SNVSC75B April   2023  – September 2025 LM5171-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Bias Supplies and Voltage Reference (VCC, VDD, and VREF)
      2. 6.3.2  Undervoltage Lockout (UVLO)
      3. 6.3.3  Device Configurations (CFG)
      4. 6.3.4  High Voltage Inputs (HV1, HV2)
      5. 6.3.5  Current Sense Amplifier
      6. 6.3.6  Control Commands
        1. 6.3.6.1 Channel Enable Commands (EN1, EN2)
        2. 6.3.6.2 Direction Command (DIR1 and DIR2)
        3. 6.3.6.3 Channel Current Setting Commands (ISET1 and ISET2)
      7. 6.3.7  Channel Current Monitor (IMON1, IMON2)
        1. 6.3.7.1 Individual Channel Current Monitor
        2. 6.3.7.2 Multiphase Total Current Monitoring
      8. 6.3.8  Cycle-by-Cycle Peak Current Limit (IPK)
      9. 6.3.9  Inner Current Loop Error Amplifier
      10. 6.3.10 Outer Voltage Loop Error Amplifier
      11. 6.3.11 Soft Start, Diode Emulation, and Forced PWM Control (SS/DEM1 and SS/DEM2)
        1. 6.3.11.1 ISET Soft-Start Control by the SS/DEM Pins
        2. 6.3.11.2 DEM Programming
        3. 6.3.11.3 FPWM Programming and Dynamic FPWM and DEM Change
      12. 6.3.12 Gate Drive Outputs, Dead Time Programming and Adaptive Dead Time (HO1, HO2, LO1, LO2, DT/SD)
      13. 6.3.13 Emergency Latched Shutdown (DT/SD)
      14. 6.3.14 PWM Comparator
      15. 6.3.15 Oscillator (OSC)
      16. 6.3.16 Synchronization to an External Clock (SYNCI, SYNCO)
      17. 6.3.17 Overvoltage Protection (OVP)
      18. 6.3.18 Multiphase Configurations (SYNCO, OPT)
        1. 6.3.18.1 Multiphase in Star Configuration
        2. 6.3.18.2 Daisy-Chain Configurations for 2, 3, or 4 Phases parallel operations
        3. 6.3.18.3 Daisy-Chain configuration for 6 or 8 phases parallel operation
      19. 6.3.19 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 Initialization Mode
      2. 6.4.2 Standby Mode
      3. 6.4.3 Power Delivery Mode
      4. 6.4.4 Shutdown Mode
      5. 6.4.5 Latched Shutdown mode
  8. Registers
    1. 7.1 I2C Serial Interface
    2. 7.2 I2C Bus Operation
    3. 7.3 Clock Stretching
    4. 7.4 Data Transfer Formats
    5. 7.5 Single READ From a Defined Register Address
    6. 7.6 Sequential READ Starting From a Defined Register Address
    7. 7.7 Single WRITE to a Defined Register Address
    8. 7.8 Sequential WRITE Starting From A Defined Register Address
    9. 7.9 REGFIELD Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Small Signal Model
        1. 8.1.1.1 Current Loop Small Signal Model
        2. 8.1.1.2 Current Loop Compensation
        3. 8.1.1.3 Voltage Loop Small Signal Model
        4. 8.1.1.4 Voltage Loop Compensation
    2. 8.2 PWM to ISET Pins
    3. 8.3 ISET Clamp
    4. 8.4 Dynamic Dead Time Adjustment
    5. 8.5 Proper Termination of Unused Pins
    6. 8.6 Typical Application
      1. 8.6.1 60A, Dual-Phase, 48V to 12V Bidirectional Converter
        1. 8.6.1.1 Design Requirements
        2. 8.6.1.2 Detailed Design Procedure
          1. 8.6.1.2.1  Determining the Duty Cycle
          2. 8.6.1.2.2  Oscillator Programming (OSC)
          3. 8.6.1.2.3  Power Inductor, RMS and Peak Currents
          4. 8.6.1.2.4  Current Sense (RCS)
          5. 8.6.1.2.5  Current Setting Commands (ISETx)
          6. 8.6.1.2.6  Peak Current Limit (IPK)
          7. 8.6.1.2.7  Power MOSFETS
          8. 8.6.1.2.8  Bias Supply
          9. 8.6.1.2.9  Boot Strap Capacitor
          10. 8.6.1.2.10 Overvoltage Protection (OVP)
          11. 8.6.1.2.11 Dead Time (DT/SD)
          12. 8.6.1.2.12 Channel Current Monitor (IMONx)
          13. 8.6.1.2.13 Undervoltage Lockout (UVLO)
          14. 8.6.1.2.14 HVx Pin Configuration
          15. 8.6.1.2.15 Loop Compensation
          16. 8.6.1.2.16 Soft Start (SS/DEMx)
        3. 8.6.1.3 Application Curves
          1. 8.6.1.3.1 Efficiency and Thermal Performance
          2. 8.6.1.3.2 Step Load Response
          3. 8.6.1.3.3 Dual-Channel Interleaving Operation
          4. 8.6.1.3.4 Typical Start Up and Shutdown
          5. 8.6.1.3.5 DEM and FPWM
          6. 8.6.1.3.6 Mode Transition Between DEM and FPWM
          7. 8.6.1.3.7 ISET Tracking and Pre-charge
          8. 8.6.1.3.8 Protections
    7. 8.7 Power Supply Recommendations
    8. 8.8 Layout
      1. 8.8.1 Layout Guidelines
      2. 8.8.2 Layout Examples
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Voltage Loop Compensation

The typical bi-directional application with HV voltage regulation and LV voltage regulation is shown in Figure 8-6. Connect the error voltage of the outer voltage loop error amplifiers (ERRHV and ERRLV) to ISETx as the reference for the inner current loop.

The outer voltage loop crossover frequency fCV needs to be one decade below that of the inner current loop crossover frequency fCI. And boost outer voltage loop crossover frequency also needs to be below 1/5 of the Right-Half-Plane Zero (RHPZ).

LM5171-Q1 Outer Voltage
          Loop Control Figure 8-6 Outer Voltage Loop Control

Type-II compensator as shown in Figure 8-6 is recommended to stabilize the voltage loop for both buck and boost mode operations.

Buck mode compensation is analyzed as an example. The transfer function of the compensator of buck mode is found as:

Equation 64. G c v s = v ^ I S E T v ^ L V A V M × ω Z E A s × 1 + s ω Z E A 1 + s ω H F × K I S E T

where

Equation 65. A V M R L C O M P R L F B T
Equation 66. ω Z E A = 1 R L C O M P × C L C O M P
Equation 67. ω H F 1 R L C O M P × C L H F
Equation 68. K I S E T = R I S E T B R I S E T T + R I S E T B

The total open-loop gain of the outer voltage loop of buck mode Tv_BK(s) is the product of Gvs_BK(s) and Gcv(s):

Equation 69. T v _ B K s = G v s _ B K s × G c v s

Or:

Equation 70. T v _ B K s = K d c _ B K × 1 + s ω Z _ v l 1 + s ω Z _ i l × A V M × ω Z E A s × 1 + s ω Z E A 1 + s ω H F × K I S E T

To tailor the total outer voltage loop gain to crossover at fCV, select the components of the compensation network according to the following guidelines, then fine tune the network for optimal loop performance.

  1. Choose a value for RLFBT based on the bias current and power dissipation,
  2. The zero ωZEA is placed around 1/5 of target crossover frequency fCV,
  3. The pole ωHF is placed at approximately 10 times of fCV,
  4. The total open-loop gain is set to unity at fCV, namely,

Equation 71. T v _ B K 2 i × π × f C V = 1

Therefore, the compensation components are derived from the above equations as:

Equation 72. R L C O M P = R L F B T K d c _ B K × 1 + 2 i × π × f C V ω Z _ v l 1 + 2 i × π × f C V ω Z _ i l × K I S E T C L C O M P = 1 2 i × π × f C V 5 × R C O M P C L H F = 1 2 i × π × 10 × f C V × R C O M P

The compensator of boost voltage loop is designed similarly. Please note that boost voltage loop crossover frequency also needs to be below 1/5 of the RHPZ.