SPRY303F May 2019 – February 2025 AM3351 , AM3352 , AM3354 , AM3356 , AM3357 , AM3358 , AM3358-EP , AM3359 , AM4372 , AM4376 , AM4377 , AM4378 , AM4379 , AM5706 , AM5708 , AM5746 , AM5748 , AM623 , AM625 , AM625-Q1 , AM625SIP , AM62A1-Q1 , AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1 , AM62L , AM62P , AM62P-Q1 , AM6411 , AM6412 , AM6421 , AM6422 , AM6441 , AM6442 , AM6526 , AM6528 , AM6546 , AM6548 , AM68 , AM68A , AM69 , AM69A , DRA821U , DRA821U-Q1 , DRA829J , DRA829J-Q1 , DRA829V , DRA829V-Q1 , TDA4VM , TDA4VM-Q1
During system development, designers need access to embedded multicore application processors in order to debug firmware and software, and to troubleshoot possible hardware problems. In most cases, the port that provides this access is the JTAG port. In an operating environment, the debug port must either be sealed closed by some sort of fuse, or it should only be accessible through certified cryptographic keys. Otherwise, the debug port could provide an easy way into the system for hackers (see Figure 3).
Figure 3 MSP430™ MCU debug
port.