Double buffering—also known as "shadow registers"—allows the user to program multiple registers without having them actually take effect. Then when the R0 register is programmed, then these registers take effect. This is especially useful if one wants to change frequencies quickly and multiple register writes are required. When DBLBUF_EN = 1, the double buffering is enabled for the registers related to VCO, Doubler, PLL, Output MUX and Channel Divider. More details on the registers are available in Register map section.

For the no assist method, just set VCO_SEL=7 and this is done. For partial assist, the VCO calibration speed can be improved by changing the VCO_SEL bit according to the frequency. Note that the frequency is not the actual VCO core range, but favors choosing the VCO. This is not only optimal for VCO calibration speed, but required for reliable locking.

Table 6-5 Minimum VCO_SEL for Partial Assist
fVCO VCO CORE (MIN)
7500 - 8600MHz VCO1
8600 - 9900MHz VCO2
9900 - 10800MHz VCO3
10800 -11900MHz VCO4
11900 - 13000MHz VCO5
13000 - 14000MHz VCO6
14000 - 15000MHz VCO7

For fastest calibration time, use the minimum VCO core as recommended in the previous table. The following table shows typical VCO calibration times for this choice in bold as well as showing how long the calibration time is increased if a higher than necessary VCO core is chosen. Realize that these calibration times are specific to these fOSC and fPD conditions specified and at the boundary of two cores, sometimes the calibration time can be increased.

Table 6-6 Typical Calibration Times (µs) for fOSC = 100MHz and fPD = 200MHz
fVCO VCO_SEL#OL_ENF_TDS_RDC
VCO7 VCO6 VCO5 VCO4 VCO3 VCO2 VCO1
8.1 GHz 650 614 620 376 256 243 191
9.3 GHz 606 589 587 335 196 177 Invalid
10.4 GHz 598 579 570 338 177 Invalid
11.4 GHz 543 540 530 284 Invalid
12.5 GHz 396 346 300 Invalid
13.6 GHz 262 218 Invalid
14.7 GHz 164 Invalid
Table 6-7 Typical Calibration Times (µs) for fOSC = 100MHz and fPD = 200MHz
fVCO VCO_SEL(1)
VCO7 VCO6 VCO5 VCO4 VCO3 VCO2 VCO1
8.1 GHz 854 828 822 579 451 437 393
9.3 GHz 819 800 794 551 401 380 Invalid
10.4 GHz 808 786 781 551 388 Invalid
11.4 GHz 767 745 743 494 Invalid
12.5 GHz 603 560 513 Invalid
13.6 GHz 469 426 Invalid
14.7 GHz 385 Invalid
Based on VCO_SEL. This include Analog lock time for typical loop bandwidth.