Product details

Arm CPU 1 Arm Cortex-A8 Arm MHz (Max.) 600, 800, 1000 Co-processor(s) PRU-ICSS CPU 32-bit Graphics acceleration 1 3D Display type 1 LCD Protocols Ethernet, EtherNet/IP, Profinet, Sercos, Profibus Ethernet MAC 2-Port 10/100 PRU EMAC, 2-Port 1Gb switch Hardware accelerators PRU-ICSS, SGX530 Graphics, Security Accelerator Features Networking Operating system Linux, RTOS Security Cryptography, Device identity Rating Catalog Power supply solution TPS65216, TPS65218D0 Operating temperature range (C) -40 to 105, 0 to 90
Arm CPU 1 Arm Cortex-A8 Arm MHz (Max.) 600, 800, 1000 Co-processor(s) PRU-ICSS CPU 32-bit Graphics acceleration 1 3D Display type 1 LCD Protocols Ethernet, EtherNet/IP, Profinet, Sercos, Profibus Ethernet MAC 2-Port 10/100 PRU EMAC, 2-Port 1Gb switch Hardware accelerators PRU-ICSS, SGX530 Graphics, Security Accelerator Features Networking Operating system Linux, RTOS Security Cryptography, Device identity Rating Catalog Power supply solution TPS65216, TPS65218D0 Operating temperature range (C) -40 to 105, 0 to 90
NFBGA (ZCE) 298 169 mm² 13 x 13 NFBGA (ZCZ) 324 NFBGA (ZCZ) 324 225 mm² 15 x 15
  • Up to 1-GHz Sitara™ ARM® Cortex®-A8 32‑Bit RISC Processor
    • NEON™ SIMD Coprocessor
    • 32KB of L1 Instruction and 32KB of Data Cache With Single-Error Detection (Parity)
    • 256KB of L2 Cache With Error Correcting Code (ECC)
    • 176KB of On-Chip Boot ROM
    • 64KB of Dedicated RAM
    • Emulation and Debug - JTAG
    • Interrupt Controller (up to 128 Interrupt Requests)
  • On-Chip Memory (Shared L3 RAM)
    • 64KB of General-Purpose On-Chip Memory Controller (OCMC) RAM
    • Accessible to All Masters
    • Supports Retention for Fast Wakeup
  • External Memory Interfaces (EMIF)
    • mDDR(LPDDR), DDR2, DDR3, DDR3L Controller:
      • mDDR: 200-MHz Clock (400-MHz Data Rate)
      • DDR2: 266-MHz Clock (532-MHz Data Rate)
      • DDR3: 400-MHz Clock (800-MHz Data Rate)
      • DDR3L: 400-MHz Clock (800-MHz Data Rate)
      • 16-Bit Data Bus
      • 1GB of Total Addressable Space
      • Supports One x16 or Two x8 Memory Device Configurations
    • General-Purpose Memory Controller (GPMC)
      • Flexible 8-Bit and 16-Bit Asynchronous Memory Interface With up to Seven Chip Selects (NAND, NOR, Muxed-NOR, SRAM)
      • Uses BCH Code to Support 4-, 8-, or 16-Bit ECC
      • Uses Hamming Code to Support 1-Bit ECC
    • Error Locator Module (ELM)
      • Used in Conjunction With the GPMC to Locate Addresses of Data Errors from Syndrome Polynomials Generated Using a BCH Algorithm
      • Supports 4-, 8-, and 16-Bit per 512-Byte Block Error Location Based on BCH Algorithms
  • Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU-ICSS)
    • Supports Protocols such as EtherCAT®, PROFIBUS, PROFINET, EtherNet/IP™, and More
    • Two Programmable Real-Time Units (PRUs)
      • 32-Bit Load/Store RISC Processor Capable of Running at 200 MHz
      • 8KB of Instruction RAM With Single-Error Detection (Parity)
      • 8KB of Data RAM With Single-Error Detection (Parity)
      • Single-Cycle 32-Bit Multiplier With 64-Bit Accumulator
      • Enhanced GPIO Module Provides Shift-In/Out Support and Parallel Latch on External Signal
    • 12KB of Shared RAM With Single-Error Detection (Parity)
    • Three 120-Byte Register Banks Accessible by Each PRU
    • Interrupt Controller (INTC) for Handling System Input Events
    • Local Interconnect Bus for Connecting Internal and External Masters to the Resources Inside the PRU-ICSS
    • Peripherals Inside the PRU-ICSS:
      • One UART Port With Flow Control Pins, Supports up to 12 Mbps
      • One Enhanced Capture (eCAP) Module
      • Two MII Ethernet Ports that Support Industrial Ethernet, such as EtherCAT
      • One MDIO Port
  • Power, Reset, and Clock Management (PRCM) Module
    • Controls the Entry and Exit of Stand-By and Deep-Sleep Modes
    • Responsible for Sleep Sequencing, Power Domain Switch-Off Sequencing, Wake-Up Sequencing, and Power Domain Switch-On Sequencing
    • Clocks
      • Integrated 15- to 35-MHz High-Frequency Oscillator Used to Generate a Reference Clock for Various System and Peripheral Clocks
      • Supports Individual Clock Enable and Disable Control for Subsystems and Peripherals to Facilitate Reduced Power Consumption
      • Five ADPLLs to Generate System Clocks (MPU Subsystem, DDR Interface, USB and Peripherals [MMC and SD, UART, SPI, I2C], L3, L4, Ethernet, GFX [SGX530], LCD Pixel Clock)
    • Power
      • Two Nonswitchable Power Domains (Real-Time Clock [RTC], Wake-Up Logic [WAKEUP])
      • Three Switchable Power Domains (MPU Subsystem [MPU], SGX530 [GFX], Peripherals and Infrastructure [PER])
      • Implements SmartReflex™ Class 2B for Core Voltage Scaling Based On Die Temperature, Process Variation, and Performance (Adaptive Voltage Scaling [AVS])
      • Dynamic Voltage Frequency Scaling (DVFS)
  • Real-Time Clock (RTC)
    • Real-Time Date (Day-Month-Year-Day of Week) and Time (Hours-Minutes-Seconds) Information
    • Internal 32.768-kHz Oscillator, RTC Logic and 1.1-V Internal LDO
    • Independent Power-on-Reset (RTC_PWRONRSTn) Input
    • Dedicated Input Pin (EXT_WAKEUP) for External Wake Events
    • Programmable Alarm Can be Used to Generate Internal Interrupts to the PRCM (for Wakeup) or Cortex-A8 (for Event Notification)
    • Programmable Alarm Can be Used With External Output (PMIC_POWER_EN) to Enable the Power Management IC to Restore Non-RTC Power Domains
  • Peripherals
    • Up to Two USB 2.0 High-Speed DRD (Dual-Role Device) Ports With Integrated PHY
    • Up to Two Industrial Gigabit Ethernet MACs (10, 100, 1000 Mbps)
      • Integrated Switch
      • Each MAC Supports MII, RMII, RGMII, and MDIO Interfaces
      • Ethernet MACs and Switch Can Operate Independent of Other Functions
      • IEEE 1588v1 Precision Time Protocol (PTP)
    • Up to Two Controller-Area Network (CAN) Ports
      • Supports CAN Version 2 Parts A and B
    • Up to Two Multichannel Audio Serial Ports (McASPs)
      • Transmit and Receive Clocks up to 50 MHz
      • Up to Four Serial Data Pins per McASP Port With Independent TX and RX Clocks
      • Supports Time Division Multiplexing (TDM), Inter-IC Sound (I2S), and Similar Formats
      • Supports Digital Audio Interface Transmission (SPDIF, IEC60958-1, and AES-3 Formats)
      • FIFO Buffers for Transmit and Receive (256 Bytes)
    • Up to Six UARTs
      • All UARTs Support IrDA and CIR Modes
      • All UARTs Support RTS and CTS Flow Control
      • UART1 Supports Full Modem Control
    • Up to Two Master and Slave McSPI Serial Interfaces
      • Up to Two Chip Selects
      • Up to 48 MHz
    • Up to Three MMC, SD, SDIO Ports
      • 1-, 4- and 8-Bit MMC, SD, SDIO Modes
      • MMCSD0 has Dedicated Power Rail for 1.8‑V or 3.3-V Operation
      • Up to 48-MHz Data Transfer Rate
      • Supports Card Detect and Write Protect
      • Complies With MMC4.3, SD, SDIO 2.0 Specifications
    • Up to Three I2C Master and Slave Interfaces
      • Standard Mode (up to 100 kHz)
      • Fast Mode (up to 400 kHz)
    • Up to Four Banks of General-Purpose I/O (GPIO) Pins
      • 32 GPIO Pins per Bank (Multiplexed With Other Functional Pins)
      • GPIO Pins Can be Used as Interrupt Inputs (up to Two Interrupt Inputs per Bank)
    • Up to Three External DMA Event Inputs that can Also be Used as Interrupt Inputs
    • Eight 32-Bit General-Purpose Timers
      • DMTIMER1 is a 1-ms Timer Used for Operating System (OS) Ticks
      • DMTIMER4–DMTIMER7 are Pinned Out
    • One Watchdog Timer
    • SGX530 3D Graphics Engine
      • Tile-Based Architecture Delivering up to 20 Million Polygons per Second
      • Universal Scalable Shader Engine (USSE) is a Multithreaded Engine Incorporating Pixel and Vertex Shader Functionality
      • Advanced Shader Feature Set in Excess of Microsoft VS3.0, PS3.0, and OGL2.0
      • Industry Standard API Support of Direct3D Mobile, OGL-ES 1.1 and 2.0, and OpenMax
      • Fine-Grained Task Switching, Load Balancing, and Power Management
      • Advanced Geometry DMA-Driven Operation for Minimum CPU Interaction
      • Programmable High-Quality Image Anti-Aliasing
      • Fully Virtualized Memory Addressing for OS Operation in a Unified Memory Architecture
    • LCD Controller
      • Up to 24-Bit Data Output; 8 Bits per Pixel (RGB)
      • Resolution up to 2048 × 2048 (With Maximum 126-MHz Pixel Clock)
      • Integrated LCD Interface Display Driver (LIDD) Controller
      • Integrated Raster Controller
      • Integrated DMA Engine to Pull Data from the External Frame Buffer Without Burdening the Processor via Interrupts or a Firmware Timer
      • 512-Word Deep Internal FIFO
      • Supported Display Types:
        • Character Displays - Uses LIDD Controller to Program these Displays
        • Passive Matrix LCD Displays - Uses LCD Raster Display Controller to Provide Timing and Data for Constant Graphics Refresh to a Passive Display
        • Active Matrix LCD Displays - Uses External Frame Buffer Space and the Internal DMA Engine to Drive Streaming Data to the Panel
    • 12-Bit Successive Approximation Register (SAR) ADC
      • 200K Samples per Second
      • Input can be Selected from any of the Eight Analog Inputs Multiplexed Through an 8:1 Analog Switch
      • Can be Configured to Operate as a 4-Wire, 5-Wire, or 8-Wire Resistive Touch Screen Controller (TSC) Interface
    • Up to Three 32-Bit eCAP Modules
      • Configurable as Three Capture Inputs or Three Auxiliary PWM Outputs
    • Up to Three Enhanced High-Resolution PWM Modules (eHRPWMs)
      • Dedicated 16-Bit Time-Base Counter With Time and Frequency Controls
      • Configurable as Six Single-Ended, Six Dual-Edge Symmetric, or Three Dual-Edge Asymmetric Outputs
    • Up to Three 32-Bit Enhanced Quadrature Encoder Pulse (eQEP) Modules
  • Device Identification
    • Contains Electrical Fuse Farm (FuseFarm) of Which Some Bits are Factory Programmable
      • Production ID
      • Device Part Number (Unique JTAG ID)
      • Device Revision (Readable by Host ARM)
  • Debug Interface Support
    • JTAG and cJTAG for ARM (Cortex-A8 and PRCM), PRU-ICSS Debug
    • Supports Device Boundary Scan
    • Supports IEEE 1500
  • DMA
    • On-Chip Enhanced DMA Controller (EDMA) has Three Third-Party Transfer Controllers (TPTCs) and One Third-Party Channel Controller (TPCC), Which Supports up to 64 Programmable Logical Channels and Eight QDMA Channels. EDMA is Used for:
      • Transfers to and from On-Chip Memories
      • Transfers to and from External Storage (EMIF, GPMC, Slave Peripherals)
  • Inter-Processor Communication (IPC)
    • Integrates Hardware-Based Mailbox for IPC and Spinlock for Process Synchronization Between Cortex-A8, PRCM, and PRU-ICSS
      • Mailbox Registers that Generate Interrupts
        • Four Initiators (Cortex-A8, PRCM, PRU0, PRU1)
      • Spinlock has 128 Software-Assigned Lock Registers
  • Security
    • Crypto Hardware Accelerators (AES, SHA, RNG)
    • Secure Boot (optional; requires custom part engagement with TI)
  • Boot Modes
    • Boot Mode is Selected Through Boot Configuration Pins Latched on the Rising Edge of the PWRONRSTn Reset Input Pin
  • Packages:
    • 298-Pin S-PBGA-N298 Via Channel Package
      (ZCE Suffix), 0.65-mm Ball Pitch
    • 324-Pin S-PBGA-N324 Package
      (ZCZ Suffix), 0.80-mm Ball Pitch
  • Up to 1-GHz Sitara™ ARM® Cortex®-A8 32‑Bit RISC Processor
    • NEON™ SIMD Coprocessor
    • 32KB of L1 Instruction and 32KB of Data Cache With Single-Error Detection (Parity)
    • 256KB of L2 Cache With Error Correcting Code (ECC)
    • 176KB of On-Chip Boot ROM
    • 64KB of Dedicated RAM
    • Emulation and Debug - JTAG
    • Interrupt Controller (up to 128 Interrupt Requests)
  • On-Chip Memory (Shared L3 RAM)
    • 64KB of General-Purpose On-Chip Memory Controller (OCMC) RAM
    • Accessible to All Masters
    • Supports Retention for Fast Wakeup
  • External Memory Interfaces (EMIF)
    • mDDR(LPDDR), DDR2, DDR3, DDR3L Controller:
      • mDDR: 200-MHz Clock (400-MHz Data Rate)
      • DDR2: 266-MHz Clock (532-MHz Data Rate)
      • DDR3: 400-MHz Clock (800-MHz Data Rate)
      • DDR3L: 400-MHz Clock (800-MHz Data Rate)
      • 16-Bit Data Bus
      • 1GB of Total Addressable Space
      • Supports One x16 or Two x8 Memory Device Configurations
    • General-Purpose Memory Controller (GPMC)
      • Flexible 8-Bit and 16-Bit Asynchronous Memory Interface With up to Seven Chip Selects (NAND, NOR, Muxed-NOR, SRAM)
      • Uses BCH Code to Support 4-, 8-, or 16-Bit ECC
      • Uses Hamming Code to Support 1-Bit ECC
    • Error Locator Module (ELM)
      • Used in Conjunction With the GPMC to Locate Addresses of Data Errors from Syndrome Polynomials Generated Using a BCH Algorithm
      • Supports 4-, 8-, and 16-Bit per 512-Byte Block Error Location Based on BCH Algorithms
  • Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU-ICSS)
    • Supports Protocols such as EtherCAT®, PROFIBUS, PROFINET, EtherNet/IP™, and More
    • Two Programmable Real-Time Units (PRUs)
      • 32-Bit Load/Store RISC Processor Capable of Running at 200 MHz
      • 8KB of Instruction RAM With Single-Error Detection (Parity)
      • 8KB of Data RAM With Single-Error Detection (Parity)
      • Single-Cycle 32-Bit Multiplier With 64-Bit Accumulator
      • Enhanced GPIO Module Provides Shift-In/Out Support and Parallel Latch on External Signal
    • 12KB of Shared RAM With Single-Error Detection (Parity)
    • Three 120-Byte Register Banks Accessible by Each PRU
    • Interrupt Controller (INTC) for Handling System Input Events
    • Local Interconnect Bus for Connecting Internal and External Masters to the Resources Inside the PRU-ICSS
    • Peripherals Inside the PRU-ICSS:
      • One UART Port With Flow Control Pins, Supports up to 12 Mbps
      • One Enhanced Capture (eCAP) Module
      • Two MII Ethernet Ports that Support Industrial Ethernet, such as EtherCAT
      • One MDIO Port
  • Power, Reset, and Clock Management (PRCM) Module
    • Controls the Entry and Exit of Stand-By and Deep-Sleep Modes
    • Responsible for Sleep Sequencing, Power Domain Switch-Off Sequencing, Wake-Up Sequencing, and Power Domain Switch-On Sequencing
    • Clocks
      • Integrated 15- to 35-MHz High-Frequency Oscillator Used to Generate a Reference Clock for Various System and Peripheral Clocks
      • Supports Individual Clock Enable and Disable Control for Subsystems and Peripherals to Facilitate Reduced Power Consumption
      • Five ADPLLs to Generate System Clocks (MPU Subsystem, DDR Interface, USB and Peripherals [MMC and SD, UART, SPI, I2C], L3, L4, Ethernet, GFX [SGX530], LCD Pixel Clock)
    • Power
      • Two Nonswitchable Power Domains (Real-Time Clock [RTC], Wake-Up Logic [WAKEUP])
      • Three Switchable Power Domains (MPU Subsystem [MPU], SGX530 [GFX], Peripherals and Infrastructure [PER])
      • Implements SmartReflex™ Class 2B for Core Voltage Scaling Based On Die Temperature, Process Variation, and Performance (Adaptive Voltage Scaling [AVS])
      • Dynamic Voltage Frequency Scaling (DVFS)
  • Real-Time Clock (RTC)
    • Real-Time Date (Day-Month-Year-Day of Week) and Time (Hours-Minutes-Seconds) Information
    • Internal 32.768-kHz Oscillator, RTC Logic and 1.1-V Internal LDO
    • Independent Power-on-Reset (RTC_PWRONRSTn) Input
    • Dedicated Input Pin (EXT_WAKEUP) for External Wake Events
    • Programmable Alarm Can be Used to Generate Internal Interrupts to the PRCM (for Wakeup) or Cortex-A8 (for Event Notification)
    • Programmable Alarm Can be Used With External Output (PMIC_POWER_EN) to Enable the Power Management IC to Restore Non-RTC Power Domains
  • Peripherals
    • Up to Two USB 2.0 High-Speed DRD (Dual-Role Device) Ports With Integrated PHY
    • Up to Two Industrial Gigabit Ethernet MACs (10, 100, 1000 Mbps)
      • Integrated Switch
      • Each MAC Supports MII, RMII, RGMII, and MDIO Interfaces
      • Ethernet MACs and Switch Can Operate Independent of Other Functions
      • IEEE 1588v1 Precision Time Protocol (PTP)
    • Up to Two Controller-Area Network (CAN) Ports
      • Supports CAN Version 2 Parts A and B
    • Up to Two Multichannel Audio Serial Ports (McASPs)
      • Transmit and Receive Clocks up to 50 MHz
      • Up to Four Serial Data Pins per McASP Port With Independent TX and RX Clocks
      • Supports Time Division Multiplexing (TDM), Inter-IC Sound (I2S), and Similar Formats
      • Supports Digital Audio Interface Transmission (SPDIF, IEC60958-1, and AES-3 Formats)
      • FIFO Buffers for Transmit and Receive (256 Bytes)
    • Up to Six UARTs
      • All UARTs Support IrDA and CIR Modes
      • All UARTs Support RTS and CTS Flow Control
      • UART1 Supports Full Modem Control
    • Up to Two Master and Slave McSPI Serial Interfaces
      • Up to Two Chip Selects
      • Up to 48 MHz
    • Up to Three MMC, SD, SDIO Ports
      • 1-, 4- and 8-Bit MMC, SD, SDIO Modes
      • MMCSD0 has Dedicated Power Rail for 1.8‑V or 3.3-V Operation
      • Up to 48-MHz Data Transfer Rate
      • Supports Card Detect and Write Protect
      • Complies With MMC4.3, SD, SDIO 2.0 Specifications
    • Up to Three I2C Master and Slave Interfaces
      • Standard Mode (up to 100 kHz)
      • Fast Mode (up to 400 kHz)
    • Up to Four Banks of General-Purpose I/O (GPIO) Pins
      • 32 GPIO Pins per Bank (Multiplexed With Other Functional Pins)
      • GPIO Pins Can be Used as Interrupt Inputs (up to Two Interrupt Inputs per Bank)
    • Up to Three External DMA Event Inputs that can Also be Used as Interrupt Inputs
    • Eight 32-Bit General-Purpose Timers
      • DMTIMER1 is a 1-ms Timer Used for Operating System (OS) Ticks
      • DMTIMER4–DMTIMER7 are Pinned Out
    • One Watchdog Timer
    • SGX530 3D Graphics Engine
      • Tile-Based Architecture Delivering up to 20 Million Polygons per Second
      • Universal Scalable Shader Engine (USSE) is a Multithreaded Engine Incorporating Pixel and Vertex Shader Functionality
      • Advanced Shader Feature Set in Excess of Microsoft VS3.0, PS3.0, and OGL2.0
      • Industry Standard API Support of Direct3D Mobile, OGL-ES 1.1 and 2.0, and OpenMax
      • Fine-Grained Task Switching, Load Balancing, and Power Management
      • Advanced Geometry DMA-Driven Operation for Minimum CPU Interaction
      • Programmable High-Quality Image Anti-Aliasing
      • Fully Virtualized Memory Addressing for OS Operation in a Unified Memory Architecture
    • LCD Controller
      • Up to 24-Bit Data Output; 8 Bits per Pixel (RGB)
      • Resolution up to 2048 × 2048 (With Maximum 126-MHz Pixel Clock)
      • Integrated LCD Interface Display Driver (LIDD) Controller
      • Integrated Raster Controller
      • Integrated DMA Engine to Pull Data from the External Frame Buffer Without Burdening the Processor via Interrupts or a Firmware Timer
      • 512-Word Deep Internal FIFO
      • Supported Display Types:
        • Character Displays - Uses LIDD Controller to Program these Displays
        • Passive Matrix LCD Displays - Uses LCD Raster Display Controller to Provide Timing and Data for Constant Graphics Refresh to a Passive Display
        • Active Matrix LCD Displays - Uses External Frame Buffer Space and the Internal DMA Engine to Drive Streaming Data to the Panel
    • 12-Bit Successive Approximation Register (SAR) ADC
      • 200K Samples per Second
      • Input can be Selected from any of the Eight Analog Inputs Multiplexed Through an 8:1 Analog Switch
      • Can be Configured to Operate as a 4-Wire, 5-Wire, or 8-Wire Resistive Touch Screen Controller (TSC) Interface
    • Up to Three 32-Bit eCAP Modules
      • Configurable as Three Capture Inputs or Three Auxiliary PWM Outputs
    • Up to Three Enhanced High-Resolution PWM Modules (eHRPWMs)
      • Dedicated 16-Bit Time-Base Counter With Time and Frequency Controls
      • Configurable as Six Single-Ended, Six Dual-Edge Symmetric, or Three Dual-Edge Asymmetric Outputs
    • Up to Three 32-Bit Enhanced Quadrature Encoder Pulse (eQEP) Modules
  • Device Identification
    • Contains Electrical Fuse Farm (FuseFarm) of Which Some Bits are Factory Programmable
      • Production ID
      • Device Part Number (Unique JTAG ID)
      • Device Revision (Readable by Host ARM)
  • Debug Interface Support
    • JTAG and cJTAG for ARM (Cortex-A8 and PRCM), PRU-ICSS Debug
    • Supports Device Boundary Scan
    • Supports IEEE 1500
  • DMA
    • On-Chip Enhanced DMA Controller (EDMA) has Three Third-Party Transfer Controllers (TPTCs) and One Third-Party Channel Controller (TPCC), Which Supports up to 64 Programmable Logical Channels and Eight QDMA Channels. EDMA is Used for:
      • Transfers to and from On-Chip Memories
      • Transfers to and from External Storage (EMIF, GPMC, Slave Peripherals)
  • Inter-Processor Communication (IPC)
    • Integrates Hardware-Based Mailbox for IPC and Spinlock for Process Synchronization Between Cortex-A8, PRCM, and PRU-ICSS
      • Mailbox Registers that Generate Interrupts
        • Four Initiators (Cortex-A8, PRCM, PRU0, PRU1)
      • Spinlock has 128 Software-Assigned Lock Registers
  • Security
    • Crypto Hardware Accelerators (AES, SHA, RNG)
    • Secure Boot (optional; requires custom part engagement with TI)
  • Boot Modes
    • Boot Mode is Selected Through Boot Configuration Pins Latched on the Rising Edge of the PWRONRSTn Reset Input Pin
  • Packages:
    • 298-Pin S-PBGA-N298 Via Channel Package
      (ZCE Suffix), 0.65-mm Ball Pitch
    • 324-Pin S-PBGA-N324 Package
      (ZCZ Suffix), 0.80-mm Ball Pitch

The AM335x microprocessors, based on the ARM Cortex-A8 processor, are enhanced with image, graphics processing, peripherals and industrial interface options such as EtherCAT and PROFIBUS. The devices support high-level operating systems (HLOS). Processor SDK Linux® and TI-RTOS are available free of charge from TI.

The AM335x microprocessor contains the subsystems shown in the Functional Block Diagram and a brief description of each follows:

The contains the subsystems shown in the Functional Block Diagram and a brief description of each follows:

The microprocessor unit (MPU) subsystem is based on the ARM Cortex-A8 processor and the PowerVR SGX™ Graphics Accelerator subsystem provides 3D graphics acceleration to support display and gaming effects.

The PRU-ICSS is separate from the ARM core, allowing independent operation and clocking for greater efficiency and flexibility. The PRU-ICSS enables additional peripheral interfaces and real-time protocols such as EtherCAT, PROFINET, EtherNet/IP, PROFIBUS, Ethernet Powerlink, Sercos, and others. Additionally, the programmable nature of the PRU-ICSS, along with its access to pins, events and all system-on-chip (SoC) resources, provides flexibility in implementing fast, real-time responses, specialized data handling operations, custom peripheral interfaces, and in offloading tasks from the other processor cores of SoC.

The AM335x microprocessors, based on the ARM Cortex-A8 processor, are enhanced with image, graphics processing, peripherals and industrial interface options such as EtherCAT and PROFIBUS. The devices support high-level operating systems (HLOS). Processor SDK Linux® and TI-RTOS are available free of charge from TI.

The AM335x microprocessor contains the subsystems shown in the Functional Block Diagram and a brief description of each follows:

The contains the subsystems shown in the Functional Block Diagram and a brief description of each follows:

The microprocessor unit (MPU) subsystem is based on the ARM Cortex-A8 processor and the PowerVR SGX™ Graphics Accelerator subsystem provides 3D graphics acceleration to support display and gaming effects.

The PRU-ICSS is separate from the ARM core, allowing independent operation and clocking for greater efficiency and flexibility. The PRU-ICSS enables additional peripheral interfaces and real-time protocols such as EtherCAT, PROFINET, EtherNet/IP, PROFIBUS, Ethernet Powerlink, Sercos, and others. Additionally, the programmable nature of the PRU-ICSS, along with its access to pins, events and all system-on-chip (SoC) resources, provides flexibility in implementing fast, real-time responses, specialized data handling operations, custom peripheral interfaces, and in offloading tasks from the other processor cores of SoC.

Download

Similar products you might be interested in

open-in-new Compare products
Similar functionality to the compared device.
NEW AM625 ACTIVE Human-machine-interaction SoC with Arm® Cortex®-A53-based edge AI and full-HD dual display Arm® MPU product based on single, dual or quad Cortex®-A53 with 3D GPU support

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 72
Type Title Date
* Data sheet AM335x Sitara™ Processors datasheet (Rev. L) PDF | HTML 15 Nov 2019
* Errata AM335x Sitara Processors Silicon Errata (Revs 2.1, 2.0, 1.0) (Rev. I) 03 Jan 2017
* User guide AM335x and AMIC110 Sitara™ Processors Technical Reference Manual (Rev. Q) 06 Feb 2023
Application note PRU-ICSS Feature Comparison (Rev. G) PDF | HTML 11 Oct 2022
Application note High-Speed Interface Layout Guidelines (Rev. I) PDF | HTML 14 Apr 2022
Design guide Discrete Power Solution for AM335x in 12mmx12mm Form-Factor Reference Design (Rev. A) PDF | HTML 09 Nov 2021
Application note Industrial Communication Protocols Supported on Sitara™ Processors (Rev. D) PDF | HTML 30 Sep 2021
Application note nfBGA Packaging (Rev. C) PDF | HTML 17 May 2021
Application note Ethernet PHY Configuration Using MDIO for Industrial Applications (Rev. A) 07 May 2021
White paper Time sensitive networking for industrial automation (Rev. B) 20 Jan 2021
More literature From Start to Finish: A Product Development Roadmap for Sitara™ Processors 16 Dec 2020
White paper Fortschrittliche Halbleitertechnologie für moderne Telemedizin-Anwendungen 28 Oct 2020
White paper 持續進化的現代遠距照護應用半導 體技術 28 Oct 2020
White paper Evolving Semiconductor Technologies for Modern Telehealth Applications 26 Oct 2020
White paper EtherNet/IP on TI's Sitara AM335x Processors (Rev. D) 28 Jul 2020
E-book Ein Techniker-Leitfaden für Industrieroboter-Designs 25 Mar 2020
User guide Powering the AM335x, AM437x, and AM438x with TPS65218D0 (Rev. B) 27 Feb 2020
E-book E-book: An engineer’s guide to industrial robot designs 12 Feb 2020
Application note AM335x Schematic Checklist (Rev. A) PDF | HTML 19 Dec 2019
Application note AM335x EMIF Tools 20 Sep 2019
Application note AM335x PMIC Selection Guide (Rev. A) 19 Sep 2019
Application note Programmable Logic Controllers — Security Threats and Solutions PDF | HTML 13 Sep 2019
More literature Sitara™ processors + WiLink™ 8 Wi-Fi® + Bluetooth® combo connectivity (Rev. A) 30 Jul 2019
White paper Power optimization techniques for energy-efficient systems (Rev. A) 28 Jun 2019
White paper Sitara Processor Security (Rev. D) 09 May 2019
Application note Calculating Useful Lifetimes of Embedded Processors (Rev. B) PDF | HTML 07 May 2019
Application note AM335x Hardware Design Guide PDF | HTML 03 May 2019
Application note How to Port WOLFSSL Onto TI Sitara AM335 Starter Kit PDF | HTML 24 Apr 2019
User guide Powering AMIC110, AMIC120, AM335x, and AM437x with TPS65216 11 Apr 2019
EVM User's guide AM335x ICE EVM Rev2.1 Hardware User Guide 21 Feb 2019
Application note Common EOS pitfalls in board design 13 Feb 2019
Technical article How a small SOT563 DC/DC converter supplies multirail power in industrial applications 21 Jan 2019
Application note PRU-ICSS Getting Started Guide on TI-RTOS (Rev. A) 18 Jan 2019
Application note McASP Design Guide - Tips, Tricks, and Practical Examples 10 Jan 2019
Application note PRU Read Latencies (Rev. A) 21 Dec 2018
Application note PRU-ICSS Getting Starting Guide on Linux (Rev. A) 10 Dec 2018
White paper Ensuring real-time predictability (Rev. B) 04 Dec 2018
Application note PRU-ICSS EtherCAT Slave Troubleshooting Guide 07 Nov 2018
Application note PRU-ICSS / PRU_ICSSG Migration Guide 05 Nov 2018
White paper PROFINET on TI’s Sitara™ processors (Rev. D) 13 Oct 2018
White paper Secure Boot on embedded Sitara™ processors (Rev. A) 13 Oct 2018
User guide How-To and Troubleshooting Guide for PRU-ICSS PROFIBUS 24 Sep 2018
Technical article Using the DLP® LightCrafter™ Display 2000 EVM with embedded Linux host processors 01 Jun 2018
Technical article FreeWave brings IoT to the oil field using TI’s SimpleLink CC13xx and Sitara AM335x devices with Amazon Web Services 23 May 2018
Application note HSR/PRP Solutions on Sitara Processors for Grid Substation Communication 17 Apr 2018
Application note Processor SDK RTOS Customization: Modifying Board library to change UART instanc (Rev. A) 28 Mar 2018
User guide Powering the AM335x With the TPS650250 (Rev. B) 14 Mar 2018
White paper Data concentrators: The core of energy and data management (Rev. A) 21 Feb 2018
User guide PRU Assembly Instruction User Guide 16 Feb 2018
White paper POWERLINK on TI Sitara Processors (Rev. A) 10 Jan 2018
More literature TI Sitara™ AM335x ARM® Cortex™-A8 Microprocessors (Rev. E) 19 Dec 2017
User guide TPS65910Ax User's Guide for AM335x Processors (Rev. F) 08 Dec 2017
User guide Sub-1 GHz Sensor-to-Cloud Linux® E14 Kit 16 Oct 2017
Application note Thermal Design Guide for DSP and Arm Application Processors (Rev. B) 14 Aug 2017
Application note Processor-SDK RTOS Power Management and Measurement 02 Aug 2017
Application note Sitara Linux ALSA DSP Microphone Array Voice Recognition 30 Jun 2017
White paper Connected sensors in industrial automation (Rev. B) 22 Jun 2017
Application note AM335x Power Estimation Tool 31 May 2017
Application note AM335x Reliability Considerations in PLC Applications (Rev. A) 27 Apr 2017
Technical article Long range sensor-to-cloud: Connecting to Amazon Web Services with Sub-1 GHz-based devices 14 Mar 2017
Application note AM335x Low Power Design Guide (Rev. A) 28 Feb 2017
White paper Enable security and amp up chip performance w/ hardware-accelerated cryptograpy (Rev. A) 11 Aug 2016
White paper Building automation for enhanced energy and operational efficiency (Rev. A) 26 Oct 2015
Application note Plastic Ball Grid Array [PBGA] Application Note (Rev. B) 13 Aug 2015
White paper Profibus on AM335x and AM1810 Sitara ARM Microprocessor White Paper (Rev. B) 03 Mar 2015
User guide G3 Power Line Communication Data Concentrator on BeagleBone Black Design Guide 13 Nov 2014
User guide Powering the AM335x with the TPS65217x . (Rev. I) 06 Sep 2014
White paper Mainline Linux™ ensures stability and innovation 27 Mar 2014
White paper Linaro Speeds Development in TI Linux SDKs 27 Aug 2013
White paper The Yocto Project:Changing the way embedded Linux software solutions are develop 14 Mar 2013
Application notes Package Reflow Profiles 30 Jan 2013
White paper Smart thermostats are a cool addition to the connected home 27 Sep 2012

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

TMDSICE3359 — AM3359 Industrial Communications Engine

The AM3359 Industrial Communications Engine (ICE) is a development platform targeted for systems that specifically focus on the industrial communications capabilities of the Sitara AM335x Arm® Cortex™-A8 processors.

The AM335x Arm Cortex-A8 processors integrate the Programmable Real-time Unit (PRU) (...)

User guide: PDF
Not available on TI.com
Evaluation board

TMDSSK3358 — AM335x starter kit

The AM335x starter kit (EVM-SK) provides a stable and affordable platform with Mainline Linux™ to quickly start evaluation of Sitara™ Arm® Cortex®-A8 AM335x processors (AM3351AM3352AM3354AM3356AM3358) and accelerate development for factory automation, building automation, smart grid, and (...)

User guide: PDF
Not available on TI.com
Evaluation board

TMDXEVM3358 — AM335x evaluation module

The AM335x Evaluation Module (EVM) enables developers to immediately start evaluating the AM335x processor family (AM3351, AM3352, AM3354, AM3356, AM3358) and begin building applications for factory automation, building automation, grid infrastructure, and more.

User guide: PDF
Not available on TI.com
Evaluation board

TPS65217CEVM — TPS65217C Evaluation Module

The TPS65217CEVM is a fully assembled platform for evaluating the performance of the TPS65217C power management device.

User guide: PDF
Not available on TI.com
Evaluation board

TPS65218EVM-100 — TPS65218 Evaluation Module

The TPS65218EVM is a fully assembled platform for evaluating the performance of the TPS65218 power management device.

User guide: PDF | HTML
Not available on TI.com
Evaluation board

BEAGL-BONE-BLACK — BeagleBone® Black is a single-board computer from the BeagleBoard.org foundation based on AM335x

BeagleBone Black is a low-cost, community-supported development platform for developers and hobbyists. Boot Linux in under 10 seconds and get started on development in less than 5 minutes with just a single USB cable.
Not available on TI.com
Daughter card

PRUCAPE — TI PRU Cape

The TI PRU Cape is a BeagleBone Black add-on board that allows users get to know TI’s powerful Programmable Real-Time Unit (PRU) core and basic functionality. The PRU is a low-latency microcontroller subsystem integrated in the Sitara AM335x and AM437x family of devices.  The PRU core is (...)

Not available on TI.com
Debug probe

TMDSEMU200-U — XDS200 USB Debug Probe

The XDS200 is a debug probe (emulator) used for debugging TI embedded devices.  The XDS200 features a balance of low cost with good performance as compared to the low cost XDS110 and the high performance XDS560v2.  It supports a wide variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a (...)

Not available on TI.com
Debug probe

TMDSEMU560V2STM-U — XDS560™ software v2 system trace USB debug probe

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

Not available on TI.com
Debug probe

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB & Ethernet Debug Probe

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

Not available on TI.com
Driver or library

TI-15.4-STACK-GATEWAY-LINUX-SDK — TI 15.4-Stack Gateway Linux Software Development Kit

The TI-15.4-Stack-Gateway-Linux Software Development Kit (SDK) provides a Linux software middleware for the TI 15.4-Stack companion solution. It includes a full Linux user-space software that runs on top of the TI Processor SDK for AM335x platform, which interfaces with the co-processor embedded (...)
Driver or library

WIND-3P-VXWORKS-LINUX-OS — Wind River Processors VxWorks and Linux operating systems

Wind River is a global leader in delivering software for the Internet of Things (IoT). The company’s technology has been powering the safest, most secure devices in the world since 1981 and today is found in more than 2 billion products. Wind River offers a comprehensive edge-to-cloud product (...)
Software programming tool

AM335x and AMIC110 EMIF Tools

SPRCAJ0.ZIP (313 KB)
Software programming tool

UNIFLASH — UniFlash stand-alone flash tool for microcontrollers, Sitara™; processors and SimpleLink™

Supported devices: CC13xx, CC25xx, CC26xx, CC3x20, CC3x30, CC3x35, Tiva, C2000, MSP43x, Hercules, PGA9xx, IWR12xx, IWR14xx, IWR16xx, IWR18xx , IWR68xx, AWR12xx, AWR14xx, AWR16xx, AWR18xx.  Command line only: AM335x, AM437x, AM571x, AM572x, AM574x, AM65XX, K2G

CCS Uniflash is a standalone tool used (...)

Simulation model

AM335x Thermal Model

SPRM824.ZIP (10 KB) - Thermal Model
Simulation model

AM335x ZCE IBIS Model (Rev. B)

SPRM556B.ZIP (21124 KB) - IBIS Model
Simulation model

AM335x ZCE Rev. 2.0 BSDL Model (Rev. A)

SPRM548A.ZIP (8 KB) - BSDL Model
Simulation model

AM335x ZCE Rev. 2.1 BSDL Model

SPRM606.ZIP (8 KB) - BSDL Model
Simulation model

AM335x ZCZ IBIS Model (Rev. C)

SPRM552C.ZIP (21721 KB) - IBIS Model
Simulation model

AM335x ZCZ Rev. 2.0 BSDL Model (Rev. A)

SPRM549A.ZIP (8 KB) - BSDL Model
Simulation model

AM335x ZCZ Rev. 2.1 BSDL Model

SPRM607.ZIP (8 KB) - BSDL Model
Design tool

PROCESSORS-3P-SEARCH — Arm®-based MPU, Arm-based MCU and DSP third-party search tool

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)

Many TI reference designs include the AM3358

Use our reference design selection tool to review and identify designs that best match your application and parameters.

Package Pins Download
NFBGA (ZCE) 298 View options
NFBGA (ZCZ) 324 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos