Product details

Arm CPU 2 Arm Cortex-A53 Arm MHz (Max.) 1100 Co-processor(s) 2 Arm Cortex-R5F CPU 64-bit Display type MIPI DPI, OLDI Protocols Ethernet, ICSS, Profinet, Profibus, TSN, EtherCAT Ethernet MAC 1-Port 10/100/1000, 6-Port 10/100/1000 PRU EMAC PCIe 2 PCIe Gen 3 Features Networking Operating system Android, Linux, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection Rating Catalog Power supply solution TPS6594-Q1 Operating temperature range (C) -40 to 105
Arm CPU 2 Arm Cortex-A53 Arm MHz (Max.) 1100 Co-processor(s) 2 Arm Cortex-R5F CPU 64-bit Display type MIPI DPI, OLDI Protocols Ethernet, ICSS, Profinet, Profibus, TSN, EtherCAT Ethernet MAC 1-Port 10/100/1000, 6-Port 10/100/1000 PRU EMAC PCIe 2 PCIe Gen 3 Features Networking Operating system Android, Linux, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection Rating Catalog Power supply solution TPS6594-Q1 Operating temperature range (C) -40 to 105
FCCSP (ACD) 784

Processor cores:

  • Dual- or quad-core Arm Cortex-A53 microprocessor subsystem at up to 1.1 GHz
    • Up to two dual-core or two single-core Arm Cortex-A53 clusters with 512KB L2 cache including SECDED
    • Each A53 core has 32KB L1 ICache and 32K L1 DCache
  • Dual-core Arm Cortex-R5F at up to 400 MHz
    • Supports lockstep mode
    • 16KB ICache, 16KB DCache, and 64KB RAM per R5F core

    Industrial subsystem:

  • Three gigabit Industrial Communication Subsystems (PRU_ICSSG)
    • Up to two 10/100/1000 Ethernet ports per PRU_ICSSG
    • Supports two SGMII ports(2)
    • Compatibility with 10/100Mb PRU-ICSS
    • 24× PWMs per PRU_ICSSG
      • Cycle-by-cycle control
      • Enhanced trip control
    • 18× Sigma-delta filters per PRU_ICSSG
      • Short circuit logic
      • Over-current logic
    • 6× Multi-protocol position encoder interfaces per PRU_ICSSG

    Memory subsystem:

  • Up to 2MB of on-chip L3 RAM with SECDED
  • Multi-core Shared Memory Controller (MSMC)
    • Up to 2MB (2 banks × 1MB) SRAM with SECDED
      • Shared coherent Level 2 or Level 3 memory-mapped SRAM
      • Shared coherent Level 3 Cache
    • 256-bit processor port bus and 40-bit physical address bus
    • Coherent unified bi-directional interfaces to connect to processors or device masters
    • L2, L3 Cache pre-warming and post flushing
    • Bandwidth management with starvation bound
    • One infrastructure master interface
    • Single external memory master interface
    • Supports distributed virtual system
    • Supports internal DMA engine – Data Routing Unit (DRU)
    • ECC error protection
  • DDR Subsystem (DDRSS)
    • Supports DDR4 memory types up to DDR-1600
    • 32-bit data bus and 7-bit SECDED bus
    • 8 GB of total addressable space
  • General-Purpose Memory Controller (GPMC)

    SafeTI™ semiconductor component:

  • Designed for functional safety applications
  • Developed according to the requirements of IEC 61508
  • Achieves systematic integrity of SIL-3
  • For the MCU safety island, sufficient diagnostics are included to achieve random fault integrity requirements of SIL-2
  • For the rest of the SoC, sufficient diagnostics are included to achieve random fault integrity requirements of SIL-2
  • In addition, sufficient architectural metrics are in place to achieve execution of SIL-3 applications given a proper safety concept (for example reciprocal comparison by software)
  • Functional safety manual available
  • Safety-related certification
    • Component level functional safety certification by TÜV SÜD [certification in progress]
  • Functional safety features:
    • ECC or parity on calculation-critical memories and internal bus interconnect
    • Firewalls to help provide Freedom From Interference (FFI)
      • Built-In Self-Test (BIST) for CPU, high-end timers, and on-chip RAM
    • Hardware error injection support for test-for-diagnostics
    • Error Signaling Modules (ESM) for capture of functional safety related errors
    • Voltage, temperature, and clock monitoring
    • Windowed and non-windowed watchdog timers in multiple clock domains
  • MCU island
    • Isolation of the dual-core Arm Cortex-R5F microprocessor subsystem
    • Separate voltage, clocks, resets, and dedicated peripherals
    • Internal MCSPI connection to the rest of SoC

    Security:

  • Secure boot supported
    • Hardware-enforced root-of-trust
    • Support to switch root-of-trust via backup key
    • Support for takeover protection, IP protection, and anti-roll back protection
  • Cryptographic acceleration supported
    • Session-aware cryptographic engine with ability to auto-switch key-material based on incoming data stream
    • Supports cryptographic cores
      • AES – 128/192/256 bits key sizes
      • 3DES – 56/112/168 bits key sizes
      • MD5, SHA1
      • SHA2 – 224/256/384/512
      • DRBG with true random number generator
      • PKA (public key accelerator) to assist in RSA/ECC processing
    • DMA support
  • Debugging security
    • Secure software-controlled debug access
    • Security aware debugging
  • Trusted Execution Environment (TEE) supported
    • Arm TrustZone based TEE
    • Extensive firewall support for isolation
    • Secure DMA path and interconnect
    • Secure watchdog/timer/IPC
  • Secure storage support
  • On-the-fly encryption and authentication support for OSPI interface
  • Networking security support for data (payload) encryption/authentication via packet based hardware cryptographic engine
  • Security coprocessor (DMSC) for key and security management, with dedicated device level interconnect for security software

    SoC services:

  • Device Management Security Controller (DMSC)
    • Centralized SoC system controller
    • Manages system services including initial boot, security, functional safety and clock/reset/power management
    • Power management controller for active and low power modes
    • Communication with various processing units over message manager
    • Simplified interface for optimizing unused peripherals
    • Tracing and debugging capability
  • Sixteen 32-bit general-purpose timers
  • Two data movement and control Navigator Subsystems (NAVSS)
    • Ring Accelerator (RA)
    • Unified DMA (UDMA)
    • Up to 2 Timer Managers (TM) (1024 timers each)

    Multimedia:

  • Display subsystem
    • Two fully input-mapped overlay managers associated with two display outputs
    • One port MIPI DPI parallel interface
    • One port OLDI
  • PowerVR SGX544-MP1 3D Graphics Processing Unit (GPU)
  • One Camera Serial Interface-2 (MIPI CSI-2)
  • One port video capture: BT.656/1120 (no embedded sync)

    High-speed interfaces:

  • One Gigabit Ethernet (CPSW) interface supporting
    • RMII (10/100) or RGMII (10/100/1000)
    • IEEE1588 (2008 Annex D, Annex E, Annex F) with 802.1AS PTP
    • Audio/video bridging (P802.1Qav/D6.0)
    • Energy-efficient Ethernet (802.3az)
    • Jumbo frames (2024 bytes)
    • Clause 45 MDIO PHY management
  • Two PCI-Express ( PCIe) revision 3.1 subsystems(2)
    • Supports Gen2 (5.0GT/s) operation
    • Two independent 1-lane, or a single 2-lane port
    • Support for concurrent root-complex and end-point operation
  • USB 3.1 Dual-Role Device (DRD) subsystem(2)
    • One enhanced SuperSpeed Gen1 port
    • One USB 2.0 port
    • Each port independently configurable as USB host, USB peripheral, or USB DRD

    General connectivity:

  • 6× Inter-Integrated Circuit ( I2C™) ports
  • 5× configurable UART/IrDA/CIR modules
  • Two simultaneous flash interfaces configured as
    • Two OSPI flash interfaces
    • or HyperBus™ and OSPI1 flash interface
  • 2× 12-bit Analog-to-Digital Converters (ADC)
    • Up to 4 Msamples/s
    • Eight multiplexed analog inputs
  • 8× Multichannel Serial Peripheral Interfaces (MCSPI) controllers
    • Two with internal connections
    • Six with external interfaces
  • General-Purpose I/O (GPIO) pins

    Control interfaces:

  • 6× Enhanced High-Resolution Pulse-Width Modulator (EHRPWM) modules
  • One Enhanced Capture (ECAP) module
  • 3× Enhanced Quadrature Encoder Pulse (EQEP) modules

    Automotive interfaces:

  • 2× Modular Controller Area Network (MCAN) modules with full CAN-FD support

    Audio interfaces:

  • 3× Multichannel Audio Serial Port (MCASP) modules

    Media and data storage:

  • 2× Multimedia Card™/ Secure Digital ( MMC™/ SD) interfaces

    Simplified power management:

  • Simplified power sequence with full support for dual voltage I/O
  • Integrated LDOs reduces power solution complexity
  • Integrated SDIO LDO for handling automatic voltage transition for SD interface
  • Integrated Power On Reset (POR) generation reducing power solution complexity
  • Integrated voltage supervisor for functional safety monitoring
  • Integrated power supply glitch detector for detecting fast power supply transients

    Analog/system integration:

  • Integrated USB VBUS detection
  • Fail safe I/O for DDR RESET
  • All I/O pins drivers disabled during reset to avoid bus conflicts
  • Default I/O pulls disabled during reset to avoid system conflicts
  • Support dynamic I/O pinmux configuration change

    System-on-Chip (SoC) architecture:

  • Supports primary boot from UART, I2C, OSPI, HyperBus, parallel NOR Flash, SD or eMMC™, USB, PCIe, and Ethernet interfaces
  • 28-nm CMOS technology
  • 23 mm × 23 mm, 0.8-mm pitch, 784-pin FCBGA (ACD)

Processor cores:

  • Dual- or quad-core Arm Cortex-A53 microprocessor subsystem at up to 1.1 GHz
    • Up to two dual-core or two single-core Arm Cortex-A53 clusters with 512KB L2 cache including SECDED
    • Each A53 core has 32KB L1 ICache and 32K L1 DCache
  • Dual-core Arm Cortex-R5F at up to 400 MHz
    • Supports lockstep mode
    • 16KB ICache, 16KB DCache, and 64KB RAM per R5F core

    Industrial subsystem:

  • Three gigabit Industrial Communication Subsystems (PRU_ICSSG)
    • Up to two 10/100/1000 Ethernet ports per PRU_ICSSG
    • Supports two SGMII ports(2)
    • Compatibility with 10/100Mb PRU-ICSS
    • 24× PWMs per PRU_ICSSG
      • Cycle-by-cycle control
      • Enhanced trip control
    • 18× Sigma-delta filters per PRU_ICSSG
      • Short circuit logic
      • Over-current logic
    • 6× Multi-protocol position encoder interfaces per PRU_ICSSG

    Memory subsystem:

  • Up to 2MB of on-chip L3 RAM with SECDED
  • Multi-core Shared Memory Controller (MSMC)
    • Up to 2MB (2 banks × 1MB) SRAM with SECDED
      • Shared coherent Level 2 or Level 3 memory-mapped SRAM
      • Shared coherent Level 3 Cache
    • 256-bit processor port bus and 40-bit physical address bus
    • Coherent unified bi-directional interfaces to connect to processors or device masters
    • L2, L3 Cache pre-warming and post flushing
    • Bandwidth management with starvation bound
    • One infrastructure master interface
    • Single external memory master interface
    • Supports distributed virtual system
    • Supports internal DMA engine – Data Routing Unit (DRU)
    • ECC error protection
  • DDR Subsystem (DDRSS)
    • Supports DDR4 memory types up to DDR-1600
    • 32-bit data bus and 7-bit SECDED bus
    • 8 GB of total addressable space
  • General-Purpose Memory Controller (GPMC)

    SafeTI™ semiconductor component:

  • Designed for functional safety applications
  • Developed according to the requirements of IEC 61508
  • Achieves systematic integrity of SIL-3
  • For the MCU safety island, sufficient diagnostics are included to achieve random fault integrity requirements of SIL-2
  • For the rest of the SoC, sufficient diagnostics are included to achieve random fault integrity requirements of SIL-2
  • In addition, sufficient architectural metrics are in place to achieve execution of SIL-3 applications given a proper safety concept (for example reciprocal comparison by software)
  • Functional safety manual available
  • Safety-related certification
    • Component level functional safety certification by TÜV SÜD [certification in progress]
  • Functional safety features:
    • ECC or parity on calculation-critical memories and internal bus interconnect
    • Firewalls to help provide Freedom From Interference (FFI)
      • Built-In Self-Test (BIST) for CPU, high-end timers, and on-chip RAM
    • Hardware error injection support for test-for-diagnostics
    • Error Signaling Modules (ESM) for capture of functional safety related errors
    • Voltage, temperature, and clock monitoring
    • Windowed and non-windowed watchdog timers in multiple clock domains
  • MCU island
    • Isolation of the dual-core Arm Cortex-R5F microprocessor subsystem
    • Separate voltage, clocks, resets, and dedicated peripherals
    • Internal MCSPI connection to the rest of SoC

    Security:

  • Secure boot supported
    • Hardware-enforced root-of-trust
    • Support to switch root-of-trust via backup key
    • Support for takeover protection, IP protection, and anti-roll back protection
  • Cryptographic acceleration supported
    • Session-aware cryptographic engine with ability to auto-switch key-material based on incoming data stream
    • Supports cryptographic cores
      • AES – 128/192/256 bits key sizes
      • 3DES – 56/112/168 bits key sizes
      • MD5, SHA1
      • SHA2 – 224/256/384/512
      • DRBG with true random number generator
      • PKA (public key accelerator) to assist in RSA/ECC processing
    • DMA support
  • Debugging security
    • Secure software-controlled debug access
    • Security aware debugging
  • Trusted Execution Environment (TEE) supported
    • Arm TrustZone based TEE
    • Extensive firewall support for isolation
    • Secure DMA path and interconnect
    • Secure watchdog/timer/IPC
  • Secure storage support
  • On-the-fly encryption and authentication support for OSPI interface
  • Networking security support for data (payload) encryption/authentication via packet based hardware cryptographic engine
  • Security coprocessor (DMSC) for key and security management, with dedicated device level interconnect for security software

    SoC services:

  • Device Management Security Controller (DMSC)
    • Centralized SoC system controller
    • Manages system services including initial boot, security, functional safety and clock/reset/power management
    • Power management controller for active and low power modes
    • Communication with various processing units over message manager
    • Simplified interface for optimizing unused peripherals
    • Tracing and debugging capability
  • Sixteen 32-bit general-purpose timers
  • Two data movement and control Navigator Subsystems (NAVSS)
    • Ring Accelerator (RA)
    • Unified DMA (UDMA)
    • Up to 2 Timer Managers (TM) (1024 timers each)

    Multimedia:

  • Display subsystem
    • Two fully input-mapped overlay managers associated with two display outputs
    • One port MIPI DPI parallel interface
    • One port OLDI
  • PowerVR SGX544-MP1 3D Graphics Processing Unit (GPU)
  • One Camera Serial Interface-2 (MIPI CSI-2)
  • One port video capture: BT.656/1120 (no embedded sync)

    High-speed interfaces:

  • One Gigabit Ethernet (CPSW) interface supporting
    • RMII (10/100) or RGMII (10/100/1000)
    • IEEE1588 (2008 Annex D, Annex E, Annex F) with 802.1AS PTP
    • Audio/video bridging (P802.1Qav/D6.0)
    • Energy-efficient Ethernet (802.3az)
    • Jumbo frames (2024 bytes)
    • Clause 45 MDIO PHY management
  • Two PCI-Express ( PCIe) revision 3.1 subsystems(2)
    • Supports Gen2 (5.0GT/s) operation
    • Two independent 1-lane, or a single 2-lane port
    • Support for concurrent root-complex and end-point operation
  • USB 3.1 Dual-Role Device (DRD) subsystem(2)
    • One enhanced SuperSpeed Gen1 port
    • One USB 2.0 port
    • Each port independently configurable as USB host, USB peripheral, or USB DRD

    General connectivity:

  • 6× Inter-Integrated Circuit ( I2C™) ports
  • 5× configurable UART/IrDA/CIR modules
  • Two simultaneous flash interfaces configured as
    • Two OSPI flash interfaces
    • or HyperBus™ and OSPI1 flash interface
  • 2× 12-bit Analog-to-Digital Converters (ADC)
    • Up to 4 Msamples/s
    • Eight multiplexed analog inputs
  • 8× Multichannel Serial Peripheral Interfaces (MCSPI) controllers
    • Two with internal connections
    • Six with external interfaces
  • General-Purpose I/O (GPIO) pins

    Control interfaces:

  • 6× Enhanced High-Resolution Pulse-Width Modulator (EHRPWM) modules
  • One Enhanced Capture (ECAP) module
  • 3× Enhanced Quadrature Encoder Pulse (EQEP) modules

    Automotive interfaces:

  • 2× Modular Controller Area Network (MCAN) modules with full CAN-FD support

    Audio interfaces:

  • 3× Multichannel Audio Serial Port (MCASP) modules

    Media and data storage:

  • 2× Multimedia Card™/ Secure Digital ( MMC™/ SD) interfaces

    Simplified power management:

  • Simplified power sequence with full support for dual voltage I/O
  • Integrated LDOs reduces power solution complexity
  • Integrated SDIO LDO for handling automatic voltage transition for SD interface
  • Integrated Power On Reset (POR) generation reducing power solution complexity
  • Integrated voltage supervisor for functional safety monitoring
  • Integrated power supply glitch detector for detecting fast power supply transients

    Analog/system integration:

  • Integrated USB VBUS detection
  • Fail safe I/O for DDR RESET
  • All I/O pins drivers disabled during reset to avoid bus conflicts
  • Default I/O pulls disabled during reset to avoid system conflicts
  • Support dynamic I/O pinmux configuration change

    System-on-Chip (SoC) architecture:

  • Supports primary boot from UART, I2C, OSPI, HyperBus, parallel NOR Flash, SD or eMMC™, USB, PCIe, and Ethernet interfaces
  • 28-nm CMOS technology
  • 23 mm × 23 mm, 0.8-mm pitch, 784-pin FCBGA (ACD)

AM654x and AM652x Sitara™ processors are Arm applications processors built to meet the complex processing needs of modern industry 4.0 embedded products.

The AM654x and AM652x devices combine four or two Arm Cortex-A53 cores with a dual Arm Cortex-R5F MCU subsystem which includes features intended to help customers achieve their functional safety goals for their end products and three Gigabit industrial communications subsystems (PRU_ICSSG) to create a SoC capable of high-performance industrial controls with industrial connectivity and processing for functional safety applications. AM65xx is currently undergoing assessment to be certified by TÜV SÜD according to IEC 61508.

The four Arm Cortex-A53 cores in the AM654x are arranged in two dual-core clusters with shared L2 memory to create two processing channels. The two Arm Cortex-A53 cores in the AM652x are available in a single dual-core cluster and two single-core cluster options. Extensive ECC is included on on-chip memory, peripherals, and interconnect for reliability. The SoC as a whole includes features intended to help customers design systems that can achieve their functional safety goals (assessment pending with TÜV SÜD). Cryptographic acceleration and secure boot are available on some AM654x and AM652x devices in addition to granular firewalls managed by the DMSC.

Programmability is provided by the Arm Cortex-A53 RISC CPUs with Arm Neon™ extension, and the dual Arm Cortex-R5F MCU subsystem is available for general purpose use as two cores or it can be used in lockstep to help meet the needs of functional safety applications. The PRU_ICSSG subsystems can be used to provide up to six ports of industrial Ethernet such as Profinet IRT, TSN, Ethernet/IP or EtherCAT (among many others), or they can be used for standard Gigabit Ethernet connectivity.

TI provides a complete set of software and development tools for the Arm cores including Processor SDK Linux, Linux-RT, RTOS, and Android as well as C compilers and a debugging interface for visibility into source code execution. Applicable functional safety and security documentation will be made available to assist customers in developing their functional safety or security related systems.

AM654x and AM652x Sitara™ processors are Arm applications processors built to meet the complex processing needs of modern industry 4.0 embedded products.

The AM654x and AM652x devices combine four or two Arm Cortex-A53 cores with a dual Arm Cortex-R5F MCU subsystem which includes features intended to help customers achieve their functional safety goals for their end products and three Gigabit industrial communications subsystems (PRU_ICSSG) to create a SoC capable of high-performance industrial controls with industrial connectivity and processing for functional safety applications. AM65xx is currently undergoing assessment to be certified by TÜV SÜD according to IEC 61508.

The four Arm Cortex-A53 cores in the AM654x are arranged in two dual-core clusters with shared L2 memory to create two processing channels. The two Arm Cortex-A53 cores in the AM652x are available in a single dual-core cluster and two single-core cluster options. Extensive ECC is included on on-chip memory, peripherals, and interconnect for reliability. The SoC as a whole includes features intended to help customers design systems that can achieve their functional safety goals (assessment pending with TÜV SÜD). Cryptographic acceleration and secure boot are available on some AM654x and AM652x devices in addition to granular firewalls managed by the DMSC.

Programmability is provided by the Arm Cortex-A53 RISC CPUs with Arm Neon™ extension, and the dual Arm Cortex-R5F MCU subsystem is available for general purpose use as two cores or it can be used in lockstep to help meet the needs of functional safety applications. The PRU_ICSSG subsystems can be used to provide up to six ports of industrial Ethernet such as Profinet IRT, TSN, Ethernet/IP or EtherCAT (among many others), or they can be used for standard Gigabit Ethernet connectivity.

TI provides a complete set of software and development tools for the Arm cores including Processor SDK Linux, Linux-RT, RTOS, and Android as well as C compilers and a debugging interface for visibility into source code execution. Applicable functional safety and security documentation will be made available to assist customers in developing their functional safety or security related systems.

Download

Similar products you might be interested in

open-in-new Compare products
Similar functionality to the compared device.
AM6528 ACTIVE Sitara processor: dual Arm Cortex-A53 & dual Arm Cortex-R5F, Gigabit PRU-ICSS, 3D graphics Pin-to-pin upgrade adding a GPU

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 38
Type Title Date
* Data sheet AM654x, AM652x Sitara™ Processors Silicon Revision 2.1 datasheet (Rev. B) PDF | HTML 31 Mar 2021
* Errata AM65x Processors Silicon Revision 2.1/2.0/1.0 (Rev. H) PDF | HTML 26 Oct 2022
* User guide AM65x/DRA80xM Processors Technical Reference Manual (Rev. E) 18 Dec 2019
Application note Sitara Processor Power Distribution Networks: Implementation and Analysis (Rev. F) PDF | HTML 29 Nov 2022
Application note PRU-ICSS Feature Comparison (Rev. G) PDF | HTML 11 Oct 2022
Application note High-Speed Interface Layout Guidelines (Rev. I) PDF | HTML 14 Apr 2022
White paper Industry 4.0 서보 드라이브에 Sitara™ 프로세서 및 마이크로컨트롤러 활용 (Rev. C) PDF | HTML 12 Jan 2022
White paper 運用適合工業 4.0 Sitara™ 伺服驅動器的處理器與微控制器 (Rev. C) PDF | HTML 12 Jan 2022
White paper Utilizing Sitara Processors and Microcontrollers for Industry 4.0 Servo Drives (Rev. C) 06 Oct 2021
Application note AM65x/DRA80x Schematic Checklist (Rev. A) PDF | HTML 26 Jul 2021
White paper Time sensitive networking for industrial automation (Rev. B) 20 Jan 2021
Application note MMC SW Tuning Algorithm PDF | HTML 18 Aug 2020
White paper EtherNet/IP on TI's Sitara AM335x Processors (Rev. D) 28 Jul 2020
E-book Ein Techniker-Leitfaden für Industrieroboter-Designs 25 Mar 2020
Application note AM65x/DRA80xM EMIF Tools (Rev. B) 04 Mar 2020
E-book E-book: An engineer’s guide to industrial robot designs 12 Feb 2020
Application note AM65xx Time Synchronization Architecture PDF | HTML 14 Oct 2019
Application note Enabling Android Automotive on Your TI Development Board PDF | HTML 12 Jul 2019
Application note AM65x DDR ECC Initialization and Testing 08 Mar 2019
Application note AM65x/DRA80xM DDR Board Design and Layout Guidelines (Rev. A) 07 Mar 2019
White paper Virtualization for embedded industrial systems (Rev. B) 07 Mar 2019
Application note Integrating a WiLink8 Module with the AM65x EVM 29 Jan 2019
Application note PRU-ICSS Getting Started Guide on TI-RTOS (Rev. A) 18 Jan 2019
Application note PRU Read Latencies (Rev. A) 21 Dec 2018
Application note PRU-ICSS Getting Starting Guide on Linux (Rev. A) 10 Dec 2018
White paper Ensuring real-time predictability (Rev. B) 04 Dec 2018
Application note AM65xx System Performance 30 Nov 2018
Functional safety information The state of functional safety in Industry 4.0 27 Nov 2018
Application note PRU-ICSS / PRU_ICSSG Migration Guide 05 Nov 2018
White paper Secure Boot on embedded Sitara™ processors (Rev. A) 13 Oct 2018
White paper Designing industrial controls for Industry 4.0 with Sitara™ AM6x processors 11 Oct 2018
Application note Hardware Design Guide for AM65x/DRA80xM Devices 11 Oct 2018
User guide AM654x/DRA80xM BGA Escape Routing Stackup 29 Aug 2018
White paper Designing Embedded Systems for High Reliability With Sitara AM6x Processors 28 Aug 2018
Technical article Difficult to see. Always in motion is the future 04 Jan 2016
Technical article Announcing the new entry-level Sitara processor 09 Dec 2015
Technical article Automotive Surround View Technology trends 31 Aug 2015
Technical article Solar Inverter Gateways Made Simple with AM335x 28 Jul 2015

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

TMDSLCD1EVM — 1280x800 LCD display accessory kit

The 1280x800 LCD display accessory kit is an add-on accessory for the AM65x IDK (TMDX654IDKEVM) to add touch and display functions for the evaluation of HMI, industrial PC, and other use cases requiring display. The 1280x800 LCD display accessory kit comes bundled with the AM65x EVM (TMDX654GPEVM) (...)

Not available on TI.com
Evaluation board

TMDX654GPEVM — AM65x evaluation module (EVM)

The AM65x Evaluation Module provides a platform to quickly start evaluation of Sitara™ Arm® Cortex®-A53 AM65x Processors (AM6548AM6546AM6528AM6527AM6526) and accelerate development for HMI, networking, patient monitoring, and other industrial applications. It is a development platform based (...)

User guide: PDF
Not available on TI.com
Evaluation board

TMDX654IDKEVM — AM65x industrial development kit (IDK)

The AM65x industrial development kit (IDK) is a development platform for evaluating the industrial communication and control capabilities of Sitara™ AM65x processors for applications in factory automation, drives, robotics, grid infrastructure, and more. AM65x processors include three (...)

User guide: PDF | HTML
Not available on TI.com
Evaluation board

MISTR-3P-SOM-AM65X — Mistral Solutions AM65x System on Module (SOM)

The AM65x SOM from Mistral is an easy to use, compact, light-weight system on module (SOM) providing very high processing power for industrial applications. This module is based on Texas Instruments Sitara™ AM6548 SoC and is ideal for complex processing, connectivity and control required for (...)

Evaluation board

PHYTC-3P-PHYCORE-AM65X — PHYTEC phyCORE-AM65x system on module

The phyCORE®-AM65x module brings secure boot, multiprotocol gigabit industrial communication, graphics, functional safety features and time-sensitive networking (TSN) to the phyCORE® family. The phyCORE®-AM65x SOM is ideal for industrial communication systems, factory automation, edge (...)

From: PHYTEC
Evaluation board

TQ-3P-SITARASOMS — TQ-Group system on modules for Arm®-based processors and microcontrollers

TQ offers the complete range of services from development, through production and service right up to product life cycle management. The services cover assemblies, equipment and systems including hardware, software and mechanics. Customers can obtain all services from TQ on a modular basis as (...)
From: TQ-Group
Development kit

PHYTC-3P-SOMS — PHYTEC® system on modules for Arm®-based Sitara™ processors and microcontrollers

PHYTEC is an industry-leading provider and integrator of System on Modules (SOMs), embedded middleware and design services that enable customers to bring complex products quickly and easily to market. They guide customers from design to production utilizing deep domain expertise; high-quality (...)

From: PHYTEC
Software development kit (SDK)

PROCESSOR-SDK-LINUX-AM65X Linux processor SDK for AM65x

Processor SDK (Software Development Kit) is a unified software platform for TI embedded processors providing easy setup and fast out-of-the-box access to benchmarks and demos. All releases of Processor SDK are consistent across TI’s broad portfolio, allowing developers to seamlessly reuse and (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
AM6526 Dual Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6528 Sitara processor: dual Arm Cortex-A53 & dual Arm Cortex-R5F, Gigabit PRU-ICSS, 3D graphics AM6546 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6548 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS, 3D graphics
Hardware development
TMDX654GPEVM AM65x evaluation module (EVM) TMDX654IDKEVM AM65x industrial development kit (IDK)
Download options
Software development kit (SDK)

PROCESSOR-SDK-LINUX-RT-AM65X Linux-RT processor SDK for AM65x

Processor SDK (Software Development Kit) is a unified software platform for TI embedded processors providing easy setup and fast out-of-the-box access to benchmarks and demos. All releases of Processor SDK are consistent across TI’s broad portfolio, allowing developers to seamlessly reuse and (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
AM6526 Dual Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6528 Sitara processor: dual Arm Cortex-A53 & dual Arm Cortex-R5F, Gigabit PRU-ICSS, 3D graphics AM6546 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6548 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS, 3D graphics
Hardware development
TMDX654GPEVM AM65x evaluation module (EVM) TMDX654IDKEVM AM65x industrial development kit (IDK)
Download options
Software development kit (SDK)

PROCESSOR-SDK-RTOS-AM65X RTOS Processor SDK for AM65x

Processor SDK (Software Development Kit) is a unified software platform for TI embedded processors providing easy setup and fast out-of-the-box access to benchmarks and demos. All releases of Processor SDK are consistent across TI’s broad portfolio, allowing developers to seamlessly reuse and (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
AM6526 Dual Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6528 Sitara processor: dual Arm Cortex-A53 & dual Arm Cortex-R5F, Gigabit PRU-ICSS, 3D graphics AM6546 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6548 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS, 3D graphics
Hardware development
TMDX654GPEVM AM65x evaluation module (EVM) TMDX654IDKEVM AM65x industrial development kit (IDK)
Download options
Driver or library

WIND-3P-VXWORKS-LINUX-OS — Wind River Processors VxWorks and Linux operating systems

Wind River is a global leader in delivering software for the Internet of Things (IoT). The company’s technology has been powering the safest, most secure devices in the world since 1981 and today is found in more than 2 billion products. Wind River offers a comprehensive edge-to-cloud product (...)
IDE, configuration, compiler or debugger

C2000_CLA_SAFETI_CQKIT_RV C2000™ and CLA safety compiler qualification kit (leverages compiler release validations)

The Safety Compiler Qualification Kit was developed to assist customers in qualifying their use of the TI ARM, C6000, C7000 or C2000/CLA C/C++ Compiler to functional safety standards such as IEC 61508 and ISO 26262.

The Safety Compiler Qualification Kit:

  • is free of charge for TI customers
  • does (...)
Supported products & hardware

Supported products & hardware

Products
C2000 real-time microcontrollers
TMS320C28343-Q1 Automotive C2000™ 32-bit MCU with 200 MIPS, FPU, 260 KB RAM, EMIF TMS320C28346-Q1 Automotive C2000™ 32-bit MCU with 300 MIPS, FPU, 516 KB RAM, EMIF TMS320F280048-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 256 KB flash, CLA, PGAs, SDFM TMS320F280048C-Q1 Automotive C2000™ 32-bit MCU w/ 100 MHz, FPU, TMU, 256 KB flash, CLA, InstaSPIN-FOC, CLB, PGAs, SDFM TMS320F280049-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 256 KB flash, CLA, PGAs, SDFM TMS320F280049C-Q1 Automotive C2000™ 32-bit MCU w/ 100 MHz, FPU, TMU, 256 KB flash, CLA, InstaSPIN-FOC, CLB, PGAs, SDFM TMS320F28022-Q1 Automotive C2000™ 32-bit MCU with 50 MHz, 32 KB flash, 8 PWM TMS320F28023-Q1 Automotive C2000™ 32-bit MCU with 50 MHz, 64 KB flash TMS320F28026-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 32 KB flash TMS320F28026F-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 32 KB flash, InstaSPIN-FOC TMS320F28027-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 64 KB flash TMS320F28027F-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 64 KB flash, InstaSPIN-FOC TMS320F28030-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 32 KB flash TMS320F28031-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 64 KB flash, 2 MSPS ADC TMS320F28032-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 64 KB flash, 4.6 MSPS ADC TMS320F28033-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 64 KB flash, 4.6 MSPS ADC, CLA TMS320F28034-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 128 KB flash TMS320F28035-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 128 KB flash, CLA TMS320F28052-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 64 KB flash, PGAs, 3.75 MSPS ADC TMS320F28052F-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 64 KB flash, InstaSPIN-FOC, PGAs TMS320F28052M-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 64 KB flash, InstaSPIN-MOTION, PGAs TMS320F28054-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 128 KB flash, PGAs TMS320F28054F-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 128 KB flash, InstaSPIN-FOC, PGAs TMS320F28054M-Q1 Automotive C2000™ 32-bit MCU with 60 MHz, 128 KB flash, InstaSPIN-MOTION, PGAs TMS320F28062-Q1 Automotive C2000™ 32-bit MCU with 90 MHz, FPU, 128 KB flash, 52 KB RAM TMS320F28062F-Q1 Automotive C2000™ 32-bit MCU with 90 MHz, FPU, 128 KB flash, InstaSPIN-FOC TMS320F28065-Q1 Automotive C2000™ 32-bit MCU with 90 MHz, FPU, VCU, CLA, 128 KB flash, 100 KB RAM TMS320F28066-Q1 Automotive C2000™ 32-bit MCU with 90 MHz, FPU, 256 KB flash, 68 KB RAM TMS320F28067-Q1 Automotive C2000™ 32-bit MCU with 90 MHz, FPU, 256 KB flash, 100 KB RAM TMS320F28069-Q1 Automotive C2000™ 32-bit MCU with 90 MHz, FPU, VCU, 256 KB flash, CLA TMS320F28069F-Q1 Automotive C2000™ 32-bit MCU with 90 MHz, FPU, VCU, CLA, 256 KB flash, InstaSPIN-FOC TMS320F28069M-Q1 Automotive C2000™ 32-bit MCU with 90 MHz, FPU, VCU, CLA, 256 KB flash, InstaSPIN-MOTION TMS320F28075-Q1 Automotive C2000™ 32-bit MCU with 120 MHz, FPU, TMU, 512 KB flash, CLA, SDFM TMS320F28333 C2000™ 32-bit MCU with 100 MIPS, FPU, 512 KB flash, EMIF, 12b ADC TMS320F28335-Q1 Automotive C2000™ 32-bit MCU with 150 MIPS, FPU, 512 KB flash, EMIF, 12b ADC TMS320F28375S-Q1 Automotive C2000™ 32-bit MCU with 400 MIPS, 1xCPU, 1xCLA, FPU, TMU, 1024 KB flash, EMIF, 12b ADC TMS320F28377D-Q1 Automotive C2000™ 32-bit MCU with 800 MIPS, 2xCPU, 2xCLA, FPU, TMU, 1024 KB flash, EMIF, 16b ADC TMS320F28377S-Q1 Automotive C2000™ 32-bit MCU with 400 MIPS, 1xCPU, 1xCLA, FPU, TMU, 1024 KB flash, EMIF, 16b ADC TMS320F28379D-Q1 Automotive C2000™ 32-bit MCU w/ 800 MIPS, 2xCPU, 2xCLA, FPU, TMU, 1024 KB flash, CLB, EMIF, 16b ADC
Automotive mmWave radar sensors
AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator
Arm-based processors
AM6526 Dual Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6528 Sitara processor: dual Arm Cortex-A53 & dual Arm Cortex-R5F, Gigabit PRU-ICSS, 3D graphics AM6546 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6548 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS, 3D graphics
Download options
IDE, configuration, compiler or debugger

CCSTUDIO Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It comprises a suite of tools used to develop and debug embedded applications.  Code Composer Studio is available for download across Windows®, Linux® and macOS® (...)

Supported products & hardware

Supported products & hardware

This design resource supports most products in these categories.

Check the product details page to verify support.

Products
Automotive mmWave radar sensors
AWR1243 76-GHz to 81-GHz high-performance automotive MMIC AWR1443 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating MCU and hardware accelerator AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR1843AOP Single-chip 76-GHz to 81-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR2243 76-GHz to 81-GHz automotive second-generation high-performance MMIC AWR2944 Automotive 2nd-generation, 76-GHz to 81-GHz, high-performance SoC for corner and long-range radar AWR6443 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating MCU and radar accelerator AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843AOP Single-chip 60-GHz to 64-GHz automotive radar sensor integrating antenna on package, DSP and MCU
Industrial mmWave radar sensors
IWR1443 Single-chip 76-GHz to 81-GHz mmWave sensor integrating MCU and hardware accelerator IWR1642 Single-chip 76-GHz to 81-GHz mmWave sensor integrating DSP and MCU IWR1843 Single-chip 76-GHz to 81-GHz industrial radar sensor integrating DSP, MCU and radar accelerator IWR6443 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating MCU and hardware accelerator IWR6843 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating processing capability IWR6843AOP Single-chip 60-GHz to 64-GHz intelligent mmWave sensor with integrated antenna on package (AoP)
Evaluate in the cloud Download options
IDE, configuration, compiler or debugger

SYSCONFIG Standalone desktop version of SysConfig

To help simplify configuration challenges and accelerate software development, we created SysConfig, an intuitive and comprehensive collection of graphical utilities for configuring pins, peripherals, radios, subsystems, and other components.  SysConfig helps you manage, expose and resolve (...)

Supported products & hardware

Supported products & hardware

Products
Automotive mmWave radar sensors
AWR1443 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating MCU and hardware accelerator AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR1843AOP Single-chip 76-GHz to 81-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR2944 Automotive 2nd-generation, 76-GHz to 81-GHz, high-performance SoC for corner and long-range radar AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843AOP Single-chip 60-GHz to 64-GHz automotive radar sensor integrating antenna on package, DSP and MCU
Unassigned staging
Arm-based microcontrollers
AM2431 Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2432 Dual-core Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2434 Quad-core Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2631 Single-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2631-Q1 Automotive single-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2632 Dual-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2632-Q1 Automotive dual-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2634 Quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2634-Q1 Automotive quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security MSP432E401Y SimpleLink™ 32-bit Arm Cortex-M4F MCU with ethernet, CAN, 1MB Flash and 256kB RAM MSP432E411Y SimpleLink™ 32-bit Arm Cortex-M4F MCU with ethernet, CAN, TFT LCD, 1MB Flash and 256kB RAM TM4C1230C3PM High performance 32-bit ARM® Cortex®-M4F based MCU TM4C1230D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, 64-pin LQFP TM4C1230E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1230H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1231C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 12-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, 100-pin LQFP TM4C1231E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, 100-pin LQFP TM4C1231H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 144-pin LQFP TM4C1231H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 100-pin LQFP TM4C1232C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1233C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1233E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1233H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 144-pin LQFP TM4C1233H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1236D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1236E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, USB, 64-pin LQFP TM4C1236H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1237D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 144-pin LQFP TM4C1237H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C123AE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, 64-pin LQFP TM4C123AH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, 64-pin LQFP TM4C123BE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, 64-pin LQFP TM4C123BE6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, 100-pin LQFP TM4C123BH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 144-pin LQFP TM4C123BH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 64-pin LQFP TM4C123BH6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 100-pin LQFP TM4C123BH6ZRB 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 157-pin BGA TM4C123FE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123FH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123GE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 64-pin LQFP TM4C123GE6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 100-pin LQFP TM4C123GH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 144-pin LQFP TM4C123GH6PM 32-bit Arm Cortex-M4F based MCU with 80 -MHz, 256 -KB Flash, 32 -KB RAM, 2 CAN, RTC, USB, 64-Pin TM4C123GH6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 100-pin LQFP TM4C123GH6ZRB 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 157-pin BGA TM4C123GH6ZXR 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 168-pin BGA TM4C1290NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1290NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1292NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII TM4C1292NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII TM4C1294KCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1294NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHZ, 1-MB flash, 256-KB RAM, USB, ENET MAC+PHY TM4C1294NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1297NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, LCD TM4C1299KCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD TM4C1299NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD TM4C129CNCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, AES TM4C129CNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, AES TM4C129DNCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129DNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129EKCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129ENCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129ENCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129LNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD, AES TM4C129XKCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD, AES TM4C129XNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-KB RAM, USB, ENET MAC+PHY, LCD, AES
Digital signal processors (DSPs)
DM505 SoC for vision analytics 15mm package DRA780 SoC processor w/ 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA781 SoC processor w/ 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA782 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA783 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA785 SoC processor w/ 2x 1000 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA786 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA787 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA788 SoC processor w/ 2x 1000 MHz C66x DSP and 1x EVE and 2 dual Arm Cortex-M4 for audio amplifier TDA3LA Low power SoC w/ vision acceleration for ADAS applications TDA3LX Low power SoC w/ processing, imaging & vision acceleration for ADAS applications TDA3MA Low power SoC w/ full-featured processing & vision acceleration for ADAS applications TDA3MD Low power SoC w/ full-featured processing for ADAS applications TDA3MV Low power SoC w/ full-featured processing, imaging & vision acceleration for ADAS applications
Bluetooth products
CC2640 SimpleLink™ 32-bit Arm Cortex-M3 Bluetooth® Low Energy wireless MCU with 128kB Flash CC2640R2F SimpleLink™ 32-bit Arm® Cortex®-M3 Bluetooth® 5.1 Low Energy wireless MCU with 128-kB flash CC2640R2F-Q1 SimpleLink™ automotive qualified 32-bit Arm Cortex-M3 Bluetooth® Low Energy wireless MCU CC2640R2L SimpleLink™ Bluetooth® 5.1 Low Energy wireless MCU CC2642R SimpleLink™ 32-bit Arm Cortex-M4F Bluetooth® Low Energy wireless MCU with 352kB Flash CC2642R-Q1 Automotive qualified SimpleLink™ Bluetooth® Low Energy wireless MCU CC2650 SimpleLink™ 32-bit Arm Cortex-M3 multiprotocol 2.4 GHz wireless MCU with 128kB Flash CC2650MODA SimpleLink™ 32-bit Arm Cortex-M3 multiprotocol 2.4 GHz wireless module with 128kB Flash CC2652RB SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with crystal-less BAW resonator
Unassigned processors
Sub-1 GHz products
CC1310 SimpleLink™ 32-bit Arm Cortex-M3 Sub-1 GHz wireless MCU with 128kB Flash CC1311P3 SimpleLink™ Arm® Cortex®-M4 Sub-1 GHz wireless MCU with 352-KB Flash and integrated +20dBm PA CC1311R3 SimpleLink™ Arm® Cortex®-M4 Sub-1 GHz wireless MCU with 352-kB flash CC1312R7 SimpleLink™ Arm® Cortex®-M4F multiprotocol Sub-1 GHz wireless MCU with 704-kB Flash
C2000 real-time microcontrollers
TMS320F280021 C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 32-KB flash TMS320F280021-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 32-KB flash TMS320F280023 C2000™ 32-bit MCU with 100-MHz, FPU, TMU, 64-kb flash TMS320F280023-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 64-KB flash TMS320F280023C C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 64-KB flash, CLB TMS320F280025 C2000™ 32-bit MCU with 100-MHz, FPU, TMU, 128-kb flash TMS320F280025-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 128-KB flash TMS320F280025C C2000™ 32-bit MCU with 100-MHz, FPU, TMU, 128-kb flash, CLB TMS320F280025C-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 128-KB flash, CLB TMS320F28384D C2000™ 32-bit MCU with connectivity manager, 2x C28x+CLA CPU, 1.5-MB flash, FPU64, Ethernet TMS320F28384D-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 2x C28x+CLA CPU, 1.5MB flash, FPU64, Ethernet TMS320F28384S C2000™ 32-bit MCU with connectivity manager, 1x C28x+CLA CPU, 1.0-MB flash, FPU64, Ethernet TMS320F28384S-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 1x C28x+CLA CPU, 1MB flash, FPU64, Ethernet TMS320F28386D C2000™ 32-bit MCU with connectivity manager, 2x C28x+CLA CPU, 1.5-MB flash, FPU64, CLB, Ethernet TMS320F28386D-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 2x C28x+CLA CPU, 1.5MB flash, FPU64, CLB, Eth TMS320F28386S C2000™ 32-bit MCU with connectivity manager, 1x C28x+CLA CPU, 1.0-MB flash, FPU64, CLB, Ethernet TMS320F28386S-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 1x C28x+CLA CPU, 1MB flash, FPU64, CLB, Ethe TMS320F28388D C2000™ 32-bit MCU w/ connectivity manager, 2x C28x+CLA CPU, 1.5-MB flash, FPU64, CLB, ENET, EtherCAT TMS320F28388S C2000™ 32-bit MCU w/ connectivity manager, 1x C28x+CLA CPU, 1.0-MB flash, FPU64, CLB, ENET, EtherCAT
Wi-Fi products
CC3200 SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 2 TLS/SSL and 256kB RAM CC3200MOD SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® and Internet-of-Things wireless module CC3220MOD SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi CERTIFIED™ wireless module CC3220MODA SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi CERTIFIED™ wireless module with antenna CC3220R SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 6 TLS/SSL and 256kB RAM CC3220S SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with secure boot and 256kB RAM CC3220SF SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 1MB Flash and 256kB RAM CC3230S SimpleLink™ Arm Cortex-M4 Wi-Fi® MCU with 256kB RAM, coexistence, WPA3, 16 TLS sockets, secure boot CC3230SF SimpleLink™ Arm Cortex-M4 Wi-Fi® MCU 256kB RAM+1MB XIP flash, coex, WPA3, 16 TLS sockets,secure boot CC3235MODAS SimpleLink™ Wi-Fi CERTIFIED™ dual-band wireless antenna module solution CC3235MODASF SimpleLink™ Wi-Fi CERTIFIED™ dual-band wireless antenna module solution with 1MB XIP Flash CC3235MODS SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi CERTIFIED™ wireless module with 256kB RAM CC3235MODSF SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi CERTIFIED™ wireless module with 1MB Flash CC3235S SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi® wireless MCU with 256kB RAM CC3235SF SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi® wireless MCU with 1MB Flash
Wi-SUN products
CC1312R SimpleLink™ 32-bit Arm Cortex-M4F Sub-1 GHz wireless MCU with 352kB Flash
Zigbee products
Arm-based processors
AM3351 Sitara processor: Arm Cortex-A8, 1Gb Ethernet, display AM3352 Sitara processor: Arm Cortex-A8, 1Gb Ethernet, display, CAN AM3354 Sitara processor: Arm Cortex-A8, 3D graphics, CAN AM3356 Sitara processor: Arm Cortex-A8, PRU-ICSS, CAN AM3357 Sitara processor: Arm Cortex-A8, EtherCAT, PRU-ICSS, CAN AM3358 Sitara processor: Arm Cortex-A8, 3D graphics, PRU-ICSS, CAN AM3358-EP Sitara processor: Arm Cortex-A8, 3D, PRU-ICSS, HiRel, CAN AM3359 Sitara processor: Arm Cortex-A8, EtherCAT, 3D, PRU-ICSS, CAN AM4372 Sitara processor: Arm Cortex-A9 AM4376 Sitara processor: Arm Cortex-A9, PRU-ICSS AM4377 Sitara processor: Arm Cortex-A9, PRU-ICSS, EtherCAT AM4378 Sitara processor: Arm Cortex-A9, PRU-ICSS, 3D graphics AM4379 Sitara processor: Arm Cortex-A9, PRU-ICSS, EtherCAT, 3D graphics AM5706 Sitara processor: cost optimized Arm Cortex-A15 & DSP and secure boot AM5708 Sitara processor: cost optimized Arm Cortex-A15 & DSP, multimedia and secure boot AM5716 Sitara processor: Arm Cortex-A15 & DSP AM5718 Sitara processor: Arm Cortex-A15 & DSP, multimedia AM5718-HIREL AM5718-HIREL Sitara™ Processors Silicon Revision 2.0 AM5726 Sitara processor: dual Arm Cortex-A15 & dual DSP AM5728 Sitara processor: dual Arm Cortex-A15 & dual DSP, multimedia AM5746 Sitara processor: dual arm Cortex-A15 & dual DSP, ECC on DDR and secure boot AM5748 Sitara processor: dual arm Cortex-A15 & dual DSP, multimedia, ECC on DDR and secure boot AM623 Internet of Things (IoT) and gateway SoC with Arm® Cortex®-A53-based object and gesture recognition AM625 Human-machine-interaction SoC with Arm® Cortex®-A53-based edge AI and full-HD dual display AM6411 Single-core 64-bit Arm® Cortex®-A53, single-core Cortex-R5F, PCIe, USB 3.0 and security AM6412 Dual-core 64-bit Arm® Cortex®-A53, single-core Cortex-R5F, PCIe, USB 3.0 and security AM6421 Single-core 64-bit Arm® Cortex®-A53, dual-core Cortex-R5F, PCIe, USB 3.0 and security AM6422 Dual-core 64-bit Arm® Cortex®-A53, dual-core Cortex-R5F, PCIe, USB 3.0 and security AM6441 Single-core 64-bit Arm® Cortex®-A53, quad-core Cortex-R5F, PCIe, USB 3.0 and security AM6442 Dual-core 64-bit Arm® Cortex®-A53, quad-core Cortex-R5F, PCIe, USB 3.0 and security AM6526 Dual Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6528 Sitara processor: dual Arm Cortex-A53 & dual Arm Cortex-R5F, Gigabit PRU-ICSS, 3D graphics AM6546 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6548 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS, 3D graphics AMIC110 Sitara processor: Arm Cortex-A8, 10+ Ethernet protocols AMIC120 Sitara processor; Arm Cortex-A9; 10+ Ethernet protocols, encoder protocols DRA710 600 MHz Arm Cortex-A15 SoC processor with graphics for infotainment & cluster DRA712 600 MHz Arm Cortex-A15 SoC processor with graphics & dual Arm Cortex-M4 for infotainment & cluster DRA714 600 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA716 800 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA718 1 GHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA722 800 MHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA724 1 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA725 1.2 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA726 1.5 GHz Arm Cortex-A15 with Graphics & DSP for Infotainment & Cluster DRA750 Dual 1.0 GHz A15, dual DSP, extended peripherals SoC processor for infotainment DRA756 Dual 1.5 GHz A15, dual EVE, dual DSP, extended peripherals SoC processor for infotainment DRA75P Multi-core SoC processors with ISP and pin-compatible with DRA75x SoCs for infotainment applications DRA77P High performance multi-core SoCs with extended peripherals and ISP for digital cockpit applications DRA790 300 MHz Arm Cortex-A15 SoC processor w/ 500 MHz C66x DSP for audio amplifier DRA791 300 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA793 500 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA797 800 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA821U Dual Arm Cortex-A72, quad Cortex-R5F, 4-port Ethernet switch, and a PCIe controller DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm® Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA2E SoC processors with graphics and video acceleration for ADAS applications (23mm package) TDA2EG-17 SoC processors with graphics and video acceleration for ADAS applications (17mm package) TDA2HF SoC processor w/ full-featured video & vision acceleration for ADAS applications TDA2HG SoC processor w/ graphics, video & vision acceleration for ADAS applications TDA2HV SoC processor w/ video & vision acceleration for ADAS applications TDA2LF SoC processor for ADAS applications TDA2P-ABZ TDA2 pin-compatible SoC family with graphic, imaging, video, vision acceleration options for ADAS TDA2P-ACD High performance SoC family w/ options for graphics, imaging, video and vision acceleration for ADAS TDA2SA SoC processor w/ highly-featured video & vision acceleration for ADAS applications TDA2SG SoC processor w/ highly-featured graphics, video & vision acceleration for ADAS applications TDA2SX SoC processor w/ full-featured graphics, video & vision acceleration for ADAS applications TDA4VM Dual Arm® Cortex®-A72, C7x DSP, and deep learning, vision and multimedia accelerators TDA4VM-Q1 Automotive system-on-a-chip for L2, L3 and near-field analytic systems using deep learning
Multi-protocol products
CC1350 SimpleLink™ 32-bit Arm Cortex-M3 multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU with 128kB Flash CC1352P SimpleLink™ Arm Cortex-M4F multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU integrated power amplifier CC1352P7 SimpleLink™ Arm® Cortex®-M4F multiprotocol sub-1 GHz and 2.4-GHz wireless MCU integrated power amp CC1352R SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU with 352kB Flash CC2651P3 SimpleLink™ 32-bit Arm® Cortex®-M4 single-protocol 2.4 GHz wireless MCU with 352-kB Flash CC2651R3 SimpleLink™ 32-bit Arm® Cortex®-M4 single-protocol 2.4-GHz wireless MCU with 352-kB flash CC2651R3SIPA SimpleLink™ multiprotocol 2.4-GHz wireless system-in-package module with integrated antenna CC2652P SimpleLink™ Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with integrated power amplifier CC2652P7 SimpleLink™ Arm® Cortex®-M4F multiprotocol 2.4-GHz wireless MCU, 704-kB Flash, integrated power amp CC2652PSIP SimpleLink™ multiprotocol 2.4-GHz wireless system-in-package module with integrated power amplifier CC2652R SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with 352kB Flash CC2652R7 SimpleLink™ Arm® Cortex®-M4F multiprotocol 2.4-GHz wireless MCU with 704-kB Flash CC2652RSIP SimpleLink™ multiprotocol 2.4-GHz wireless system-in-package module with 352-KB memory
Industrial mmWave radar sensors
IWR1443 Single-chip 76-GHz to 81-GHz mmWave sensor integrating MCU and hardware accelerator IWR1642 Single-chip 76-GHz to 81-GHz mmWave sensor integrating DSP and MCU IWR1843 Single-chip 76-GHz to 81-GHz industrial radar sensor integrating DSP, MCU and radar accelerator IWR6443 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating MCU and hardware accelerator IWR6843 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating processing capability IWR6843AOP Single-chip 60-GHz to 64-GHz intelligent mmWave sensor with integrated antenna on package (AoP)
Unassigned wireless connectivity
Develop in the cloud Download options
Simulation model

AM654x/DRA80xM BSDL Model

SPRM724.ZIP (12 KB) - BSDL Model
Simulation model

AM654x/DRA80xM IBIS File

SPRM737.ZIP (19753 KB) - IBIS Model
Simulation model

AM654x/DRA80xM Thermal Models

SPRM718.ZIP (2 KB) - Thermal Model
Calculation tool

CLOCKTREETOOL — Clock Tree Tool for Sitara, Automotive, Vision Analytics, & Digital Signal Processors

The Clock Tree Tool (CTT) for Sitara™ ARM®, Automotive, and Digital Signal Processors is an interactive clock tree configuration software that provides information about the clocks and modules in these TI devices. It allows the user to:
  • Visualize the device clock tree
  • Interact with clock tree (...)
User guide: PDF
Calculation tool

SITARA-DDR-CONFIG-TOOL — Sitara External Memory Interface (EMIF) tool

The Sitara™ EMIF tool is a software tool which provides an interface to configure the TI processors for accessing the external DDR memory devices. The tool also optimizes the Delay Locked Loop (DLL) settings to compensate for board routing skews. The results are output as EMIF configuration (...)
Design tool

PROCESSORS-3P-SEARCH — Arm®-based MPU, Arm-based MCU and DSP third-party search tool

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)
Package Pins Download
FCCSP (ACD) 784 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos