Product details

Arm CPU 2 Arm Cortex-A72 Arm MHz (Max.) 2000 Co-processor(s) MCU Island of 1 Dual Arm Cortex-R5, SoC of 1 Dual Arm Cortex-R5 CPU 64-bit Protocols Ethernet, TSN Ethernet MAC 4-Port 2.5Gb switch PCIe 1 PCIe Gen 3 Features Networking Operating system Linux, RTOS Security Debug security, Secure boot, Secure storage & programming, Cryptography, Trusted execution environment, Software IP protection, Device identity, Isolation firewalls Rating Automotive Operating temperature range (C) -40 to 125
Arm CPU 2 Arm Cortex-A72 Arm MHz (Max.) 2000 Co-processor(s) MCU Island of 1 Dual Arm Cortex-R5, SoC of 1 Dual Arm Cortex-R5 CPU 64-bit Protocols Ethernet, TSN Ethernet MAC 4-Port 2.5Gb switch PCIe 1 PCIe Gen 3 Features Networking Operating system Linux, RTOS Security Debug security, Secure boot, Secure storage & programming, Cryptography, Trusted execution environment, Software IP protection, Device identity, Isolation firewalls Rating Automotive Operating temperature range (C) -40 to 125
FCBGA (ALM) 433

Processor cores:

  • Dual 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2.0 GHz, 24K DMIPS
    • 1MB L2 shared cache per dual-core Cortex-A72 cluster
    • 32KB L1 DCache and 48KB L1 ICache per A72 core
  • 4× Arm Cortex-R5F MCUs at up to 1.0 GHz with optional lockstep operation, 8K DMIPS
    • 32K I-Cache, 32K D-Cache, 64K L2 TCM
    • 2× Arm Cortex-R5F MCUs in isolated MCU subsystem
    • 2× Arm Cortex-R5F MCUs in general compute partition

    Memory subsystem:

  • 1MB of On-Chip L3 RAM with ECC and coherency
    • ECC error protection
    • Shared coherent cache
    • Supports internal DMA engine
  • External Memory Interface (EMIF) module with ECC
    • Supports LPDDR4 memory types
    • Supports speeds up to 3200 MT/s
    • 32-bit and 16-bit data bus with inline ECC bus up to 12.8GB/s
  • General-Purpose Memory Controller (GPMC)
  • 512KB on-chip SRAM in MAIN domain, protected by ECC

    Virtualization:

  • Hypervisor support in Arm Cortex-A72
  • Independent processing subsystems with Arm Cortex-A72, Arm Cortex-R5F with isolated safety MCU island
  • IO virtualization support
    • Peripheral Virtualization Unit (PVU) for low latency high bandwidth peripheral traffic
  • Multi-region firewall support for memory and peripheral isolation
  • Virtualization support with Ethernet, PCIe, and DMA
  • Device security (on select part numbers):

  • Secure boot with secure runtime support
  • Customer programmable root key, up to RSA-4K or ECC-512
  • Embedded hardware security module
  • Crypto hardware accelerators – PKA with ECC, AES, SHA, RNG, DES and 3DES

    Functional Safety:

  • Functional Safety-Compliant targeted (on select part numbers)
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 and IEC 61508 functional safety system design up to ASIL-D/SIL-3 targeted
    • Systematic capability up to ASIL-D/SIL-3 targeted
    • Hardware integrity up to ASIL-D/SIL-3 targeted for MCU Domain
    • Hardware integrity up to ASIL-D/SIL-3 targeted for Extended MCU (EMCU) portion of the Main Domain
    • Hardware integrity up to ASIL-B/SIL-2 targeted for remainder of the Main Domain
    • FFI isolation provided between EMCU and the remainder of the Main Domain
    • Safety-related certification
      • ISO 26262 and IEC 61508 planned
  • AEC-Q100 qualified on part number variants ending in Q1
  • High-speed interfaces:

    • Integrated Ethernet TSN/AVB switch supporting up to 4 (DRA821U4) or 2 (DRA821U2) external ports:
      • One port supports 5Gb, 10Gb USXGMII/XFI
      • All ports support 2.5Gb SGMII
      • All ports support 1Gb SGMII/RGMII
      • DRA821U4: Any single port can support QSGMII (using all 4 internal ports)
      • Non-blocking wire-rate store and forward switch
      • InterVLAN (Layer3) routing support
      • Time synchronization support with IEEE 1588(annex D,E,F)
      • TSN/AVB support for traffic scheduling, shaping
      • Port mirroring feature for debug and diagnostics
      • Policing and rate limiting support
    • One RGMII/RMII port in safety MCU island
  • One PCI-Express Gen3 controller
    • Gen1, Gen2, and Gen3 operation with auto-negotiation
    • 4× lanes
  • One USB 3.1 Gen1 dual-role device subsystem
    • Supports type-C switching
    • Independently configurable as USB host, USB peripheral, or USB dual-role device

    Automotive interfaces:

  • Twenty CAN-FD ports
  • 12× Universal Asynchronous Receiver/Transmitter (UART)
  • 11× Serial Peripheral Interfaces (SPI)
  • One 8-channel ADC
  • 10× Inter-Integrated Circuit ( I2C™)
  • 2× Improved Inter-Integrated Circuit ( I3C)

    Audio interfaces:

  • 3× Multichannel Audio Serial Port (McASP) modules

    Flash memory interfaces:

  • Embedded Multi Media Card ( eMMC™ 5.1) interface
    • Support speeds of up to HS400
  • One Secure Digital 3.0/Secure Digital Input Output 3.0 (SD3.0/SDIO3.0) interfaces
  • One Octal SPI / Xccela™ / HyperBus™ Memory Controller (HBMC) interface
  • 16-nm FinFET technology
  • 17.2 mm x 17.2 mm, 0.8 mm pitch, IPC Class 3 PCB

Processor cores:

  • Dual 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2.0 GHz, 24K DMIPS
    • 1MB L2 shared cache per dual-core Cortex-A72 cluster
    • 32KB L1 DCache and 48KB L1 ICache per A72 core
  • 4× Arm Cortex-R5F MCUs at up to 1.0 GHz with optional lockstep operation, 8K DMIPS
    • 32K I-Cache, 32K D-Cache, 64K L2 TCM
    • 2× Arm Cortex-R5F MCUs in isolated MCU subsystem
    • 2× Arm Cortex-R5F MCUs in general compute partition

    Memory subsystem:

  • 1MB of On-Chip L3 RAM with ECC and coherency
    • ECC error protection
    • Shared coherent cache
    • Supports internal DMA engine
  • External Memory Interface (EMIF) module with ECC
    • Supports LPDDR4 memory types
    • Supports speeds up to 3200 MT/s
    • 32-bit and 16-bit data bus with inline ECC bus up to 12.8GB/s
  • General-Purpose Memory Controller (GPMC)
  • 512KB on-chip SRAM in MAIN domain, protected by ECC

    Virtualization:

  • Hypervisor support in Arm Cortex-A72
  • Independent processing subsystems with Arm Cortex-A72, Arm Cortex-R5F with isolated safety MCU island
  • IO virtualization support
    • Peripheral Virtualization Unit (PVU) for low latency high bandwidth peripheral traffic
  • Multi-region firewall support for memory and peripheral isolation
  • Virtualization support with Ethernet, PCIe, and DMA
  • Device security (on select part numbers):

  • Secure boot with secure runtime support
  • Customer programmable root key, up to RSA-4K or ECC-512
  • Embedded hardware security module
  • Crypto hardware accelerators – PKA with ECC, AES, SHA, RNG, DES and 3DES

    Functional Safety:

  • Functional Safety-Compliant targeted (on select part numbers)
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 and IEC 61508 functional safety system design up to ASIL-D/SIL-3 targeted
    • Systematic capability up to ASIL-D/SIL-3 targeted
    • Hardware integrity up to ASIL-D/SIL-3 targeted for MCU Domain
    • Hardware integrity up to ASIL-D/SIL-3 targeted for Extended MCU (EMCU) portion of the Main Domain
    • Hardware integrity up to ASIL-B/SIL-2 targeted for remainder of the Main Domain
    • FFI isolation provided between EMCU and the remainder of the Main Domain
    • Safety-related certification
      • ISO 26262 and IEC 61508 planned
  • AEC-Q100 qualified on part number variants ending in Q1
  • High-speed interfaces:

    • Integrated Ethernet TSN/AVB switch supporting up to 4 (DRA821U4) or 2 (DRA821U2) external ports:
      • One port supports 5Gb, 10Gb USXGMII/XFI
      • All ports support 2.5Gb SGMII
      • All ports support 1Gb SGMII/RGMII
      • DRA821U4: Any single port can support QSGMII (using all 4 internal ports)
      • Non-blocking wire-rate store and forward switch
      • InterVLAN (Layer3) routing support
      • Time synchronization support with IEEE 1588(annex D,E,F)
      • TSN/AVB support for traffic scheduling, shaping
      • Port mirroring feature for debug and diagnostics
      • Policing and rate limiting support
    • One RGMII/RMII port in safety MCU island
  • One PCI-Express Gen3 controller
    • Gen1, Gen2, and Gen3 operation with auto-negotiation
    • 4× lanes
  • One USB 3.1 Gen1 dual-role device subsystem
    • Supports type-C switching
    • Independently configurable as USB host, USB peripheral, or USB dual-role device

    Automotive interfaces:

  • Twenty CAN-FD ports
  • 12× Universal Asynchronous Receiver/Transmitter (UART)
  • 11× Serial Peripheral Interfaces (SPI)
  • One 8-channel ADC
  • 10× Inter-Integrated Circuit ( I2C™)
  • 2× Improved Inter-Integrated Circuit ( I3C)

    Audio interfaces:

  • 3× Multichannel Audio Serial Port (McASP) modules

    Flash memory interfaces:

  • Embedded Multi Media Card ( eMMC™ 5.1) interface
    • Support speeds of up to HS400
  • One Secure Digital 3.0/Secure Digital Input Output 3.0 (SD3.0/SDIO3.0) interfaces
  • One Octal SPI / Xccela™ / HyperBus™ Memory Controller (HBMC) interface
  • 16-nm FinFET technology
  • 17.2 mm x 17.2 mm, 0.8 mm pitch, IPC Class 3 PCB

Jacinto™ DRA821x processors, based on the Armv8 64-bit architecture, are optimized for gateway systems with cloud connectivity. The System-on-Chip (SoC) design reduces system-level costs and complexity through integration—notably, a system MCU, functional safety and security features, and an Ethernet switch for high-speed communication. Integrated diagnostics and functional safety features are targeted to ASIL-D and SIL 3 certification requirements. Real-time control and low-latency communication are enabled by a PCIe controller and a TSN capable Gigabit Ethernet switch.

Up to four general-purpose Arm® Cortex®-R5F subsystems can handle low-level, timing-critical processing tasks and leave the Arm® Cortex®-A72 core unencumbered for advanced and cloud-based applications.

Jacinto DRA821x processors also include the concept of the Extended MCU (eMCU) domain. This domain is a subset of the processors and peripherals on the main domain targeted at higher functional safety enablement, such as ASIL-D/SIL-3. The functional block diagram highlights which IP are included in the eMCU. For more details about eMCU and functional safety, see the DRA821 Safety Manual Processors Texas Instruments Jacinto™ 7 Family of Products (SPRUIX4) .

Jacinto™ DRA821x processors, based on the Armv8 64-bit architecture, are optimized for gateway systems with cloud connectivity. The System-on-Chip (SoC) design reduces system-level costs and complexity through integration—notably, a system MCU, functional safety and security features, and an Ethernet switch for high-speed communication. Integrated diagnostics and functional safety features are targeted to ASIL-D and SIL 3 certification requirements. Real-time control and low-latency communication are enabled by a PCIe controller and a TSN capable Gigabit Ethernet switch.

Up to four general-purpose Arm® Cortex®-R5F subsystems can handle low-level, timing-critical processing tasks and leave the Arm® Cortex®-A72 core unencumbered for advanced and cloud-based applications.

Jacinto DRA821x processors also include the concept of the Extended MCU (eMCU) domain. This domain is a subset of the processors and peripherals on the main domain targeted at higher functional safety enablement, such as ASIL-D/SIL-3. The functional block diagram highlights which IP are included in the eMCU. For more details about eMCU and functional safety, see the DRA821 Safety Manual Processors Texas Instruments Jacinto™ 7 Family of Products (SPRUIX4) .

Download
Information

Request samples

Preproduction samples are available (XDRA821UXXGALM). Request now

Similar products you might be interested in

open-in-new Compare products
Similar functionality to the compared device.
NEW DRA829J ACTIVE Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch For use if full Ethernet switch, GPU, or DSP cores are needed
NEW DRA829V ACTIVE Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches For use if full PCIe switch needed for your networking application

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 21
Type Title Date
* Data sheet DRA821 Jacinto™ Processors datasheet (Rev. C) 17 Dec 2021
* Errata J7200 DRA821 Silicon Errata (Rev. A) 21 Jun 2021
* User guide J7200 DRA821 Processor Silicon Revision 1.0 Technical Reference Manual (Rev. A) 15 Jan 2021
Application note Enabling MAC2MAC Feature on Jacinto7 Soc 10 Jan 2022
Application note How to Linux Fast Boot on DRA821U 14 Dec 2021
White paper Leverage Jacinto 7 Processors Functional Safety Features for Automotive Designs (Rev. A) 13 Oct 2021
Application note Jacinto7 DDRSS Register Configuration Tool 16 Aug 2021
Application note TISCI Server Integration in Vector AUTOSAR 16 Jul 2021
Application note TDA4 Flashing Techniques 08 Jul 2021
Application note J721E DDR Firewall Example 01 Jul 2021
White paper Jacinto™ 7 프로세서의 보안 구현 도구 04 Jan 2021
White paper Security Enablers on Jacinto™ 7 Processors 04 Jan 2021
White paper Sicherheitsaktivierung auf Jacinto™ 7-Prozessoren 04 Jan 2021
Technical article Tailor-made gateway processors lay the groundwork for zone architectures 17 Nov 2020
User guide Powering DRA821 with TPS6594-Q1 and LP8764-Q1 30 Oct 2020
White paper Differenzierungsmöglichkeit durch MCU-Integration Prozessoren der Reihe Jacinto™ 22 Oct 2020
White paper Enabling Differentiation through MCU Integration on Jacinto™ 7 Processors 22 Oct 2020
White paper Jacinto™ 7 프로세서의 MCU 통합으로 차별화 지원 22 Oct 2020
Technical article Bringing the next evolution of machine learning to the edge 27 Nov 2018
Technical article How quality assurance on the Processor SDK can improve software scalability 22 Aug 2018
Technical article Clove: Low-Power video solutions based on Sitara™ AM57x processors 21 Jul 2016

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

J7200XSOMXEVM — DRA821 system-on-module

The J7200XSOMG01EVM system-on-module—when paired with the J721EXCP01EVM common processor board—lets you evaluate the DRA821 processor for networking applications throughout automotive and industrial markets. These processors perform particularly well in industrial and automotive gateway (...)

Evaluation board

J721EXCPXEVM — Common processor board for Jacinto™ 7 processors

The J721EXCP01EVM common processor board for Jacinto™ 7 processors lets you evaluate vision analytics and networking applications in automotive and industrial markets. The common processor board is compatible with all Jacinto 7 processors system-on-modules (sold separately or as a (...)

In stock
Limit: 5
Evaluation board

J7EXPCXEVM — Gateway/Ethernet switch expansion card

Expand the capabilities of the J721EXCP01EVM common processor board for evaluating Jacinto 7 processors in vision analytics and networking applications in automotive and industrial markets with our Gateway/Ethernet switch expansion card.

In stock
Limit: 5
Software development kit (SDK)

PROCESSOR-SDK-J7200 — Software Development Kit for DRA821 Jacinto™ processors

Processor SDK RTOS (PSDK RTOS) can be used together with either Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX) to form a multi-processor software development platform for DRA821 SoCs within TI’s Jacinto™ platform. The SDK provides a comprehensive set of software (...)
Code example or demo

ASTC-3P-VLAB-EVM-SIM — ASTC VLAB virtual development platforms and tools

VLAB Works is the industry leader in software technology for modeling, simulation, and virtual prototyping of embedded electronic systems. VLAB technologies and solutions enable the application of automation and agile processes to embedded systems development. VLAB Works helps customers design (...)
From: VLAB Works
IDE, configuration, compiler or debugger

CCSTUDIO — Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio؜™ software is an integrated development environment (IDE) that supports TI's microcontroller (MCU) and embedded processor portfolios. Code Composer Studio software comprises a suite of tools used to develop and debug embedded applications. The software includes an (...)
Operating system (OS)

GHS-3P-INTEGRITY-RTOS — Green Hills INTEGRITY RTOS

The flagship of Green Hills Software operating systems—the INTEGRITY RTOS—is built around a partitioning architecture to provide embedded systems with total reliability, absolute security, and maximum real-time performance. With its leadership pedigree underscored by certifications in a (...)
From: Green Hills Software
Simulation model

J7200 DRA821 Thermal Model

SPRM774.ZIP (185 KB) - Thermal Model
Simulation model

J7200 DRA821 IBIS Model

SPRM775.ZIP (2294 KB) - IBIS Model
Simulation model

J7200 DRA821 BSDL Model

SPRM776.ZIP (10 KB) - BSDL Model
Calculation tool

PINMUXTOOL — Pin mux tool

The PinMux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs. Results are output as C header/code files that can be imported into software development kits (SDKs) or (...)
Design tool

PROCESSORS-3P-SEARCH — Arm-based MPU, arm-based MCU and DSP third-party search tool

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)
Reference designs

TIDEP-01022 — Gateway automotive reference design

Automotive trends are rapidly evolving, and as a result, new domain- and zonal-based gateway architectures are being used to efficiently handle the ever-increasing amount of data coming into and moving throughout the vehicle, and getting sent to the cloud. A properly functioning domain (or zonal) (...)
Package Pins Download
FCBGA (ALM) 433 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos