SPRY303F May   2019  – February 2025 AM3351 , AM3352 , AM3354 , AM3356 , AM3357 , AM3358 , AM3358-EP , AM3359 , AM4372 , AM4376 , AM4377 , AM4378 , AM4379 , AM5706 , AM5708 , AM5746 , AM5748 , AM623 , AM625 , AM625-Q1 , AM625SIP , AM62A1-Q1 , AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1 , AM62L , AM62P , AM62P-Q1 , AM6411 , AM6412 , AM6421 , AM6422 , AM6441 , AM6442 , AM6526 , AM6528 , AM6546 , AM6548 , AM68 , AM68A , AM69 , AM69A , DRA821U , DRA821U-Q1 , DRA829J , DRA829J-Q1 , DRA829V , DRA829V-Q1 , TDA4VM , TDA4VM-Q1

 

  1.   1
  2.   Introduction
  3.   Risk management
  4.   What to protect?
  5.   How much security?
  6.   Architectural considerations
  7.   The security pyramid
  8.   Secure boot
  9.   Cryptographic acceleration
  10.   Device-ID and keys
  11.   Debug security
  12.   Trusted execution environment
  13.   External memory protection
  14.   Network security
  15.   Secure storage
  16.   Initial secure programming
  17.   Secure firmware and software updates
  18.   Software Intellectual Property (IP) protection
  19.   Physical security
  20.   Enclosure protection
  21.   Where to start with embedded security?
  22.   Security enablers for TI application processors
  23.   Conclusion
  24.   References

Debug security

During system development, designers need access to embedded multicore application processors in order to debug firmware and software, and to troubleshoot possible hardware problems. In most cases, the port that provides this access is the JTAG port. In an operating environment, the debug port must either be sealed closed by some sort of fuse, or it should only be accessible through certified cryptographic keys. Otherwise, the debug port could provide an easy way into the system for hackers (see Figure 3).

 MSP430™ MCU debug
                    port. Figure 3 MSP430™ MCU debug port.