SPRY303F May   2019  – February 2025 AM3351 , AM3352 , AM3354 , AM3356 , AM3357 , AM3358 , AM3358-EP , AM3359 , AM4372 , AM4376 , AM4377 , AM4378 , AM4379 , AM5706 , AM5708 , AM5746 , AM5748 , AM623 , AM625 , AM625-Q1 , AM625SIP , AM62A1-Q1 , AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1 , AM62L , AM62P , AM62P-Q1 , AM6411 , AM6412 , AM6421 , AM6422 , AM6441 , AM6442 , AM6526 , AM6528 , AM6546 , AM6548 , AM68 , AM68A , AM69 , AM69A , DRA821U , DRA821U-Q1 , DRA829J , DRA829J-Q1 , DRA829V , DRA829V-Q1 , TDA4VM , TDA4VM-Q1

 

  1.   1
  2.   Introduction
  3.   Risk management
  4.   What to protect?
  5.   How much security?
  6.   Architectural considerations
  7.   The security pyramid
  8.   Secure boot
  9.   Cryptographic acceleration
  10.   Device-ID and keys
  11.   Debug security
  12.   Trusted execution environment
  13.   External memory protection
  14.   Network security
  15.   Secure storage
  16.   Initial secure programming
  17.   Secure firmware and software updates
  18.   Software Intellectual Property (IP) protection
  19.   Physical security
  20.   Enclosure protection
  21.   Where to start with embedded security?
  22.   Security enablers for TI application processors
  23.   Conclusion
  24.   References

Risk management

Security threats are always present and, with the rapid proliferation of the Internet of Things (IoT), those threats can come from anywhere, even inconspicuous and low-cost end-node devices. The basic security question is not whether a system will be attacked, but rather, when it will be. This leads to the conclusion that security is just as much about risk management as it is protection.

Given that the system may come under attack, how can system designers reduce the risk of a security breach to the absolute lowest level?