Product details

Arm CPU 2 Arm Cortex-A72 Arm MHz (Max.) 2000 Co-processor(s) MCU Island of 2 Arm Cortex-R5F (lockstep opt), SoC main of 4 Arm Cortex-R5F (lockstep opt) CPU 64-bit Graphics acceleration 1 3D Display type 2 DPI, 1 DSI, 1 EDP Protocols Ethernet Ethernet MAC 8-Port 2.5Gb switch PCIe 4 PCIe Gen 3 switch Hardware accelerators 1 Deep Learning accelerator, 1 Depth and Motion accelerator, 1 Video Encode/Decode accelerator, 1 Vision Processing accelerator Features Vision Analytics Operating system Linux, QNX, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection, Trusted execution environment Rating Automotive Operating temperature range (C) -40 to 125
Arm CPU 2 Arm Cortex-A72 Arm MHz (Max.) 2000 Co-processor(s) MCU Island of 2 Arm Cortex-R5F (lockstep opt), SoC main of 4 Arm Cortex-R5F (lockstep opt) CPU 64-bit Graphics acceleration 1 3D Display type 2 DPI, 1 DSI, 1 EDP Protocols Ethernet Ethernet MAC 8-Port 2.5Gb switch PCIe 4 PCIe Gen 3 switch Hardware accelerators 1 Deep Learning accelerator, 1 Depth and Motion accelerator, 1 Video Encode/Decode accelerator, 1 Vision Processing accelerator Features Vision Analytics Operating system Linux, QNX, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection, Trusted execution environment Rating Automotive Operating temperature range (C) -40 to 125
FCBGA (ALF) 827 576 mm² 24 x 24

Processor cores:

  • C7x floating point, vector DSP, up to 1.0 GHz, 80 GFLOPS, 256 GOPS
  • Deep-learning matrix multiply accelerator (MMA), up to 8 TOPS (8b) at 1.0 GHz
  • Vision Processing Accelerators (VPAC) with Image Signal Processor (ISP) and multiple vision assist accelerators
  • Depth and Motion Processing Accelerators (DMPAC)
  • Dual 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2.0 GHz
    • 1MB shared L2 cache per dual-core Cortex-A72 cluster
    • 32KB L1 DCache and 48KB L1 ICache per Cortex-A72 core
  • Six Arm Cortex-R5F MCUs at up to 1.0 GHz
    • 16K I-Cache, 16K D-Cache, 64K L2 TCM
    • Two Arm Cortex-R5F MCUs in isolated MCU subsystem
    • Four Arm Cortex-R5F MCUs in general compute partition
  • Two C66x floating point DSP, up to 1.35 GHz, 40 GFLOPS, 160 GOPS
  • 3D GPU PowerVR Rogue 8XE GE8430, up to 750 MHz, 96 GFLOPS, 6 Gpix/sec
  • Custom-designed interconnect fabric supporting near max processing entitlement

    Memory subsystem:

  • Up to 8MB of on-chip L3 RAM with ECC and coherency
    • ECC error protection
    • Shared coherent cache
    • Supports internal DMA engine
  • External Memory Interface (EMIF) module with ECC
    • Supports LPDDR4 memory types
    • Supports speeds up to 3733 MT/s
    • 32-bit data bus with inline ECC up to 14.9GB/s
  • General-Purpose Memory Controller (GPMC)
  • 512KB on-chip SRAM in MAIN domain, protected by ECC

    Functional Safety:

  • Functional Safety-Compliant targeted (on select part numbers)
    • Developed for functional safety applications
    • Documentation available to aid ISO 26262 functional safety system design up to ASIL-D/SIL-3 targeted
    • Systematic capability up to ASIL-D/SIL-3 targeted
    • Hardware integrity up to ASIL-D/SIL-3 targeted for MCU Domain
    • Hardware integrity up to ASIL-B/SIL-2 targeted for Main Domain
    • Safety-related certification
      • ISO 26262 planned
  • AEC-Q100 qualilfied on part number variants ending in Q1
  • Device security (on select part numbers):

  • Secure boot with secure runtime support
  • Customer programmable root key, up to RSA-4K or ECC-512
  • Embedded hardware security module
  • Crypto hardware accelerators – PKA with ECC, AES, SHA, RNG, DES and 3DES

    High speed serial interfaces:

  • Integrated ethernet switch supporting (total of 8 external ports)
    • Up to eight 2.5Gb SGMII
    • Up to eight RMII (10/100) or RGMII (10/100/1000)
    • Up to two QSGMII
  • Up to four PCI-Express (PCIe) Gen3 controllers
    • Up to two lanes per controller
    • Gen1 (2.5GT/s), Gen2 (5.0GT/s), and Gen3 (8.0GT/s) operation with auto-negotiation
  • Two USB 3.0 dual-role device (DRD) subsystem
    • Two enhanced SuperSpeed Gen1 Ports
    • Each port supports Type-C switching
    • Each port independently configurable as USB host, USB peripheral, or USB DRD

    Automotive interfaces:

  • Sixteen Modular Controller Area Network (MCAN) modules with full CAN-FD support
  • Two CSI2.0 4L RX plus One CSI2.0 4L TX
    • 2.5Gbps RX throughput per lane (20Gbps total)

    Display subsystem:

  • One eDP/DP interface with Multi-Display Support (MST)
    • HDCP1.4/HDCP2.2 high-bandwidth digital content protection
  • One DSI TX (up to 2.5K)
  • Up to two DPI

    Audio interfaces:

  • Twelve Multichannel Audio Serial Port (MCASP) modules

    Video acceleration:

  • Ultra-HD video, one (3840 × 2160p, 60 fps), or two (3840 × 2160p, 30 fps) H.264/H.265 decode
  • Full-HD video, four (1920 × 1080p, 60 fps), or eight (1920 × 1080p, 30 fps) H.264/H.265 decode
  • Full-HD video, one (1920 × 1080p, 60 fps), or up to three (1920 × 1080p, 30 fps) H.264 encode

    Flash memory interfaces:

  • Embedded MultiMediaCard Interface ( eMMC™ 5.1)
  • Universal Flash Storage (UFS 2.1) interface with two lanes
  • Two Secure Digital 3.0/Secure Digital Input Output 3.0 interfaces (SD3.0/SDIO3.0)
  • Two simultaneous flash interfaces configured as
    • One OSPI and one QSPI flash interfaces
    • or one HyperBus™ and one QSPI flash interface

    System-on-Chip (SoC) architecture:

  • 16-nm FinFET technology
  • 24 mm × 24 mm, 0.8-mm pitch, 827-pin FCBGA (ALF), enables IPC class 3 PCB routing

    TPS6594-Q1 Companion Power Management ICs (PMIC):

  • Functional Safety support up to ASIL-D
  • Flexible mapping to support different use cases

Processor cores:

  • C7x floating point, vector DSP, up to 1.0 GHz, 80 GFLOPS, 256 GOPS
  • Deep-learning matrix multiply accelerator (MMA), up to 8 TOPS (8b) at 1.0 GHz
  • Vision Processing Accelerators (VPAC) with Image Signal Processor (ISP) and multiple vision assist accelerators
  • Depth and Motion Processing Accelerators (DMPAC)
  • Dual 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2.0 GHz
    • 1MB shared L2 cache per dual-core Cortex-A72 cluster
    • 32KB L1 DCache and 48KB L1 ICache per Cortex-A72 core
  • Six Arm Cortex-R5F MCUs at up to 1.0 GHz
    • 16K I-Cache, 16K D-Cache, 64K L2 TCM
    • Two Arm Cortex-R5F MCUs in isolated MCU subsystem
    • Four Arm Cortex-R5F MCUs in general compute partition
  • Two C66x floating point DSP, up to 1.35 GHz, 40 GFLOPS, 160 GOPS
  • 3D GPU PowerVR Rogue 8XE GE8430, up to 750 MHz, 96 GFLOPS, 6 Gpix/sec
  • Custom-designed interconnect fabric supporting near max processing entitlement

    Memory subsystem:

  • Up to 8MB of on-chip L3 RAM with ECC and coherency
    • ECC error protection
    • Shared coherent cache
    • Supports internal DMA engine
  • External Memory Interface (EMIF) module with ECC
    • Supports LPDDR4 memory types
    • Supports speeds up to 3733 MT/s
    • 32-bit data bus with inline ECC up to 14.9GB/s
  • General-Purpose Memory Controller (GPMC)
  • 512KB on-chip SRAM in MAIN domain, protected by ECC

    Functional Safety:

  • Functional Safety-Compliant targeted (on select part numbers)
    • Developed for functional safety applications
    • Documentation available to aid ISO 26262 functional safety system design up to ASIL-D/SIL-3 targeted
    • Systematic capability up to ASIL-D/SIL-3 targeted
    • Hardware integrity up to ASIL-D/SIL-3 targeted for MCU Domain
    • Hardware integrity up to ASIL-B/SIL-2 targeted for Main Domain
    • Safety-related certification
      • ISO 26262 planned
  • AEC-Q100 qualilfied on part number variants ending in Q1
  • Device security (on select part numbers):

  • Secure boot with secure runtime support
  • Customer programmable root key, up to RSA-4K or ECC-512
  • Embedded hardware security module
  • Crypto hardware accelerators – PKA with ECC, AES, SHA, RNG, DES and 3DES

    High speed serial interfaces:

  • Integrated ethernet switch supporting (total of 8 external ports)
    • Up to eight 2.5Gb SGMII
    • Up to eight RMII (10/100) or RGMII (10/100/1000)
    • Up to two QSGMII
  • Up to four PCI-Express (PCIe) Gen3 controllers
    • Up to two lanes per controller
    • Gen1 (2.5GT/s), Gen2 (5.0GT/s), and Gen3 (8.0GT/s) operation with auto-negotiation
  • Two USB 3.0 dual-role device (DRD) subsystem
    • Two enhanced SuperSpeed Gen1 Ports
    • Each port supports Type-C switching
    • Each port independently configurable as USB host, USB peripheral, or USB DRD

    Automotive interfaces:

  • Sixteen Modular Controller Area Network (MCAN) modules with full CAN-FD support
  • Two CSI2.0 4L RX plus One CSI2.0 4L TX
    • 2.5Gbps RX throughput per lane (20Gbps total)

    Display subsystem:

  • One eDP/DP interface with Multi-Display Support (MST)
    • HDCP1.4/HDCP2.2 high-bandwidth digital content protection
  • One DSI TX (up to 2.5K)
  • Up to two DPI

    Audio interfaces:

  • Twelve Multichannel Audio Serial Port (MCASP) modules

    Video acceleration:

  • Ultra-HD video, one (3840 × 2160p, 60 fps), or two (3840 × 2160p, 30 fps) H.264/H.265 decode
  • Full-HD video, four (1920 × 1080p, 60 fps), or eight (1920 × 1080p, 30 fps) H.264/H.265 decode
  • Full-HD video, one (1920 × 1080p, 60 fps), or up to three (1920 × 1080p, 30 fps) H.264 encode

    Flash memory interfaces:

  • Embedded MultiMediaCard Interface ( eMMC™ 5.1)
  • Universal Flash Storage (UFS 2.1) interface with two lanes
  • Two Secure Digital 3.0/Secure Digital Input Output 3.0 interfaces (SD3.0/SDIO3.0)
  • Two simultaneous flash interfaces configured as
    • One OSPI and one QSPI flash interfaces
    • or one HyperBus™ and one QSPI flash interface

    System-on-Chip (SoC) architecture:

  • 16-nm FinFET technology
  • 24 mm × 24 mm, 0.8-mm pitch, 827-pin FCBGA (ALF), enables IPC class 3 PCB routing

    TPS6594-Q1 Companion Power Management ICs (PMIC):

  • Functional Safety support up to ASIL-D
  • Flexible mapping to support different use cases

The TDA4VM processor family is based on the evolutionary Jacinto™ 7 architecture, targeted at ADAS and Autonomous Vehicle (AV) applications and built on extensive market knowledge accumulated over a decade of TI’s leadership in the ADAS processor market. The unique combination high-performance compute, deep-learning engine, dedicated accelerators for signal and image processing in an functional safety compliant targeted architecture make the TDA4VM devices a great fit for several industrial applications, such as: Robotics, Machine Vision, Radar, and so on. The TDA4VM provides high performance compute for both traditional and deep learning algorithms at industry leading power/performance ratios with a high level of system integration to enable scalability and lower costs for advanced automotive platforms supporting multiple sensor modalities in centralized ECUs or stand-alone sensors. Key cores include next generation DSP with scalar and vector cores, dedicated deep learning and traditional algorithm accelerators, latest Arm and GPU processors for general compute, an integrated next generation imaging subsystem (ISP), video codec, Ethernet hub and isolated MCU island. All protected by automotive grade safety and security hardware accelerators.

Key Performance Cores Overview

The “C7x” next generation DSP combines TI’s industry leading DSP and EVE cores into a single higher performance core and adds floating point vector calculation capabilities, enabling backward compatibility for legacy code while simplifying software programming. The new “MMA” deep learning accelerator enables performance up to 8 TOPS within the lowest power envelope in the industry when operating at the typical automotive worst case junction temperature of 125°C. The dedicated ADAS/AV hardware accelerators provide vision pre-processing plus distance and motion processing with no impact on system performance.

General Compute Cores and Integration Overview

Separate dual core cluster configuration of Arm Cortex-A72 facilitates multi-OS applications with minimal need for a software hypervisor. Up to six Arm Cortex-R5F subsystems enable low-level, timing critical processing tasks to leave the Arm Cortex-A72’s unencumbered for applications. The integrated “8XE GE8430” GPU offers up to 100 GFLOPS to enable dynamic 3D rendering for enhanced viewing applications. Building on the existing world-class ISP, TI’s 7th generation ISP includes flexibility to process a broader sensor suite, support for higher bit depth, and features targeting analytics applications. Integrated diagnostics and safety features support operations up to ASIL-D/SIL-3 levels while the integrated security features protect data against modern day attacks. To enable systems requiring heavy data bandwidth, a PCIe hub and Gigabit Ethernet switch are included along with CSI-2 ports to support throughput for many sensor inputs. To further the integration, the TDA4VM family also includes an MCU island eliminating the need for an external system microcontroller.

The TDA4VM processor family is based on the evolutionary Jacinto™ 7 architecture, targeted at ADAS and Autonomous Vehicle (AV) applications and built on extensive market knowledge accumulated over a decade of TI’s leadership in the ADAS processor market. The unique combination high-performance compute, deep-learning engine, dedicated accelerators for signal and image processing in an functional safety compliant targeted architecture make the TDA4VM devices a great fit for several industrial applications, such as: Robotics, Machine Vision, Radar, and so on. The TDA4VM provides high performance compute for both traditional and deep learning algorithms at industry leading power/performance ratios with a high level of system integration to enable scalability and lower costs for advanced automotive platforms supporting multiple sensor modalities in centralized ECUs or stand-alone sensors. Key cores include next generation DSP with scalar and vector cores, dedicated deep learning and traditional algorithm accelerators, latest Arm and GPU processors for general compute, an integrated next generation imaging subsystem (ISP), video codec, Ethernet hub and isolated MCU island. All protected by automotive grade safety and security hardware accelerators.

Key Performance Cores Overview

The “C7x” next generation DSP combines TI’s industry leading DSP and EVE cores into a single higher performance core and adds floating point vector calculation capabilities, enabling backward compatibility for legacy code while simplifying software programming. The new “MMA” deep learning accelerator enables performance up to 8 TOPS within the lowest power envelope in the industry when operating at the typical automotive worst case junction temperature of 125°C. The dedicated ADAS/AV hardware accelerators provide vision pre-processing plus distance and motion processing with no impact on system performance.

General Compute Cores and Integration Overview

Separate dual core cluster configuration of Arm Cortex-A72 facilitates multi-OS applications with minimal need for a software hypervisor. Up to six Arm Cortex-R5F subsystems enable low-level, timing critical processing tasks to leave the Arm Cortex-A72’s unencumbered for applications. The integrated “8XE GE8430” GPU offers up to 100 GFLOPS to enable dynamic 3D rendering for enhanced viewing applications. Building on the existing world-class ISP, TI’s 7th generation ISP includes flexibility to process a broader sensor suite, support for higher bit depth, and features targeting analytics applications. Integrated diagnostics and safety features support operations up to ASIL-D/SIL-3 levels while the integrated security features protect data against modern day attacks. To enable systems requiring heavy data bandwidth, a PCIe hub and Gigabit Ethernet switch are included along with CSI-2 ports to support throughput for many sensor inputs. To further the integration, the TDA4VM family also includes an MCU island eliminating the need for an external system microcontroller.

Download

Similar products you might be interested in

open-in-new Compare products
Pin-for-pin with same functionality to the compared device.
NEW TDA4VM ACTIVE Dual Arm® Cortex®-A72, C7x DSP, and deep learning, vision and multimedia accelerators Pin-to-pin equivalent, removing the Q100 qualification

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 39
Type Title Date
* Data sheet TDA4VM Jacinto™ Processors for ADAS and Autonomous Vehicles Silicon Revisions 1.0 and 1.1 datasheet (Rev. J) 31 Aug 2021
* Errata J721E DRA829/TDA4VM Processors Silicon Revision 1.1/1.0 (Rev. B) 05 Apr 2022
Application note Dual-TDA4x System Solution 29 Apr 2022
Application note Jacinto7 HS Device Development 13 Jan 2022
User guide C6000-to-C7000 Migration User's Guide (Rev. D) 10 Jan 2022
Application note Enabling MAC2MAC Feature on Jacinto7 Soc 10 Jan 2022
White paper Designing an Efficient Edge AI System with Highly Integrated Processors 10 Dec 2021
Application note Jacinto7 HS Device Flashing Solution 09 Dec 2021
White paper Leverage Jacinto 7 Processors Functional Safety Features for Automotive Designs (Rev. A) 13 Oct 2021
User guide DRA829/TDA4VM Technical Reference Manual (Rev. C) 04 Oct 2021
Application note Jacinto 7 LPDDR4 Board Design and Layout Guidelines (Rev. B) 17 Aug 2021
Functional safety information TÜV SÜD Certificate for Functional Safety Software Development Process (Rev. A) 21 Jul 2021
Application note TISCI Server Integration in Vector AUTOSAR 16 Jul 2021
Application note TDA4 Flashing Techniques 08 Jul 2021
Application note J721E DDR Firewall Example 01 Jul 2021
Application note Hardware Accelerated Structure From Motion on TDA4VM 23 Apr 2021
Application note Efficient Visual Localization on TDA4VM (Rev. A) 19 Apr 2021
Application note TDA4VMid VPAC ISP Tuning Overview (Rev. A) 14 Jan 2021
White paper Jacinto™ 7 프로세서의 보안 구현 도구 04 Jan 2021
White paper Security Enablers on Jacinto™ 7 Processors 04 Jan 2021
White paper Sicherheitsaktivierung auf Jacinto™ 7-Prozessoren 04 Jan 2021
White paper Differenzierungsmöglichkeit durch MCU-Integration Prozessoren der Reihe Jacinto™ 22 Oct 2020
White paper Enabling Differentiation through MCU Integration on Jacinto™ 7 Processors 22 Oct 2020
White paper Jacinto™ 7 프로세서의 MCU 통합으로 차별화 지원 22 Oct 2020
Application note MMC SW Tuning Algorithm 18 Aug 2020
Application note OSPI Tuning Procedure 08 Jul 2020
White paper 360度環景系統與自動停車系統 01 Mar 2020
White paper 360도 인식이 가능한서라운드뷰와 자동 주차 시스템 01 Mar 2020
White paper 運用 Jacinto™ 7 處理器的汽車設計功能安全特性 01 Mar 2020
White paper 오토모티브 설계 시 Jacinto™ 7 프로세서의 기능적 안전성 활용하기 01 Mar 2020
White paper A 360-degree view of surround-view and automated parking systems 10 Dec 2019
More literature Jacinto 7 EVM Quick Start Guide for TDA4VM and DRA829V Processors 10 Oct 2019
Application note Jacinto 7 High-Speed Interface Layout Guidelines 04 Oct 2019
User guide VCOP Kernel-C to C7000 Migration Tool User's Guide (Rev. C) 11 Aug 2019
Technical article Bringing the next evolution of machine learning to the edge 27 Nov 2018
Technical article How quality assurance on the Processor SDK can improve software scalability 22 Aug 2018
Technical article Clove: Low-Power video solutions based on Sitara™ AM57x processors 21 Jul 2016
Technical article TI's new DSP Benchmark Site 08 Feb 2016
Certificate TÜV NORD Certificate for Functional Safety Software Development Process 03 Feb 2015

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

J721EXCPXEVM — Common processor board for Jacinto™ 7 processors

The J721EXCP01EVM common processor board for Jacinto™ 7 processors lets you evaluate vision analytics and networking applications in automotive and industrial markets. The common processor board is compatible with all Jacinto 7 processors system-on-modules (sold separately or as a (...)

Evaluation board

J721EXSOMXEVM — TDA4VM and DRA829V system-on-module

The J721EXSOMG01EVM system-on-module—when paired with the J721EXPCP01EVM common processor board—lets you evaluate TDA4VM and DRA829V processors in vision analytics and networking applications throughout automotive and industrial markets. These processors perform (...)

Evaluation board

J7EXPCXEVM — Gateway/Ethernet switch expansion card

Expand the capabilities of the J721EXCP01EVM common processor board for evaluating Jacinto 7 processors in vision analytics and networking applications in automotive and industrial markets with our Gateway/Ethernet switch expansion card.

Evaluation board

J7EXPEXEVM — Audio and display expansion card

Expand the capabilities of the J721EXCP01EVM common processor board for evaluating Jacinto 7 processors in vision analytics and networking applications in automotive and industrial markets with our audio and display expansion card.
Evaluation board

SK-TDA4VM — TDA4VM processor starter kit for Edge AI vision systems

Bring smart cameras, robots and intelligent machines to life with the TDA4VM processor starter kit. With a fast setup process and an assortment of foundational demos and tutorials, you can start prototyping a vision-based application in less than an hour. The kit enables 8 TOPS of deep learning (...)

Debug probe

TMDSEMU560V2STM-U — XDS560v2 System Trace USB Debug Probe

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

Development kit

D3-3P-TDAX-DK — D3 Engineering RVP-TDAx development kits

These rugged development kits are in a finalized product form-factor that lets you evaluate TI ADAS technology under realistic on-vehicle conditions. Accelerate development of autonomous vision-based navigation systems for automotive, transportation and materials handling applications. The (...)
From: D3 Engineering
Software development kit (SDK)

PROCESSOR-SDK-QNX-J721E QNX SDK for DRA829 & TDA4VM Jacinto™ Processors

Processor SDK RTOS (PSDK RTOS) can be used together with either Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX) to form a multi-processor software development platform for TDA4VM and DRA829 SoCs within TI’s Jacinto™ platform. The SDK provides a comprehensive (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA4VM Dual Arm® Cortex®-A72, C7x DSP, and deep learning, vision and multimedia accelerators TDA4VM-Q1 Next generation SoC family for L2/L3, near-field analytic systems using deep learning technologies
Hardware development
J721EXSOMXEVM TDA4VM and DRA829V system-on-module
Download options
Software development kit (SDK)

PROCESSOR-SDK-RTOS-J721E RTOS SDK for DRA829 & TDA4VM Jacinto™ Processors

Processor SDK RTOS (PSDK RTOS) can be used together with either Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX) to form a multi-processor software development platform for TDA4VM and DRA829 SoCs within TI’s Jacinto™ platform. The SDK provides a comprehensive (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA4VM Dual Arm® Cortex®-A72, C7x DSP, and deep learning, vision and multimedia accelerators TDA4VM-Q1 Next generation SoC family for L2/L3, near-field analytic systems using deep learning technologies
Hardware development
J721EXSOMXEVM TDA4VM and DRA829V system-on-module
Download options
Software development kit (SDK)

PROCESSOR-SDK-LINUX-J721E Linux SDK for DRA829 & TDA4VM Jacinto™ Processors

Processor SDK RTOS (PSDK RTOS) can be used together with either Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX) to form a multi-processor software development platform for TDA4VM and DRA829 SoCs within TI’s Jacinto™ platform. The SDK provides a comprehensive (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA4VM Dual Arm® Cortex®-A72, C7x DSP, and deep learning, vision and multimedia accelerators TDA4VM-Q1 Next generation SoC family for L2/L3, near-field analytic systems using deep learning technologies
Hardware development
J721EXSOMXEVM TDA4VM and DRA829V system-on-module
Download options
IDE, configuration, compiler or debugger

C7000-CGT C7000 code generation tools (CGT) - compiler

The TI C7000 C/C++ Compiler Tools support development of applications for TI C7000 Digital Signal Processor cores.

Code Composer Studio is the Integrated Development Environment (IDE) for TI embedded devices.  If you are looking to develop on a TI embedded device it is recommended to start (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
TDA4VM Dual Arm® Cortex®-A72, C7x DSP, and deep learning, vision and multimedia accelerators TDA4VM-Q1 Next generation SoC family for L2/L3, near-field analytic systems using deep learning technologies
Download options
Software development kit (SDK)

PROCESSOR-SDK-LINUX-RT-J721E Linux-RT SDK for DRA829 & TDA4VM Jacinto™ Processors

Processor SDK RTOS (PSDK RTOS) can be used together with either Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX) to form a multi-processor software development platform for TDA4VM and DRA829 SoCs within TI’s Jacinto™ platform. The SDK provides a comprehensive (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA4VM Dual Arm® Cortex®-A72, C7x DSP, and deep learning, vision and multimedia accelerators DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch TDA4VM-Q1 Next generation SoC family for L2/L3, near-field analytic systems using deep learning technologies
Hardware development
J721EXSOMXEVM TDA4VM and DRA829V system-on-module
Download options
IDE, configuration, compiler or debugger

SYSCONFIG Standalone desktop version of SysConfig

To help simplify configuration challenges and accelerate software development, we created SysConfig, an intuitive and comprehensive collection of graphical utilities for configuring pins, peripherals, radios, subsystems, and other components.  SysConfig helps you manage, expose and resolve (...)

Supported products & hardware

Supported products & hardware

Products
C2000 real-time microcontrollers
TMS320F280037C C2000™ 32-bit MCU 120-MHz 256-KB flash, FPU, TMU with CLA, CLB, AES and CAN-FD TMS320F280039C C2000™ 32-bit MCU 120-MHz 384-KB flash, FPU, TMU with CLA, CLB, AES and CAN-FD TMS320F28384D C2000™ 32-bit MCU with connectivity manager, 2x C28x+CLA CPU, 1.5-MB flash, FPU64, Ethernet TMS320F28384D-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 2x C28x+CLA CPU, 1.5MB flash, FPU64, Ethernet TMS320F28384S C2000™ 32-bit MCU with connectivity manager, 1x C28x+CLA CPU, 1.0-MB flash, FPU64, Ethernet TMS320F28384S-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 1x C28x+CLA CPU, 1MB flash, FPU64, Ethernet TMS320F28386D C2000™ 32-bit MCU with connectivity manager, 2x C28x+CLA CPU, 1.5-MB flash, FPU64, CLB, Ethernet TMS320F28386D-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 2x C28x+CLA CPU, 1.5MB flash, FPU64, CLB, Eth TMS320F28386S C2000™ 32-bit MCU with connectivity manager, 1x C28x+CLA CPU, 1.0-MB flash, FPU64, CLB, Ethernet TMS320F28386S-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 1x C28x+CLA CPU, 1MB flash, FPU64, CLB, Ethe TMS320F28388D C2000™ 32-bit MCU w/ connectivity manager, 2x C28x+CLA CPU, 1.5-MB flash, FPU64, CLB, ENET, EtherCAT TMS320F28388S C2000™ 32-bit MCU w/ connectivity manager, 1x C28x+CLA CPU, 1.0-MB flash, FPU64, CLB, ENET, EtherCAT
Automotive mmWave radar sensors
AWR1443 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating MCU and hardware accelerator AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR2944 Automotive 2nd-generation, 76-GHz to 81-GHz, high-performance SoC for corner and long-range radar AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator
Wi-Fi products
CC3220MOD SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi CERTIFIED™ wireless module CC3220MODA SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi CERTIFIED™ wireless module with antenna CC3220R SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 6 TLS/SSL and 256kB RAM CC3220S SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with secure boot and 256kB RAM CC3220SF SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 1MB Flash and 256kB RAM CC3235MODAS SimpleLink™ Wi-Fi CERTIFIED™ dual-band wireless antenna module solution CC3235MODASF SimpleLink™ Wi-Fi CERTIFIED™ dual-band wireless antenna module solution with 1MB XIP Flash CC3235MODS SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi CERTIFIED™ wireless module with 256kB RAM CC3235MODSF SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi CERTIFIED™ wireless module with 1MB Flash CC3235S SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi® wireless MCU with 256kB RAM CC3235SF SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi® wireless MCU with 1MB Flash
Arm-based microcontrollers
AM2431 Arm® Cortex-R5F based MCU with industrial communications and security up to 800 MHz AM2432 Dual-core Arm® Cortex-R5F based MCU with industrial communications and security up to 800 MHz AM2434 Quad-core Arm® Cortex-R5F based MCU with industrial communications and security up to 800 MHz TM4C1230E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1232D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1233C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1236D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1236H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1237D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 144-pin LQFP TM4C123BH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 144-pin LQFP TM4C123FH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123GH6PM 32-bit Arm Cortex-M4F based MCU with 80 -MHz, 256 -KB Flash, 32 -KB RAM, 2 CAN, RTC, USB, 64-Pin TM4C123GH6ZXR 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 168-pin BGA TM4C1290NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1294KCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1294NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHZ, 1-MB flash, 256-KB RAM, USB, ENET MAC+PHY TM4C129DNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129XNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-KB RAM, USB, ENET MAC+PHY, LCD, AES
Arm-based processors
AM3351 Sitara processor: Arm Cortex-A8, 1Gb Ethernet, display AM3352 Sitara processor: Arm Cortex-A8, 1Gb Ethernet, display, CAN AM3354 Sitara processor: Arm Cortex-A8, 3D graphics, CAN AM3356 Sitara processor: Arm Cortex-A8, PRU-ICSS, CAN AM3357 Sitara processor: Arm Cortex-A8, EtherCAT, PRU-ICSS, CAN AM3358 Sitara processor: Arm Cortex-A8, 3D graphics, PRU-ICSS, CAN AM3358-EP Sitara processor: Arm Cortex-A8, 3D, PRU-ICSS, HiRel, CAN AM3359 Sitara processor: Arm Cortex-A8, EtherCAT, 3D, PRU-ICSS, CAN AM4372 Sitara processor: Arm Cortex-A9 AM4376 Sitara processor: Arm Cortex-A9, PRU-ICSS AM4377 Sitara processor: Arm Cortex-A9, PRU-ICSS, EtherCAT AM4378 Sitara processor: Arm Cortex-A9, PRU-ICSS, 3D graphics AM4379 Sitara processor: Arm Cortex-A9, PRU-ICSS, EtherCAT, 3D graphics AM5708 Sitara processor: cost optimized Arm Cortex-A15 & DSP, multimedia and secure boot AM5718-HIREL AM5718-HIREL Sitara™ Processors Silicon Revision 2.0 AM5726 Sitara processor: dual Arm Cortex-A15 & dual DSP AM5728 Sitara processor: dual Arm Cortex-A15 & dual DSP, multimedia AM6411 Single-core 64-bit Arm® Cortex®-A53, single-core Cortex-R5F, PCIe, USB 3.0 and security AM6412 Dual-core 64-bit Arm® Cortex®-A53, single-core Cortex-R5F, PCIe, USB 3.0 and security AM6421 Single-core 64-bit Arm® Cortex®-A53, dual-core Cortex-R5F, PCIe, USB 3.0 and security AM6441 Single-core 64-bit Arm® Cortex®-A53, quad-core Cortex-R5F, PCIe, USB 3.0 and security AM6442 Dual-core 64-bit Arm® Cortex®-A53, quad-core Cortex-R5F, PCIe, USB 3.0 and security AM6548 Sitara processor: quad Arm Cortex-A53 & dual Arm Cortex-R5F, Gigabit PRU-ICSS, 3D graphics AMIC120 Sitara processor; Arm Cortex-A9; 10+ Ethernet protocols, encoder protocols DRA710 600 MHz Arm Cortex-A15 SoC processor with graphics for infotainment & cluster DRA714 600 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA716 800 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA722 800 MHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA724 1 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA726 1.5 GHz Arm Cortex-A15 with Graphics & DSP for Infotainment & Cluster DRA750 Dual 1.0 GHz A15, dual DSP, extended peripherals SoC processor for infotainment DRA756 Dual 1.5 GHz A15, dual EVE, dual DSP, extended peripherals SoC processor for infotainment DRA75P Multi-core SoC processors with ISP and pin-compatible with DRA75x SoCs for infotainment applications DRA790 300 MHz Arm Cortex-A15 SoC processor w/ 500 MHz C66x DSP for audio amplifier DRA791 300 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA793 500 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches TDA2E SoC processors with graphics and video acceleration for ADAS applications (23mm package) TDA2HF SoC processor w/ full-featured video & vision acceleration for ADAS applications TDA2HV SoC processor w/ video & vision acceleration for ADAS applications TDA2SA SoC processor w/ highly-featured video & vision acceleration for ADAS applications TDA2SG SoC processor w/ highly-featured graphics, video & vision acceleration for ADAS applications TDA2SX SoC processor w/ full-featured graphics, video & vision acceleration for ADAS applications TDA4VM Dual Arm® Cortex®-A72, C7x DSP, and deep learning, vision and multimedia accelerators TDA4VM-Q1 Next generation SoC family for L2/L3, near-field analytic systems using deep learning technologies
Industrial mmWave radar sensors
IWR1443 Single-chip 76-GHz to 81-GHz mmWave sensor integrating MCU and hardware accelerator IWR1642 Single-chip 76-GHz to 81-GHz mmWave sensor integrating DSP and MCU IWR1843 Single-chip 76-GHz to 81-GHz industrial radar sensor integrating DSP, MCU and radar accelerator IWR6443 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating MCU and hardware accelerator IWR6843 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating processing capability IWR6843AOP Single-chip 60-GHz to 64-GHz intelligent mmWave sensor with integrated antenna on package (AoP)
Multi-protocol products
CC1352P7 SimpleLink™ Arm® Cortex®-M4F multiprotocol sub-1 GHz and 2.4-GHz wireless MCU integrated power amp CC1352R SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU with 352kB Flash CC2652R SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with 352kB Flash CC2652RSIP SimpleLink™ multiprotocol 2.4-GHz wireless system-in-package module with 352-KB memory
Sub-1 GHz products
CC1310 SimpleLink™ 32-bit Arm Cortex-M3 Sub-1 GHz wireless MCU with 128kB Flash
Bluetooth products
CC2640R2F SimpleLink™ 32-bit Arm® Cortex®-M3 Bluetooth® 5.1 Low Energy wireless MCU with 128-kB flash CC2640R2L SimpleLink™ Bluetooth® 5.1 Low Energy wireless MCU CC2642R SimpleLink™ 32-bit Arm Cortex-M4F Bluetooth® Low Energy wireless MCU with 352kB Flash CC2652RB SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with crystal-less BAW resonator
Wi-SUN products
Digital signal processors (DSPs)
DM505 SoC for vision analytics 15mm package DRA783 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA785 SoC processor w/ 2x 1000 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA786 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA787 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA788 SoC processor w/ 2x 1000 MHz C66x DSP and 1x EVE and 2 dual Arm Cortex-M4 for audio amplifier TDA3LA Low power SoC w/ vision acceleration for ADAS applications TDA3LX Low power SoC w/ processing, imaging & vision acceleration for ADAS applications TDA3MA Low power SoC w/ full-featured processing & vision acceleration for ADAS applications
Develop in the cloud Download options
IDE, configuration, compiler or debugger

CCSTUDIO Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio؜™ software is an integrated development environment (IDE) that supports TI's microcontroller (MCU) and embedded processor portfolios. Code Composer Studio software comprises a suite of tools used to develop and debug embedded applications. The software includes an (...)
Supported products & hardware

Supported products & hardware

This design resource supports most products in these categories.

Check the product details page to verify support.

parametric-filter MSP430 microcontrollers
parametric-filter Arm-based microcontrollers
parametric-filter Arm-based processors
parametric-filter Signal conditioners
parametric-filter mmWave radar sensors
parametric-filter Zigbee products
parametric-filter Wi-Fi products
parametric-filter Thread products
parametric-filter Other wireless technologies
parametric-filter Sub-1 GHz products
parametric-filter Multi-protocol products
parametric-filter Bluetooth products
Products
Automotive mmWave radar sensors
AWR1243 76-GHz to 81-GHz high-performance automotive MMIC AWR1443 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating MCU and hardware accelerator AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR1843AOP Single-chip 76-GHz to 81-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR2243 76-GHz to 81-GHz automotive second-generation high-performance MMIC AWR2944 Automotive 2nd-generation, 76-GHz to 81-GHz, high-performance SoC for corner and long-range radar AWR6443 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating MCU and radar accelerator AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843AOP Single-chip 60-GHz to 64-GHz automotive radar sensor integrating antenna on package, DSP and MCU
Industrial mmWave radar sensors
IWR1443 Single-chip 76-GHz to 81-GHz mmWave sensor integrating MCU and hardware accelerator IWR1642 Single-chip 76-GHz to 81-GHz mmWave sensor integrating DSP and MCU IWR1843 Single-chip 76-GHz to 81-GHz industrial radar sensor integrating DSP, MCU and radar accelerator IWR6443 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating MCU and hardware accelerator IWR6843 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating processing capability IWR6843AOP Single-chip 60-GHz to 64-GHz intelligent mmWave sensor with integrated antenna on package (AoP)
Evaluate in the cloud Download options
Application software & framework

HLA-3P-ADAS-FWD-CAM-ALGORITHMS — Hella Aglaia TDAx-based ADAS algorithms for front camera

HELLA Aglaia develops embedded software solutions for advanced driver assistance systems – compliant with certified industry standards and ready for hardware integration.

Leveraging the powerful deep learning capabilities of the TDA4x processor family, HELLA Aglaia’s robust image processing (...)

From: Hella Aglaia
Application software & framework

MOMENTA-3P-DL-ALGORITHMS — Momenta deep learning algorithms for ADAS forward camera applications on TDA4x processors

Momenta’s deep learning based algorithms for ADAS applications make full use of the DSP cores and accelerators on TDA4x for neural network processing. Designed to achieve market leading computational and power efficiency, Momenta’s algorithms offer an array of pre- and post-imaging (...)
From: Momenta
Driver or library

WIND-3P-VXWORKS-LINUX-OS — Wind River Processors VxWorks and Linux operating systems

Wind River is a global leader in delivering software for the Internet of Things (IoT). The company’s technology has been powering the safest, most secure devices in the world since 1981 and today is found in more than 2 billion products. Wind River offers a comprehensive edge-to-cloud product (...)
From: Wind River Systems
Firmware

VCTR-3P-AUTOSAR — Vector AUTOSAR, HSM, and networking software components for the automotive industry

Vector is the leading manufacturer of software tools and embedded components for the development of electronic systems and networking from CAN to Automotive Ethernet. Vector has been a partner of automotive manufacturers, suppliers and related industries since 1988, providing software components, (...)
From: Vector Informatik GmbH
Operating system (OS)

GHS-3P-INTEGRITY-RTOS — Green Hills INTEGRITY RTOS

The flagship of Green Hills Software operating systems—the INTEGRITY RTOS—is built around a partitioning architecture to provide embedded systems with total reliability, absolute security, and maximum real-time performance. With its leadership pedigree underscored by certifications in a (...)
From: Green Hills Software
Operating system (OS)

QNX-3P-NEUTRINO-RTOS — QNX Neutrino RTOS

The QNX Neutrino® Realtime Operating System (RTOS) is a full-featured and robust RTOS designed to enable the next-generation of products for automotive, medical, transportation, military and industrial embedded systems. Microkernel design and modular architecture enable customers to create (...)
From: QNX Software Systems
Software programming tool

TI-EDGE-AI-CLOUD — Evaluate deep learning inference performance on TDA4x processors

TI Edge AI Cloud is a free online service that lets you evaluate accelerated deep learning inference on TDA4x processors. You do not need to purchase an evaluation board. The service is python-based; and it only takes a few minutes to login, deploy a model, and get a variety of performance (...)
Design tool

PROCESSORS-3P-SEARCH — Arm-based MPU, arm-based MCU and DSP third-party search tool

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)
Package Pins Download
FCBGA (ALF) 827 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos