Product details

Arm CPU 2 Arm Cortex-A72 Arm MHz (Max.) 2000 Co-processor(s) MCU Island of 2 Arm Cortex-R5F (lockstep opt), SoC main of 4 Arm Cortex-R5F (lockstep opt) CPU 64-bit Graphics acceleration 1 3D Display type 2 DPI, 1 DSI, 1 EDP Protocols Ethernet Ethernet MAC 8-Port 2.5Gb switch PCIe 4 PCIe Gen 3 switch Hardware accelerators 1 Deep Learning accelerator, 1 Depth and Motion accelerator, 1 Video Encode/Decode accelerator, 1 Vision Processing accelerator Features Vision Analytics Operating system Linux, QNX, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection, Trusted execution environment Rating Automotive Power supply solution TPS6594-Q1, LP8764-Q1 Operating temperature range (C) -40 to 105
Arm CPU 2 Arm Cortex-A72 Arm MHz (Max.) 2000 Co-processor(s) MCU Island of 2 Arm Cortex-R5F (lockstep opt), SoC main of 4 Arm Cortex-R5F (lockstep opt) CPU 64-bit Graphics acceleration 1 3D Display type 2 DPI, 1 DSI, 1 EDP Protocols Ethernet Ethernet MAC 8-Port 2.5Gb switch PCIe 4 PCIe Gen 3 switch Hardware accelerators 1 Deep Learning accelerator, 1 Depth and Motion accelerator, 1 Video Encode/Decode accelerator, 1 Vision Processing accelerator Features Vision Analytics Operating system Linux, QNX, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection, Trusted execution environment Rating Automotive Power supply solution TPS6594-Q1, LP8764-Q1 Operating temperature range (C) -40 to 105
FCBGA (ALF) 827 FCBGA (ALF) 827 576 mm² 24 x 24

Processor cores:

  • C7x floating point, vector DSP, up to 1.0 GHz, 80 GFLOPS, 256 GOPS
  • Deep-learning matrix multiply accelerator (MMA), up to 8 TOPS (8b) at 1.0 GHz
  • Vision Processing Accelerators (VPAC) with Image Signal Processor (ISP) and multiple vision assist accelerators
  • Depth and Motion Processing Accelerators (DMPAC)
  • Dual 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2.0 GHz
    • 1MB shared L2 cache per dual-core Cortex-A72 cluster
    • 32KB L1 DCache and 48KB L1 ICache per Cortex-A72 core
  • Six Arm Cortex-R5F MCUs at up to 1.0 GHz
    • 16K I-Cache, 16K D-Cache, 64K L2 TCM
    • Two Arm Cortex-R5F MCUs in isolated MCU subsystem
    • Four Arm Cortex-R5F MCUs in general compute partition
  • Two C66x floating point DSP, up to 1.35 GHz, 40 GFLOPS, 160 GOPS
  • 3D GPU PowerVR Rogue 8XE GE8430, up to 750 MHz, 96 GFLOPS, 6 Gpix/sec
  • Custom-designed interconnect fabric supporting near max processing entitlement

    Memory subsystem:

  • Up to 8MB of on-chip L3 RAM with ECC and coherency
    • ECC error protection
    • Shared coherent cache
    • Supports internal DMA engine
  • External Memory Interface (EMIF) module with ECC
    • Supports LPDDR4 memory types
    • Supports speeds up to 3733 MT/s
    • 32-bit data bus with inline ECC up to 14.9GB/s
  • General-Purpose Memory Controller (GPMC)
  • 512KB on-chip SRAM in MAIN domain, protected by ECC

    Functional Safety:

  • Functional Safety-Compliant targeted (on select part numbers)
    • Developed for functional safety applications
    • Documentation available to aid ISO 26262 functional safety system design up to ASIL-D/SIL-3 targeted
    • Systematic capability up to ASIL-D/SIL-3 targeted
    • Hardware integrity up to ASIL-D/SIL-3 targeted for MCU Domain
    • Hardware integrity up to ASIL-B/SIL-2 targeted for Main Domain
    • Safety-related certification
      • ISO 26262 planned
  • AEC-Q100 qualilfied on part number variants ending in Q1
  • Device security (on select part numbers):

  • Secure boot with secure runtime support
  • Customer programmable root key, up to RSA-4K or ECC-512
  • Embedded hardware security module
  • Crypto hardware accelerators – PKA with ECC, AES, SHA, RNG, DES and 3DES

    High speed serial interfaces:

  • Integrated ethernet switch supporting (total of 8 external ports)
    • Up to eight 2.5Gb SGMII
    • Up to eight RMII (10/100) or RGMII (10/100/1000)
    • Up to two QSGMII
  • Up to four PCI-Express (PCIe) Gen3 controllers
    • Up to two lanes per controller
    • Gen1 (2.5GT/s), Gen2 (5.0GT/s), and Gen3 (8.0GT/s) operation with auto-negotiation
  • Two USB 3.0 dual-role device (DRD) subsystem
    • Two enhanced SuperSpeed Gen1 Ports
    • Each port supports Type-C switching
    • Each port independently configurable as USB host, USB peripheral, or USB DRD

    Automotive interfaces:

  • Sixteen Modular Controller Area Network (MCAN) modules with full CAN-FD support
  • Two CSI2.0 4L RX plus One CSI2.0 4L TX
    • 2.5Gbps RX throughput per lane (20Gbps total)

    Display subsystem:

  • One eDP/DP interface with Multi-Display Support (MST)
    • HDCP1.4/HDCP2.2 high-bandwidth digital content protection
  • One DSI TX (up to 2.5K)
  • Up to two DPI

    Audio interfaces:

  • Twelve Multichannel Audio Serial Port (MCASP) modules

    Video acceleration:

  • Ultra-HD video, one (3840 × 2160p, 60 fps), or two (3840 × 2160p, 30 fps) H.264/H.265 decode
  • Full-HD video, four (1920 × 1080p, 60 fps), or eight (1920 × 1080p, 30 fps) H.264/H.265 decode
  • Full-HD video, one (1920 × 1080p, 60 fps), or up to three (1920 × 1080p, 30 fps) H.264 encode

    Flash memory interfaces:

  • Embedded MultiMediaCard Interface ( eMMC™ 5.1)
  • Universal Flash Storage (UFS 2.1) interface with two lanes
  • Two Secure Digital 3.0/Secure Digital Input Output 3.0 interfaces (SD3.0/SDIO3.0)
  • Two simultaneous flash interfaces configured as
    • One OSPI and one QSPI flash interfaces
    • or one HyperBus™ and one QSPI flash interface

    System-on-Chip (SoC) architecture:

  • 16-nm FinFET technology
  • 24 mm × 24 mm, 0.8-mm pitch, 827-pin FCBGA (ALF), enables IPC class 3 PCB routing

    TPS6594-Q1 Companion Power Management ICs (PMIC):

  • Functional Safety support up to ASIL-D
  • Flexible mapping to support different use cases

Processor cores:

  • C7x floating point, vector DSP, up to 1.0 GHz, 80 GFLOPS, 256 GOPS
  • Deep-learning matrix multiply accelerator (MMA), up to 8 TOPS (8b) at 1.0 GHz
  • Vision Processing Accelerators (VPAC) with Image Signal Processor (ISP) and multiple vision assist accelerators
  • Depth and Motion Processing Accelerators (DMPAC)
  • Dual 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2.0 GHz
    • 1MB shared L2 cache per dual-core Cortex-A72 cluster
    • 32KB L1 DCache and 48KB L1 ICache per Cortex-A72 core
  • Six Arm Cortex-R5F MCUs at up to 1.0 GHz
    • 16K I-Cache, 16K D-Cache, 64K L2 TCM
    • Two Arm Cortex-R5F MCUs in isolated MCU subsystem
    • Four Arm Cortex-R5F MCUs in general compute partition
  • Two C66x floating point DSP, up to 1.35 GHz, 40 GFLOPS, 160 GOPS
  • 3D GPU PowerVR Rogue 8XE GE8430, up to 750 MHz, 96 GFLOPS, 6 Gpix/sec
  • Custom-designed interconnect fabric supporting near max processing entitlement

    Memory subsystem:

  • Up to 8MB of on-chip L3 RAM with ECC and coherency
    • ECC error protection
    • Shared coherent cache
    • Supports internal DMA engine
  • External Memory Interface (EMIF) module with ECC
    • Supports LPDDR4 memory types
    • Supports speeds up to 3733 MT/s
    • 32-bit data bus with inline ECC up to 14.9GB/s
  • General-Purpose Memory Controller (GPMC)
  • 512KB on-chip SRAM in MAIN domain, protected by ECC

    Functional Safety:

  • Functional Safety-Compliant targeted (on select part numbers)
    • Developed for functional safety applications
    • Documentation available to aid ISO 26262 functional safety system design up to ASIL-D/SIL-3 targeted
    • Systematic capability up to ASIL-D/SIL-3 targeted
    • Hardware integrity up to ASIL-D/SIL-3 targeted for MCU Domain
    • Hardware integrity up to ASIL-B/SIL-2 targeted for Main Domain
    • Safety-related certification
      • ISO 26262 planned
  • AEC-Q100 qualilfied on part number variants ending in Q1
  • Device security (on select part numbers):

  • Secure boot with secure runtime support
  • Customer programmable root key, up to RSA-4K or ECC-512
  • Embedded hardware security module
  • Crypto hardware accelerators – PKA with ECC, AES, SHA, RNG, DES and 3DES

    High speed serial interfaces:

  • Integrated ethernet switch supporting (total of 8 external ports)
    • Up to eight 2.5Gb SGMII
    • Up to eight RMII (10/100) or RGMII (10/100/1000)
    • Up to two QSGMII
  • Up to four PCI-Express (PCIe) Gen3 controllers
    • Up to two lanes per controller
    • Gen1 (2.5GT/s), Gen2 (5.0GT/s), and Gen3 (8.0GT/s) operation with auto-negotiation
  • Two USB 3.0 dual-role device (DRD) subsystem
    • Two enhanced SuperSpeed Gen1 Ports
    • Each port supports Type-C switching
    • Each port independently configurable as USB host, USB peripheral, or USB DRD

    Automotive interfaces:

  • Sixteen Modular Controller Area Network (MCAN) modules with full CAN-FD support
  • Two CSI2.0 4L RX plus One CSI2.0 4L TX
    • 2.5Gbps RX throughput per lane (20Gbps total)

    Display subsystem:

  • One eDP/DP interface with Multi-Display Support (MST)
    • HDCP1.4/HDCP2.2 high-bandwidth digital content protection
  • One DSI TX (up to 2.5K)
  • Up to two DPI

    Audio interfaces:

  • Twelve Multichannel Audio Serial Port (MCASP) modules

    Video acceleration:

  • Ultra-HD video, one (3840 × 2160p, 60 fps), or two (3840 × 2160p, 30 fps) H.264/H.265 decode
  • Full-HD video, four (1920 × 1080p, 60 fps), or eight (1920 × 1080p, 30 fps) H.264/H.265 decode
  • Full-HD video, one (1920 × 1080p, 60 fps), or up to three (1920 × 1080p, 30 fps) H.264 encode

    Flash memory interfaces:

  • Embedded MultiMediaCard Interface ( eMMC™ 5.1)
  • Universal Flash Storage (UFS 2.1) interface with two lanes
  • Two Secure Digital 3.0/Secure Digital Input Output 3.0 interfaces (SD3.0/SDIO3.0)
  • Two simultaneous flash interfaces configured as
    • One OSPI and one QSPI flash interfaces
    • or one HyperBus™ and one QSPI flash interface

    System-on-Chip (SoC) architecture:

  • 16-nm FinFET technology
  • 24 mm × 24 mm, 0.8-mm pitch, 827-pin FCBGA (ALF), enables IPC class 3 PCB routing

    TPS6594-Q1 Companion Power Management ICs (PMIC):

  • Functional Safety support up to ASIL-D
  • Flexible mapping to support different use cases

The TDA4VM processor family is based on the evolutionary Jacinto™ 7 architecture, targeted at ADAS and Autonomous Vehicle (AV) applications and built on extensive market knowledge accumulated over a decade of TI’s leadership in the ADAS processor market. The unique combination high-performance compute, deep-learning engine, dedicated accelerators for signal and image processing in an functional safety compliant targeted architecture make the TDA4VM devices a great fit for several industrial applications, such as: Robotics, Machine Vision, Radar, and so on. The TDA4VM provides high performance compute for both traditional and deep learning algorithms at industry leading power/performance ratios with a high level of system integration to enable scalability and lower costs for advanced automotive platforms supporting multiple sensor modalities in centralized ECUs or stand-alone sensors. Key cores include next generation DSP with scalar and vector cores, dedicated deep learning and traditional algorithm accelerators, latest Arm and GPU processors for general compute, an integrated next generation imaging subsystem (ISP), video codec, Ethernet hub and isolated MCU island. All protected by automotive grade safety and security hardware accelerators.

Key Performance Cores Overview

The “C7x” next generation DSP combines TI’s industry leading DSP and EVE cores into a single higher performance core and adds floating point vector calculation capabilities, enabling backward compatibility for legacy code while simplifying software programming. The new “MMA” deep learning accelerator enables performance up to 8 TOPS within the lowest power envelope in the industry when operating at the typical automotive worst case junction temperature of 125°C. The dedicated ADAS/AV hardware accelerators provide vision pre-processing plus distance and motion processing with no impact on system performance.

General Compute Cores and Integration Overview

Separate dual core cluster configuration of Arm Cortex-A72 facilitates multi-OS applications with minimal need for a software hypervisor. Up to six Arm Cortex-R5F subsystems enable low-level, timing critical processing tasks to leave the Arm Cortex-A72’s unencumbered for applications. The integrated “8XE GE8430” GPU offers up to 100 GFLOPS to enable dynamic 3D rendering for enhanced viewing applications. Building on the existing world-class ISP, TI’s 7th generation ISP includes flexibility to process a broader sensor suite, support for higher bit depth, and features targeting analytics applications. Integrated diagnostics and safety features support operations up to ASIL-D/SIL-3 levels while the integrated security features protect data against modern day attacks. To enable systems requiring heavy data bandwidth, a PCIe hub and Gigabit Ethernet switch are included along with CSI-2 ports to support throughput for many sensor inputs. To further the integration, the TDA4VM family also includes an MCU island eliminating the need for an external system microcontroller.

The TDA4VM processor family is based on the evolutionary Jacinto™ 7 architecture, targeted at ADAS and Autonomous Vehicle (AV) applications and built on extensive market knowledge accumulated over a decade of TI’s leadership in the ADAS processor market. The unique combination high-performance compute, deep-learning engine, dedicated accelerators for signal and image processing in an functional safety compliant targeted architecture make the TDA4VM devices a great fit for several industrial applications, such as: Robotics, Machine Vision, Radar, and so on. The TDA4VM provides high performance compute for both traditional and deep learning algorithms at industry leading power/performance ratios with a high level of system integration to enable scalability and lower costs for advanced automotive platforms supporting multiple sensor modalities in centralized ECUs or stand-alone sensors. Key cores include next generation DSP with scalar and vector cores, dedicated deep learning and traditional algorithm accelerators, latest Arm and GPU processors for general compute, an integrated next generation imaging subsystem (ISP), video codec, Ethernet hub and isolated MCU island. All protected by automotive grade safety and security hardware accelerators.

Key Performance Cores Overview

The “C7x” next generation DSP combines TI’s industry leading DSP and EVE cores into a single higher performance core and adds floating point vector calculation capabilities, enabling backward compatibility for legacy code while simplifying software programming. The new “MMA” deep learning accelerator enables performance up to 8 TOPS within the lowest power envelope in the industry when operating at the typical automotive worst case junction temperature of 125°C. The dedicated ADAS/AV hardware accelerators provide vision pre-processing plus distance and motion processing with no impact on system performance.

General Compute Cores and Integration Overview

Separate dual core cluster configuration of Arm Cortex-A72 facilitates multi-OS applications with minimal need for a software hypervisor. Up to six Arm Cortex-R5F subsystems enable low-level, timing critical processing tasks to leave the Arm Cortex-A72’s unencumbered for applications. The integrated “8XE GE8430” GPU offers up to 100 GFLOPS to enable dynamic 3D rendering for enhanced viewing applications. Building on the existing world-class ISP, TI’s 7th generation ISP includes flexibility to process a broader sensor suite, support for higher bit depth, and features targeting analytics applications. Integrated diagnostics and safety features support operations up to ASIL-D/SIL-3 levels while the integrated security features protect data against modern day attacks. To enable systems requiring heavy data bandwidth, a PCIe hub and Gigabit Ethernet switch are included along with CSI-2 ports to support throughput for many sensor inputs. To further the integration, the TDA4VM family also includes an MCU island eliminating the need for an external system microcontroller.

Download

Similar products you might be interested in

open-in-new Compare products
Drop-in replacement with upgraded functionality to the compared device.
TDA4VM-Q1 ACTIVE Automotive system-on-a-chip for L2, L3 and near-field analytic systems using deep learning Pin-to-pin equivalent, adding the automotive Q100 qualification
Pin-for-pin with same functionality to the compared device.
DRA829J ACTIVE Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch Pin-to-pin compatible device, removing the VPAC/DMPAC

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 56
Type Title Date
* Data sheet TDA4VM Jacinto™ Processors for ADAS and Autonomous Vehicles Silicon Revisions 1.0 and 1.1 datasheet (Rev. J) PDF | HTML 31 Aug 2021
* Errata J721E DRA829/TDA4VM Processors Silicon Revision 1.1/1.0 (Rev. C) PDF | HTML 27 Jul 2022
Application note TI Deep Learning Library Upgrade Solution PDF | HTML 21 Dec 2022
Functional safety information Jacinto Functional Safety Enablers (Rev. A) PDF | HTML 12 Dec 2022
Functional safety information DRA829_TDA4VM Report on the Safety Certificate - Automotive 07 Dec 2022
Functional safety information DRA829_TDA4VM Report on the Safety Certificate - Industrial 07 Dec 2022
Functional safety information DRA829_TDA4VM Safety Certificate - Automotive 06 Dec 2022
Functional safety information DRA829_TDA4VM Safety Certificate - Industrial 06 Dec 2022
Application note Jacinto 7 LPDDR4 Board Design and Layout Guidelines (Rev. D) PDF | HTML 30 Nov 2022
Functional safety information Jacinto™ 7 Safety Product Overview PDF | HTML 15 Aug 2022
Certificate J721E SDL TUV Certification 08 Aug 2022
Application note Jacinto7 DDRSS Register Configuration Tool (Rev. A) PDF | HTML 27 Jul 2022
Application note Proof of Concept Enablement for Jacinto TDA4VM OpenVx Host on R5F MCU2_0 PDF | HTML 25 Jul 2022
Functional safety information TÜV SÜD Certificate for Functional Safety Software Development Process (Rev. B) 19 Jul 2022
Application note Dual-TDA4x System Solution PDF | HTML 29 Apr 2022
Application note SPI Enablement & Validation on TDA4 Family PDF | HTML 05 Apr 2022
Technical article How are sensors and processors creating more intelligent and autonomous robots? 29 Mar 2022
User guide TPS65941213-Q1 and LP876411B4-Q1 PMIC User Guide for J721E, PDN-1A PDF | HTML 02 Feb 2022
User guide TPS65941212-Q1 and TPS65941111-Q1 PMIC User Guide for J721E, PDN-0B (Rev. B) PDF | HTML 31 Jan 2022
Technical article How to simplify your embedded edge AI application development 28 Jan 2022
User guide Optimized TPS65941213-Q1 and TPS65941111-Q1 PMIC User Guide for J721E, PDN-0C (Rev. A) PDF | HTML 26 Jan 2022
Application note Jacinto7 HS Device Development PDF | HTML 13 Jan 2022
User guide C6000-to-C7000 Migration User's Guide (Rev. D) PDF | HTML 10 Jan 2022
Application note Enabling MAC2MAC Feature on Jacinto7 Soc 10 Jan 2022
More literature Jacinto™ 7 automotive processors 14 Dec 2021
White paper Designing an Efficient Edge AI System with Highly Integrated Processors PDF | HTML 10 Dec 2021
Application note Jacinto 7 Display Subsystem Overview PDF | HTML 10 Dec 2021
Application note Jacinto 7 Thermal Management Guide - Software Strategies PDF | HTML 10 Dec 2021
Application note Jacinto7 HS Device Flashing Solution PDF | HTML 09 Dec 2021
User guide DRA829/TDA4VM Technical Reference Manual (Rev. C) 04 Oct 2021
Application note Performance and power benchmarking with TDA4 Edge AI processors PDF | HTML 01 Sep 2021
Application note TDA4 Flashing Techniques PDF | HTML 08 Jul 2021
Application note Jacinto 7 Camera Capture and Imaging Subsystem PDF | HTML 07 Jul 2021
Application note J721E DDR Firewall Example PDF | HTML 01 Jul 2021
Application note Hardware Accelerated Structure From Motion on TDA4VM PDF | HTML 23 Apr 2021
Application note Efficient Visual Localization on TDA4VM (Rev. A) PDF | HTML 19 Apr 2021
Functional safety information Build safer, efficient, intelligent and autonomous robots 04 Mar 2021
Application note TDA4VMid VPAC ISP Tuning Overview (Rev. A) PDF | HTML 14 Jan 2021
White paper Jacinto™ 7 프로세서의 보안 구현 도구 04 Jan 2021
White paper Security Enablers on Jacinto™ 7 Processors 04 Jan 2021
White paper Sicherheitsaktivierung auf Jacinto™ 7-Prozessoren 04 Jan 2021
White paper Differenzierungsmöglichkeit durch MCU-Integration Prozessoren der Reihe Jacinto™ 22 Oct 2020
White paper Enabling Differentiation through MCU Integration on Jacinto™ 7 Processors 22 Oct 2020
White paper Jacinto™ 7 프로세서의 MCU 통합으로 차별화 지원 22 Oct 2020
Application note MMC SW Tuning Algorithm PDF | HTML 18 Aug 2020
Application note OSPI Tuning Procedure PDF | HTML 08 Jul 2020
White paper 360度環景系統與自動停車系統 01 Mar 2020
White paper 360도 인식이 가능한서라운드뷰와 자동 주차 시스템 01 Mar 2020
White paper 運用 Jacinto™ 7 處理器的汽車設計功能安全特性 01 Mar 2020
White paper 오토모티브 설계 시 Jacinto™ 7 프로세서의 기능적 안전성 활용하기 01 Mar 2020
Technical article Making ADAS technology more accessible in vehicles 07 Jan 2020
White paper A 360-degree view of surround-view and automated parking systems 10 Dec 2019
More literature Jacinto 7 EVM Quick Start Guide for TDA4VM and DRA829V Processors 10 Oct 2019
Application note Jacinto 7 High-Speed Interface Layout Guidelines 04 Oct 2019
User guide VCOP Kernel-C to C7000 Migration Tool User's Guide (Rev. C) PDF | HTML 11 Aug 2019
Certificate TÜV NORD Certificate for Functional Safety Software Development Process 03 Feb 2015

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

J721EXSOMXEVM — TDA4VM and DRA829V socketed system on module (SoM)

The J721EXSOMXEVM socketed system on module (SoM) — when paired with the J721EXPCP01EVM common processor board — is used for evaluating TDA4VM and DRA829V processors in vision analytics and networking applications throughout automotive and industrial markets. These processors perform (...)

User guide: PDF | HTML
Evaluation board

J7EXPCXEVM — Gateway/Ethernet switch expansion card

Expand the capabilities of the J721EXCP01EVM common processor board for evaluating Jacinto 7 processors in vision analytics and networking applications in automotive and industrial markets with our Gateway/Ethernet switch expansion card.

User guide: PDF | HTML
Not available on TI.com
Evaluation board

J7EXPEXEVM — Audio and display expansion card

Expand the capabilities of the J721EXCP01EVM common processor board for evaluating Jacinto 7 processors in vision analytics and networking applications in automotive and industrial markets with our audio and display expansion card.
User guide: PDF | HTML
Not available on TI.com
Evaluation board

SK-TDA4VM

TDA4VM processor starter kit for edge AI vision systems

Bring smart cameras, robots and intelligent machines to life with the TDA4VM processor starter kit. With a fast setup process and an assortment of foundational demos and tutorials, you can start prototyping a vision-based application in less than an hour. The kit enables 8 trillion operations per (...)

User guide: PDF | HTML
Not available on TI.com
Evaluation board

BEAGL-BONE-AI-64 — BeagleBone® AI-64 embedded computing board based on Jacinto™ TDA4VM Arm® Cortex®-72 processor

The BeagleBone® AI-64 from the BeagleBoard.org Foundation is a complete system for developing artificial intelligence (AI) and machine-learning solutions with the convenience and expandability of the BeagleBone platform and onboard peripherals to start learning and building applications.

Using (...)

Evaluation board

ECON-3P-EMBEDDED-VISION

e-con Systems for camera design/development, ISP tuning, embedded imaging solutions

E-con Systems is a leading OEM camera provider with a wide portfolio of USB, MIPI and GMSL cameras. They take pride in building a custom camera solution that precisely fits the customers' specification. They also provide a full range of turnkey imaging solutions from form-factor customization (...)

Evaluation board

FRMS-3P-INDUSTRIAL-VISION — FRAMOS industrial vision for camera/ISP tuning, 3D cameras, imaging solutions and computer vision

FRAMOS is passionate about imaging and vision technologies. These technologies play a key role in robotics, automation and IoT-connected factory and are key drivers in cognitive systems and vision based artificial intelligence.

Every embedded vision system has specific requirements that, in most (...)

From: Framos
Evaluation board

TECHN-3P-SOM — TechNexion system on module for edge AI and robotics, based on TDA4VM

The ROVY-4VM is a system-on-module (SoM) developed for mobile robotic, industrial automation and machine vision applications.

Designed for real-time processing in embedded vision applications, the TDA4VM SoC integrates dual ARMv8 Cortex A72, 6x 1.0 GHz ARM Cortex R5F, 3 floating point DSPs and (...)

From: TechNexion
Debug probe

TMDSEMU560V2STM-U — XDS560™ software v2 system trace USB debug probe

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

Not available on TI.com
Development kit

D3-3P-TDAX-DK — D3 Engineering RVP-TDAx development kits

These rugged development kits are in a finalized product form-factor that lets you evaluate TI ADAS technology under realistic on-vehicle conditions. Accelerate development of autonomous vision-based navigation systems for automotive, transportation and materials handling applications. The (...)
Software development kit (SDK)

IGNTM-3P-AI-ROBOTICS

Ignitarium services for AI, sensor fusion, perception engineering, robotics and functional safety

Ignitarium is a product engineering services company that combines its deep expertise in semiconductor, artificial Intelligence and embedded systems to realize cost-effective system solutions to solve demanding real-world use cases. Ignitarium has specialized teams to develop software targeted (...)
From: Ignitarium
Software development kit (SDK)

PROCESSOR-SDK-LINUX-J721E Linux SDK for DRA829 & TDA4VM Jacinto™ Processors

Processor SDK RTOS (PSDK RTOS) can be used together with either Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX) to form a multi-processor software development platform for TDA4VM and DRA829 SoCs within TI’s Jacinto™ platform. The SDK provides a comprehensive (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm® Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators TDA4VM-Q1 Automotive system-on-a-chip for L2, L3 and near-field analytic systems using deep learning
Hardware development
J721EXSOMXEVM TDA4VM and DRA829V socketed system on module (SoM)
Download options
Software development kit (SDK)

PROCESSOR-SDK-LINUX-RT-J721E Linux-RT SDK for DRA829 & TDA4VM Jacinto™ Processors

Processor SDK RTOS (PSDK RTOS) can be used together with either Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX) to form a multi-processor software development platform for TDA4VM and DRA829 SoCs within TI’s Jacinto™ platform. The SDK provides a comprehensive (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm® Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch TDA4VM-Q1 Automotive system-on-a-chip for L2, L3 and near-field analytic systems using deep learning
Hardware development
J721EXSOMXEVM TDA4VM and DRA829V socketed system on module (SoM)
Download options
Software development kit (SDK)

PROCESSOR-SDK-LINUX-SK-TDA4VM Linux SDK for edge AI applications on TDA4VM Jacinto™ processors

Processor SDK RTOS (PSDK RTOS) can be used together with either Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX) to form a multi-processor software development platform for TDA4VM and DRA829 SoCs within TI’s Jacinto™ platform. The SDK provides a comprehensive (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators
Hardware development
SK-TDA4VM

TDA4VM processor starter kit for edge AI vision systems

Download options
Software development kit (SDK)

PROCESSOR-SDK-QNX-J721E QNX SDK for DRA829 & TDA4VM Jacinto™ Processors

Processor SDK RTOS (PSDK RTOS) can be used together with either Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX) to form a multi-processor software development platform for TDA4VM and DRA829 SoCs within TI’s Jacinto™ platform. The SDK provides a comprehensive (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm® Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators TDA4VM-Q1 Automotive system-on-a-chip for L2, L3 and near-field analytic systems using deep learning
Hardware development
J721EXSOMXEVM TDA4VM and DRA829V socketed system on module (SoM)
Download options
Software development kit (SDK)

PROCESSOR-SDK-RTOS-J721E RTOS SDK for DRA829 & TDA4VM Jacinto™ Processors

Processor SDK RTOS (PSDK RTOS) can be used together with either Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX) to form a multi-processor software development platform for TDA4VM and DRA829 SoCs within TI’s Jacinto™ platform. The SDK provides a comprehensive (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm® Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators TDA4VM-Q1 Automotive system-on-a-chip for L2, L3 and near-field analytic systems using deep learning
Hardware development
J721EXSOMXEVM TDA4VM and DRA829V socketed system on module (SoM)
Download options
Application software & framework

HLA-3P-ADAS-FWD-CAM-ALGORITHMS — Hella Aglaia TDAx-based ADAS algorithms for front camera

HELLA Aglaia develops embedded software solutions for advanced driver assistance systems – compliant with certified industry standards and ready for hardware integration.

Leveraging the powerful deep learning capabilities of the TDA4x processor family, HELLA Aglaia’s robust image processing (...)

From: Hella Aglaia
Application software & framework

MOMENTA-3P-DL-ALGORITHMS — Momenta deep learning algorithms for ADAS forward camera applications on TDA4x processors

Momenta’s deep learning based algorithms for ADAS applications make full use of the DSP cores and accelerators on TDA4x for neural network processing. Designed to achieve market leading computational and power efficiency, Momenta’s algorithms offer an array of pre- and post-imaging (...)
From: Momenta
Code example or demo

ALDV-3P-INDUSTRIAL-VISION — Allied Vision embedded vision starter kit

Allied Vision helps people achieve their goals with industrial and embedded cameras for computer vision.

Allied Vision provides embedded system developers access to high-performance, industrial-grade camera modules and pave the way from PC to embedded systems for computer vision engineers. With the (...)

Code example or demo

AMZN-3P-EDGE-AI — Amazon Services for ML training, model management and IoT

AWS offers a comprehensive platform for machine learning (ML) services and internet of things (IoT) software services which can be leveraged and deployed on TI’s analytics processors like the TDA4x family of processors. Training and optimizing ML models require massive computing resources, so (...)
From: Amazon
Code example or demo

ASTC-3P-VLAB-EVM-SIM — ASTC VLAB virtual development platforms and tools

VLAB Works is the industry leader in software technology for modeling, simulation, and virtual prototyping of embedded electronic systems. VLAB technologies and solutions enable the application of automation and agile processes to embedded systems development. VLAB Works helps customers design (...)
From: VLAB Works
Code example or demo

D3-3P-DEV — D3 support for AI cameras, hardware, drivers and firmware

D3 Engineering is a product development firm, specializing in embedded design solutions, that leverages DesignCore® Platforms and Solutions to get customers to market quicker with reduced risk. They bring over 20 years of experience developing vision and sensing systems for intelligent (...)
Code example or demo

KDN-3P-SLAM — Kudan SLAM for robotics on TI Edge AI

Kudan is a global deep technology company developing commercial artificial perception algorithms based on simultaneous localization and mapping (SLAM) since its founding in 2011. Kudan’s technology currently enables solutions for its partners in automotive, robotics, drone/UAV, mapping and (...)
From: Kudan Inc.
Driver or library

WIND-3P-VXWORKS-LINUX-OS — Wind River Processors VxWorks and Linux operating systems

Wind River is a global leader in delivering software for the Internet of Things (IoT). The company’s technology has been powering the safest, most secure devices in the world since 1981 and today is found in more than 2 billion products. Wind River offers a comprehensive edge-to-cloud product (...)
Firmware

VCTR-3P-AUTOSAR — Vector AUTOSAR, HSM, and networking software components for the automotive industry

Vector is the leading manufacturer of software tools and embedded components for the development of electronic systems and networking from CAN to Automotive Ethernet. Vector has been a partner of automotive manufacturers, suppliers and related industries since 1988, providing software components, (...)
IDE, configuration, compiler or debugger

C7000-CGT C7000 code generation tools (CGT) - compiler

The TI C7000 C/C++ Compiler Tools support development of applications for TI C7000 Digital Signal Processor cores.

Code Composer Studio is the Integrated Development Environment (IDE) for TI embedded devices.  If you are looking to develop on a TI embedded device it is recommended to start (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators TDA4VM-Q1 Automotive system-on-a-chip for L2, L3 and near-field analytic systems using deep learning
Download options
IDE, configuration, compiler or debugger

CCSTUDIO Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It comprises a suite of tools used to develop and debug embedded applications.  Code Composer Studio is available for download across Windows®, Linux® and macOS® (...)

Supported products & hardware

Supported products & hardware

This design resource supports most products in these categories.

Check the product details page to verify support.

Products
Automotive mmWave radar sensors
AWR1243 76-GHz to 81-GHz high-performance automotive MMIC AWR1443 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating MCU and hardware accelerator AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR1843AOP Single-chip 76-GHz to 81-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR2243 76-GHz to 81-GHz automotive second-generation high-performance MMIC AWR2944 Automotive 2nd-generation, 76-GHz to 81-GHz, high-performance SoC for corner and long-range radar AWR6443 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating MCU and radar accelerator AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843AOP Single-chip 60-GHz to 64-GHz automotive radar sensor integrating antenna on package, DSP and MCU
Industrial mmWave radar sensors
IWR1443 Single-chip 76-GHz to 81-GHz mmWave sensor integrating MCU and hardware accelerator IWR1642 Single-chip 76-GHz to 81-GHz mmWave sensor integrating DSP and MCU IWR1843 Single-chip 76-GHz to 81-GHz industrial radar sensor integrating DSP, MCU and radar accelerator IWR6443 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating MCU and hardware accelerator IWR6843 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating processing capability IWR6843AOP Single-chip 60-GHz to 64-GHz intelligent mmWave sensor with integrated antenna on package (AoP)
Develop in the cloud Download options
IDE, configuration, compiler or debugger

SYSCONFIG Standalone desktop version of SysConfig

To help simplify configuration challenges and accelerate software development, we created SysConfig, an intuitive and comprehensive collection of graphical utilities for configuring pins, peripherals, radios, subsystems, and other components.  SysConfig helps you manage, expose and resolve (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based microcontrollers|Cortex-R5F MCUs|> 300 to < 800 MHz|Real-time control
AM2631 Single-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2631-Q1 Automotive single-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2632 Dual-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2632-Q1 Automotive dual-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2634 Quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2634-Q1 Automotive quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security
Automotive mmWave radar sensors
AWR1443 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating MCU and hardware accelerator AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR1843AOP Single-chip 76-GHz to 81-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR2944 Automotive second-generation, 76-GHz to 81-GHz, high-performance SoC for corner and long-range radar AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843AOP Single-chip 60-GHz to 64-GHz automotive radar sensor integrating antenna on package, DSP and MCU
Arm-based microcontrollers|Cortex-M4F MCUs|< 100 MHz|> 128 to ≤ 512 kB|1.8 V to 3.3 V
Unassigned staging
Arm-based microcontrollers|Cortex-M4F MCUs|< 100 MHz|> 512 kB to ≤ 2 MB|1.8 V to 3.3 V
MSP432E401Y SimpleLink™ 32-bit Arm Cortex-M4F MCU with ethernet, CAN, 1MB Flash and 256kB RAM MSP432E411Y SimpleLink™ 32-bit Arm Cortex-M4F MCU with ethernet, CAN, TFT LCD, 1MB Flash and 256kB RAM
Digital signal processors (DSPs)
DM505 SoC for vision analytics 15mm package DRA780 SoC processor w/ 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA781 SoC processor w/ 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA782 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA783 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA785 SoC processor w/ 2x 1000 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA786 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA787 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA788 SoC processor w/ 2x 1000 MHz C66x DSP and 1x EVE and 2 dual Arm Cortex-M4 for audio amplifier TDA3LA Low power SoC w/ vision acceleration for ADAS applications TDA3LX Low power SoC w/ processing, imaging & vision acceleration for ADAS applications TDA3MA Low power SoC w/ full-featured processing & vision acceleration for ADAS applications TDA3MD Low power SoC w/ full-featured processing for ADAS applications TDA3MV Low power SoC w/ full-featured processing, imaging & vision acceleration for ADAS applications
Bluetooth products
CC2640 SimpleLink™ 32-bit Arm Cortex-M3 Bluetooth® Low Energy wireless MCU with 128kB Flash CC2640R2F SimpleLink™ 32-bit Arm® Cortex®-M3 Bluetooth® 5.1 Low Energy wireless MCU with 128-kB flash CC2640R2F-Q1 SimpleLink™ automotive qualified 32-bit Arm Cortex-M3 Bluetooth® Low Energy wireless MCU CC2640R2L SimpleLink™ Bluetooth® 5.1 Low Energy wireless MCU CC2642R SimpleLink™ 32-bit Arm Cortex-M4F Bluetooth® Low Energy wireless MCU with 352kB Flash CC2642R-Q1 Automotive qualified SimpleLink™ Bluetooth® Low Energy wireless MCU CC2650 SimpleLink™ 32-bit Arm Cortex-M3 multiprotocol 2.4 GHz wireless MCU with 128kB Flash CC2650MODA SimpleLink™ 32-bit Arm Cortex-M3 multiprotocol 2.4 GHz wireless module with 128kB Flash CC2652RB SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with crystal-less BAW resonator
Unassigned processors
Sub-1 GHz products
CC1310 SimpleLink™ 32-bit Arm Cortex-M3 Sub-1 GHz wireless MCU with 128kB Flash CC1311P3 SimpleLink™ Arm® Cortex®-M4 Sub-1 GHz wireless MCU with 352-KB Flash and integrated +20dBm PA CC1311R3 SimpleLink™ Arm® Cortex®-M4 Sub-1 GHz wireless MCU with 352-kB flash CC1312R7 SimpleLink™ Arm® Cortex®-M4F multiprotocol Sub-1 GHz wireless MCU with 704-kB Flash
C2000 real-time microcontrollers
TMS320F280021 C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 32-KB flash TMS320F280021-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 32-KB flash TMS320F280023 C2000™ 32-bit MCU with 100-MHz, FPU, TMU, 64-kb flash TMS320F280023-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 64-KB flash TMS320F280023C C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 64-KB flash, CLB TMS320F280025 C2000™ 32-bit MCU with 100-MHz, FPU, TMU, 128-kb flash TMS320F280025-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 128-KB flash TMS320F280025C C2000™ 32-bit MCU with 100-MHz, FPU, TMU, 128-kb flash, CLB TMS320F280025C-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 128-KB flash, CLB TMS320F28384D C2000™ 32-bit MCU with connectivity manager, 2x C28x+CLA CPU, 1.5-MB flash, FPU64, Ethernet TMS320F28384D-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 2x C28x+CLA CPU, 1.5MB flash, FPU64, Ethernet TMS320F28384S C2000™ 32-bit MCU with connectivity manager, 1x C28x+CLA CPU, 1.0-MB flash, FPU64, Ethernet TMS320F28384S-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 1x C28x+CLA CPU, 1MB flash, FPU64, Ethernet TMS320F28386D C2000™ 32-bit MCU with connectivity manager, 2x C28x+CLA CPU, 1.5-MB flash, FPU64, CLB, Ethernet TMS320F28386D-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 2x C28x+CLA CPU, 1.5MB flash, FPU64, CLB, Eth TMS320F28386S C2000™ 32-bit MCU with connectivity manager, 1x C28x+CLA CPU, 1.0-MB flash, FPU64, CLB, Ethernet TMS320F28386S-Q1 Automotive C2000™ 32-bit MCU w/ connectivity manager, 1x C28x+CLA CPU, 1MB flash, FPU64, CLB, Ethe TMS320F28388D C2000™ 32-bit MCU w/ connectivity manager, 2x C28x+CLA CPU, 1.5-MB flash, FPU64, CLB, ENET, EtherCAT TMS320F28388S C2000™ 32-bit MCU w/ connectivity manager, 1x C28x+CLA CPU, 1.0-MB flash, FPU64, CLB, ENET, EtherCAT
Wi-Fi products
CC3200 SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 2 TLS/SSL and 256kB RAM CC3200MOD SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® and Internet-of-Things wireless module CC3220MOD SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi CERTIFIED™ wireless module CC3220MODA SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi CERTIFIED™ wireless module with antenna CC3220R SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 6 TLS/SSL and 256kB RAM CC3220S SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with secure boot and 256kB RAM CC3220SF SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 1MB Flash and 256kB RAM CC3230S SimpleLink™ Arm Cortex-M4 Wi-Fi® MCU with 256kB RAM, coexistence, WPA3, 16 TLS sockets, secure boot CC3230SF SimpleLink™ Arm Cortex-M4 Wi-Fi® MCU 256kB RAM+1MB XIP flash, coex, WPA3, 16 TLS sockets,secure boot CC3235MODAS SimpleLink™ Wi-Fi CERTIFIED™ dual-band wireless antenna module solution CC3235MODASF SimpleLink™ Wi-Fi CERTIFIED™ dual-band wireless antenna module solution with 1MB XIP Flash CC3235MODS SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi CERTIFIED™ wireless module with 256kB RAM CC3235MODSF SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi CERTIFIED™ wireless module with 1MB Flash CC3235S SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi® wireless MCU with 256kB RAM CC3235SF SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi® wireless MCU with 1MB Flash
Arm-based microcontrollers|Cortex-R5F MCUs|≥ 800 MHz|Networking
AM2431 Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2432 Dual-core Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2434 Quad-core Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz
Arm-based microcontrollers|TM4C Cortex-M4F MCUs|80-MHz Cortex-M4F MCUs
TM4C1230C3PM High performance 32-bit ARM® Cortex®-M4F based MCU TM4C1230D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, 64-pin LQFP TM4C1230E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1230H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1231C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 12-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, 100-pin LQFP TM4C1231E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, 100-pin LQFP TM4C1231H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 144-pin LQFP TM4C1231H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 100-pin LQFP TM4C1232C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1233C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1233E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1233H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 144-pin LQFP TM4C1233H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1236D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1236E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, USB, 64-pin LQFP TM4C1236H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1237D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 144-pin LQFP TM4C1237H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C123AE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, 64-pin LQFP TM4C123AH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, 64-pin LQFP TM4C123BE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, 64-pin LQFP TM4C123BE6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, 100-pin LQFP TM4C123BH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 144-pin LQFP TM4C123BH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 64-pin LQFP TM4C123BH6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 100-pin LQFP TM4C123BH6ZRB 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 157-pin BGA TM4C123FE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123FH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123GE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 64-pin LQFP TM4C123GE6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 100-pin LQFP TM4C123GH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 144-pin LQFP TM4C123GH6PM 32-bit Arm Cortex-M4F based MCU with 80 -MHz, 256 -KB Flash, 32 -KB RAM, 2 CAN, RTC, USB, 64-Pin TM4C123GH6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 100-pin LQFP TM4C123GH6ZRB 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 157-pin BGA TM4C123GH6ZXR 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 168-pin BGA
Wi-SUN products
CC1312R SimpleLink™ 32-bit Arm Cortex-M4F Sub-1 GHz wireless MCU with 352kB Flash
Arm-based microcontrollers|TM4C Cortex-M4F MCUs|120-MHz Cortex-M4F MCUs
TM4C1290NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1290NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1292NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII TM4C1292NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII TM4C1294KCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1294NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHZ, 1-MB flash, 256-KB RAM, USB, ENET MAC+PHY TM4C1294NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1297NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, LCD TM4C1299KCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD TM4C1299NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD TM4C129CNCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, AES TM4C129CNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, AES TM4C129DNCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129DNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129EKCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129ENCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129ENCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129LNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD, AES TM4C129XKCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD, AES TM4C129XNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-KB RAM, USB, ENET MAC+PHY, LCD, AES
Zigbee products
Arm-based processors
AM3351 Sitara processor: Arm Cortex-A8, 1Gb Ethernet, display AM3352 Sitara processor: Arm Cortex-A8, 1Gb Ethernet, display, CAN AM3354 Sitara processor: Arm Cortex-A8, 3D graphics, CAN AM3356 Sitara processor: Arm Cortex-A8, PRU-ICSS, CAN AM3357 Sitara processor: Arm Cortex-A8, EtherCAT, PRU-ICSS, CAN AM3358 Sitara processor: Arm Cortex-A8, 3D graphics, PRU-ICSS, CAN AM3358-EP Sitara processor: Arm Cortex-A8, 3D, PRU-ICSS, HiRel, CAN AM3359 Sitara processor: Arm Cortex-A8, EtherCAT, 3D, PRU-ICSS, CAN AM4372 Sitara processor: Arm Cortex-A9 AM4376 Sitara processor: Arm Cortex-A9, PRU-ICSS AM4377 Sitara processor: Arm Cortex-A9, PRU-ICSS, EtherCAT AM4378 Sitara processor: Arm Cortex-A9, PRU-ICSS, 3D graphics AM4379 Sitara processor: Arm Cortex-A9, PRU-ICSS, EtherCAT, 3D graphics AM5706 Sitara processor: cost optimized Arm Cortex-A15 & DSP and secure boot AM5708 Sitara processor: cost optimized Arm Cortex-A15 & DSP, multimedia and secure boot AM5716 Sitara processor: Arm Cortex-A15 & DSP AM5718 Sitara processor: Arm Cortex-A15 & DSP, multimedia AM5718-HIREL AM5718-HIREL Sitara™ Processors Silicon Revision 2.0 AM5726 Sitara processor: dual Arm Cortex-A15 & dual DSP AM5728 Sitara processor: dual Arm Cortex-A15 & dual DSP, multimedia AM5746 Sitara processor: dual arm Cortex-A15 & dual DSP, ECC on DDR and secure boot AM5748 Sitara processor: dual arm Cortex-A15 & dual DSP, multimedia, ECC on DDR and secure boot AM623 Internet of Things (IoT) and gateway SoC with Arm® Cortex®-A53-based object and gesture recognition AM625 Human-machine-interaction SoC with Arm® Cortex®-A53-based edge AI and full-HD dual display AM6411 Single-core 64-bit Arm® Cortex®-A53, single-core Cortex-R5F, PCIe, USB 3.0 and security AM6412 Dual-core 64-bit Arm® Cortex®-A53, single-core Cortex-R5F, PCIe, USB 3.0 and security AM6421 Single-core 64-bit Arm® Cortex®-A53, dual-core Cortex-R5F, PCIe, USB 3.0 and security AM6422 Dual-core 64-bit Arm® Cortex®-A53, dual-core Cortex-R5F, PCIe, USB 3.0 and security AM6441 Single-core 64-bit Arm® Cortex®-A53, quad-core Cortex-R5F, PCIe, USB 3.0 and security AM6442 Dual-core 64-bit Arm® Cortex®-A53, quad-core Cortex-R5F, PCIe, USB 3.0 and security AM6526 Dual Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6528 Sitara processor: dual Arm Cortex-A53 & dual Arm Cortex-R5F, Gigabit PRU-ICSS, 3D graphics AM6546 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6548 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS, 3D graphics AMIC110 Sitara processor: Arm Cortex-A8, 10+ Ethernet protocols AMIC120 Sitara processor; Arm Cortex-A9; 10+ Ethernet protocols, encoder protocols DRA710 600 MHz Arm Cortex-A15 SoC processor with graphics for infotainment & cluster DRA712 600 MHz Arm Cortex-A15 SoC processor with graphics & dual Arm Cortex-M4 for infotainment & cluster DRA714 600 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA716 800 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA718 1 GHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA722 800 MHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA724 1 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA725 1.2 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA726 1.5 GHz Arm Cortex-A15 with Graphics & DSP for Infotainment & Cluster DRA750 Dual 1.0 GHz A15, dual DSP, extended peripherals SoC processor for infotainment DRA756 Dual 1.5 GHz A15, dual EVE, dual DSP, extended peripherals SoC processor for infotainment DRA75P Multi-core SoC processors with ISP and pin-compatible with DRA75x SoCs for infotainment applications DRA77P High performance multi-core SoCs with extended peripherals and ISP for digital cockpit applications DRA790 300 MHz Arm Cortex-A15 SoC processor w/ 500 MHz C66x DSP for audio amplifier DRA791 300 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA793 500 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA797 800 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA821U Dual Arm Cortex-A72, quad Cortex-R5F, 4-port Ethernet switch, and a PCIe controller DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm® Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA2E SoC processors with graphics and video acceleration for ADAS applications (23mm package) TDA2EG-17 SoC processors with graphics and video acceleration for ADAS applications (17mm package) TDA2HF SoC processor w/ full-featured video & vision acceleration for ADAS applications TDA2HG SoC processor w/ graphics, video & vision acceleration for ADAS applications TDA2HV SoC processor w/ video & vision acceleration for ADAS applications TDA2LF SoC processor for ADAS applications TDA2P-ABZ TDA2 pin-compatible SoC family with graphic, imaging, video, vision acceleration options for ADAS TDA2P-ACD High performance SoC family w/ options for graphics, imaging, video and vision acceleration for ADAS TDA2SA SoC processor w/ highly-featured video & vision acceleration for ADAS applications TDA2SG SoC processor w/ highly-featured graphics, video & vision acceleration for ADAS applications TDA2SX SoC processor w/ full-featured graphics, video & vision acceleration for ADAS applications TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators TDA4VM-Q1 Automotive system-on-a-chip for L2, L3 and near-field analytic systems using deep learning
Multi-protocol products
CC1350 SimpleLink™ 32-bit Arm Cortex-M3 multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU with 128kB Flash CC1352P SimpleLink™ Arm Cortex-M4F multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU integrated power amplifier CC1352P7 SimpleLink™ Arm® Cortex®-M4F multiprotocol sub-1 GHz and 2.4-GHz wireless MCU integrated power amp CC1352R SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU with 352kB Flash CC2651P3 SimpleLink™ 32-bit Arm® Cortex®-M4 single-protocol 2.4 GHz wireless MCU with 352-kB Flash CC2651R3 SimpleLink™ 32-bit Arm® Cortex®-M4 single-protocol 2.4-GHz wireless MCU with 352-kB flash CC2651R3SIPA SimpleLink™ multiprotocol 2.4-GHz wireless system-in-package module with integrated antenna CC2652P SimpleLink™ Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with integrated power amplifier CC2652P7 SimpleLink™ Arm® Cortex®-M4F multiprotocol 2.4-GHz wireless MCU, 704-kB Flash, integrated power amp CC2652PSIP SimpleLink™ multiprotocol 2.4-GHz wireless system-in-package module with integrated power amplifier CC2652R SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with 352kB Flash CC2652R7 SimpleLink™ Arm® Cortex®-M4F multiprotocol 2.4-GHz wireless MCU with 704-kB Flash CC2652RSIP SimpleLink™ multiprotocol 2.4-GHz wireless system-in-package module with 352-KB memory
Industrial mmWave radar sensors
IWR1443 Single-chip 76-GHz to 81-GHz mmWave sensor integrating MCU and hardware accelerator IWR1642 Single-chip 76-GHz to 81-GHz mmWave sensor integrating DSP and MCU IWR1843 Single-chip 76-GHz to 81-GHz industrial radar sensor integrating DSP, MCU and radar accelerator IWR6443 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating MCU and hardware accelerator IWR6843 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating processing capability IWR6843AOP Single-chip 60-GHz to 64-GHz intelligent mmWave sensor with integrated antenna on package (AoP)
Unassigned wireless connectivity
Arm-based microcontrollers|Cortex-M0+ MCUs|< 50 MHz|> 32 to ≤ 128 kB|1.8 V to 3.3 V
MSPM0L1106 32-MHz Arm® Cortex®-M0+ MCU with 64-KB flash, 4-KB SRAM, 12-bit ADC MSPM0L1306 32-MHz Arm® Cortex®-M0+ MCU with 64-KB flash, 4-KB SRAM, 12-bit ADC, comparator, OPA
Arm-based microcontrollers|Cortex-M0+ MCUs|50 to 100 MHz|≤ 32 kB|1.8 V to 3.3 V
Arm-based microcontrollers|Cortex-M0+ MCUs|< 50 MHz|> 128 to ≤ 512 kB|1.8 V to 3.3 V
Arm-based microcontrollers|Cortex-M0+ MCUs|50 to 100 MHz|> 32 to ≤ 128 kB|1.8 V to 3.3 V
Arm-based microcontrollers|Cortex-M0+ MCUs|< 50 MHz|≤ 32 kB|1.8 V to 3.3 V
MSPM0L1105 32-MHz Arm® Cortex®-M0+ MCU with 32-KB flash, 4-KB SRAM, 12-bit ADC MSPM0L1303 32-MHz Arm® Cortex®-M0+ MCU with 8-KB flash, 2-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1304 32-MHz Arm® Cortex®-M0+ MCU with 16-KB flash, 2-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1305 32-MHz Arm® Cortex®-M0+ MCU with 32-KB flash, 4-KB SRAM, 12-bit ADC, comparator, OPA
Arm Cortex-M4 MCUs
MSP432E401Y SimpleLink™ 32-bit Arm Cortex-M4F MCU with ethernet, CAN, 1MB Flash and 256kB RAM MSP432E411Y SimpleLink™ 32-bit Arm Cortex-M4F MCU with ethernet, CAN, TFT LCD, 1MB Flash and 256kB RAM< TM4C1230C3PM High performance 32-bit ARM® Cortex®-M4F based MCU TM4C1230D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, 64-pin LQFP TM4C1230E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1230H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1231C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 12-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, 100-pin LQFP TM4C1231E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, 100-pin LQFP TM4C1231H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 144-pin LQFP TM4C1231H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 100-pin LQFP TM4C1232C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1233C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1233E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1233H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 144-pin LQFP TM4C1233H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1236D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1236E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, USB, 64-pin LQFP TM4C1236H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1237D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 144-pin LQFP TM4C1237H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C123AE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, 64-pin LQFP TM4C123AH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, 64-pin LQFP TM4C123BE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, 64-pin LQFP TM4C123BE6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, 100-pin LQFP TM4C123BH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 144-pin LQFP TM4C123BH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 64-pin LQFP TM4C123BH6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 100-pin LQFP TM4C123BH6ZRB 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 157-pin BGA TM4C123FE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123FH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123GE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 64-pin LQFP TM4C123GE6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 100-pin LQFP TM4C123GH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 144-pin LQFP TM4C123GH6PM

32-bit Arm Cortex-M4F based MCU with 80 -MHz, 256 -KB Flash, 32 -KB RAM, 2 CAN, RTC, USB, 64-Pin TM4C123GH6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 100-pin LQFP TM4C123GH6ZRB 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 157-pin BGA TM4C123GH6ZXR 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 168-pin BGA TM4C1290NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1290NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1292NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII TM4C1292NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII TM4C1294KCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1294NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHZ, 1-MB flash, 256-KB RAM, USB, ENET MAC+PHY TM4C1294NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1297NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, LCD TM4C1299KCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD TM4C1299NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD TM4C129CNCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, AES TM4C129CNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, AES TM4C129DNCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129DNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129EKCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129ENCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129ENCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129LNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD, AES TM4C129XKCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD, AES TM4C129XNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-KB RAM, USB, ENET MAC+PHY, LCD, AES

Arm Cortex-M0+ MCUs
MSPM0L1105 32-MHz Arm® Cortex®-M0+ MCU with 32-KB flash, 4-KB SRAM, 12-bit ADC MSPM0L1106 32-MHz Arm® Cortex®-M0+ MCU with 64-KB flash, 4-KB SRAM, 12-bit ADC MSPM0L1303 32-MHz Arm® Cortex®-M0+ MCU with 8-KB flash, 2-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1304 32-MHz Arm® Cortex®-M0+ MCU with 16-KB flash, 2-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1305 32-MHz Arm® Cortex®-M0+ MCU with 32-KB flash, 4-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1306 32-MHz Arm® Cortex®-M0+ MCU with 64-KB flash, 4-KB SRAM, 12-bit ADC, comparator, OPA
UNKNOWN
Arm Cortex-R MCUs
AM2431 Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2432 Dual-core Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2434 Quad-core Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2631 Single-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2631-Q1 Automotive single-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2632 Dual-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2632-Q1 Automotive dual-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2634 Quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2634-Q1 Automotive quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security
Develop in the cloud Download options
Online training

BLACKBERRY-QNX-ACADEMY BlackBerry® QNX® academy

Self-paced training to fast-track software innovation efforts and reduce risk in the development process of safety-critical products like industrial robots and AI vision systems.
Supported products & hardware

Supported products & hardware

Products
Arm-based processors
TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators
Hardware development
Evaluation board
SK-TDA4VM

TDA4VM processor starter kit for edge AI vision systems

Online training

EDGEAI-ACADEMY Edge AI academy

Become an AI expert in days with learning modules, hands-on training and demonstrations.
Supported products & hardware

Supported products & hardware

Products
Arm-based processors
TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators
Hardware development
Evaluation board
SK-TDA4VM

TDA4VM processor starter kit for edge AI vision systems

Online training

EDGEAI-ROBOTICS-ACADEMY Edge AI robotics academy

Get started with Edge AI and robotics with no experience required. The training starts with technology fundamentals and moves on to code examples for real demonstrations.
Supported products & hardware

Supported products & hardware

Products
Arm-based processors
TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators
Hardware development
Evaluation board
SK-TDA4VM

TDA4VM processor starter kit for edge AI vision systems

Operating system (OS)

GHS-3P-INTEGRITY-RTOS — Green Hills INTEGRITY RTOS

The flagship of Green Hills Software operating systems—the INTEGRITY RTOS—is built around a partitioning architecture to provide embedded systems with total reliability, absolute security, and maximum real-time performance. With its leadership pedigree underscored by certifications in a (...)
Operating system (OS)

QNX-3P-NEUTRINO-RTOS — QNX Neutrino® real-time operating system (RTOS)

The QNX Neutrino® Realtime Operating System (RTOS) is a full-featured and robust RTOS designed to enable the next-generation of products for automotive, medical, transportation, military and industrial embedded systems. Microkernel design and modular architecture enable customers to create (...)
Software programming tool

TI-EDGE-AI-CLOUD — Evaluate deep learning inference performance on TDA4x processors

TI Edge AI Cloud is a free online service that lets you evaluate accelerated deep learning inference on TDA4x processors. You do not need to purchase an evaluation board. The service is Python-based; and it only takes a few minutes to login, deploy a model, and get a variety of performance (...)
Support software

RDGRN-3P-SW-SERVICES — RidgeRun services in Linux, Gstreamer plugins and AI application development

RidgeRun helps clients build, integrate, optimize, and maintain embedded software solutions to solve the unique challenges facing their specific industries and sectors. RidgeRun’s areas of expertise include:
  • Embedded Linux: Yocto, customization of BSPs, hardware bring up, camera drivers, ISP (...)
From: RidgeRun
Support software

SV-3P-ADAS_ALGORITHMS — StradVision SVNet - TDAx-based deep learning and camera based perception software

StradVision enables deep learning-based embedded perception algorithms on TDAx for Advanced Driver Assistance Systems (ADAS) and automated driving features. SVNet's lean and light characteristics enable more headroom for mutiple simultaneous functions, swift development and optimization, and (...)
From: Stradvision
Simulation model

DRA829 and TDA4VM BSDL File

SPRM751.ZIP (14 KB) - BSDL Model
Simulation model

DRA829 and TDA4VM IBIS File

SPRM752.ZIP (1983 KB) - IBIS Model
Simulation model

DRA829 and TDA4VM Thermal Model

SPRM753.ZIP (1 KB) - Thermal Model
Calculation tool

CLOCKTREETOOL — Clock Tree Tool for Sitara, Automotive, Vision Analytics, & Digital Signal Processors

The Clock Tree Tool (CTT) for Sitara™ ARM®, Automotive, and Digital Signal Processors is an interactive clock tree configuration software that provides information about the clocks and modules in these TI devices. It allows the user to:
  • Visualize the device clock tree
  • Interact with clock tree (...)
User guide: PDF
Design tool

PROCESSORS-3P-SEARCH — Arm®-based MPU, Arm-based MCU and DSP third-party search tool

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)
Package Pins Download
FCBGA (ALF) 827 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos