Product details

Number of channels (#) 1 Total supply voltage (Min) (+5V=5, +/-5V=10) 2.5 Total supply voltage (Max) (+5V=5, +/-5V=10) 5.5 BW @ Acl (MHz) 36 Acl, min spec gain (V/V) 1 Slew rate (Typ) (V/us) 220 Architecture Fully Differential ADC Driver, Bipolar Vn at flatband (Typ) (nV/rtHz) 10 Iq per channel (Typ) (mA) 0.25 Rail-to-rail Out Vos (offset voltage @ 25 C) (Max) (mV) 1 Operating temperature range (C) -40 to 125 Output current (Typ) (mA) 26 2nd harmonic (dBc) 128 3rd harmonic (dBc) 137 @ MHz 0.001 GBW (Typ) (MHz) 30 Input bias current (Max) (pA) 210000 Features Shutdown CMRR (Typ) (dB) 116
Number of channels (#) 1 Total supply voltage (Min) (+5V=5, +/-5V=10) 2.5 Total supply voltage (Max) (+5V=5, +/-5V=10) 5.5 BW @ Acl (MHz) 36 Acl, min spec gain (V/V) 1 Slew rate (Typ) (V/us) 220 Architecture Fully Differential ADC Driver, Bipolar Vn at flatband (Typ) (nV/rtHz) 10 Iq per channel (Typ) (mA) 0.25 Rail-to-rail Out Vos (offset voltage @ 25 C) (Max) (mV) 1 Operating temperature range (C) -40 to 125 Output current (Typ) (mA) 26 2nd harmonic (dBc) 128 3rd harmonic (dBc) 137 @ MHz 0.001 GBW (Typ) (MHz) 30 Input bias current (Max) (pA) 210000 Features Shutdown CMRR (Typ) (dB) 116
SOIC (D) 8 19 mm² 4.9 x 3.9 VSSOP (DGK) 8 15 mm² 3 x 4.9 WQFN (RUN) 10 4 mm² 2 x 2
  • Ultra Low Power:
    • Voltage: 2.5 V to 5.5 V
    • Current: 250 µA
    • Power-Down Mode: 0.5 µA (typical)
  • Fully-Differential Architecture
  • Bandwidth: 36 MHz
  • Slew Rate: 200 V/µs
  • THD: –120 dBc at 1 kHz (1 VRMS, RL= 2 kΩ)
  • Input Voltage Noise: 10 nV/√Hz (f = 1 kHz)
  • High DC Accuracy:
    • VOS Drift: ±4 µV/˚C (–40°C to +125°C)
    • AOL: 114 dB
  • Rail-to-Rail Output (RRO)
  • Negative Rail Input (NRI)
  • Output Common-Mode Control
  • Ultra Low Power:
    • Voltage: 2.5 V to 5.5 V
    • Current: 250 µA
    • Power-Down Mode: 0.5 µA (typical)
  • Fully-Differential Architecture
  • Bandwidth: 36 MHz
  • Slew Rate: 200 V/µs
  • THD: –120 dBc at 1 kHz (1 VRMS, RL= 2 kΩ)
  • Input Voltage Noise: 10 nV/√Hz (f = 1 kHz)
  • High DC Accuracy:
    • VOS Drift: ±4 µV/˚C (–40°C to +125°C)
    • AOL: 114 dB
  • Rail-to-Rail Output (RRO)
  • Negative Rail Input (NRI)
  • Output Common-Mode Control

The THS4531 is a low-power, fully-differential op amp with input common-mode range below the negative rail and rail-to-rail output. The device is designed for low-power data acquisition systems and high density applications where power consumption and dissipation is critical.

The device features accurate output common-mode control that allows for dc coupling when driving analog-to-digital converters (ADCs). This control, coupled with the input common-mode range below the negative rail and rail-to-rail output, allows for easy interface from single-ended ground-referenced signal sources to successive-approximation registers (SARs), and delta-sigma (ΔΣ) ADCs using only single-supply 2.5 V to 5 V power. The THS4531 is also a valuable tool for general-purpose, low-power differential signal conditioning applications.

The THS4531 is characterized for operation over the extended industrial temperature range from –40°C to +125°C. The following package options are available:

The THS4531 is a low-power, fully-differential op amp with input common-mode range below the negative rail and rail-to-rail output. The device is designed for low-power data acquisition systems and high density applications where power consumption and dissipation is critical.

The device features accurate output common-mode control that allows for dc coupling when driving analog-to-digital converters (ADCs). This control, coupled with the input common-mode range below the negative rail and rail-to-rail output, allows for easy interface from single-ended ground-referenced signal sources to successive-approximation registers (SARs), and delta-sigma (ΔΣ) ADCs using only single-supply 2.5 V to 5 V power. The THS4531 is also a valuable tool for general-purpose, low-power differential signal conditioning applications.

The THS4531 is characterized for operation over the extended industrial temperature range from –40°C to +125°C. The following package options are available:

Download

Similar products you might be interested in

open-in-new Compare products
Pin-for-pin with same functionality to the compared device.
THS4541 ACTIVE High-Speed Differential I/O Amplifier Higher precision (0.4-mA Vos)
THS4561 ACTIVE Low-power, 60-MHz, wide-supply-range fully differential amplifier Wider supply voltage (12.6 V)

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 15
Type Title Date
* Data sheet Ultra Low Power, Rail-to-Rail Output, Fully-Differential Amplifier datasheet (Rev. C) 04 Mar 2020
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Technical article How to minimize filter loss when you drive an ADC 20 Oct 2016
Application note Fully-Differential Amplifiers (Rev. E) 19 Sep 2016
Technical article Go differential to differentiate your precision design 11 Aug 2016
Technical article How to use a fully differential amplifier as a level shifter 13 Jul 2016
Technical article What you need to know about internal ESD protection on integrated circuits 02 Dec 2015
User guide THS4531DGK EVM Design Files 25 Jan 2012
User guide THS4531DGKEVM Evaluation Module 11 Jan 2012
Analog design journal Using fully differential op amps as attenuators, Part 3 04 Oct 2009
Analog design journal Using fully differential op amps as attenuators, Part 2 14 Jul 2009
Analog design journal Using fully differential op amps as attenuators, Part 1 01 May 2009
Analog design journal Analysis of fully differential amplifiers 11 Mar 2005
Analog design journal Designing for low distortion with high-speed op amps 02 Mar 2005
Application note Noise Analysis for High Speed Op Amps (Rev. A) 17 Jan 2005

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

THS4531DGKEVM — THS4531 Evaluation Module in DGK package

The THS4531DGKEVM is designed to quickly and easily demonstrate the functionality and versatility of the amplifier. The EVM is ready to connect to power, signal source, and test instruments through the use of on-board connectors. The default amplifier configuration is single-ended input, (...)

In stock
Limit: 1
Simulation model

THS4531 TINA-TI Spice Model

SLOM261.ZIP (7 KB) - TINA-TI Spice Model
Simulation model

THS4531 TINA-TI Reference Design

SLOM262.TSC (3751 KB) - TINA-TI Reference Design
Simulation model

THS4531 PSpice Model

SLOM263.ZIP (111 KB) - PSpice Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

TI FDA Calculator

SBOR022.ZIP (1639 KB)
Reference designs

TIDA-00201 — Differential Signal Conditioning Circuit for Current and Voltage Measurement Using Fluxgate Sensors

This design provides a 4-channel signal conditioning solution for differential ADCs integrated into a microcontroller measuring motor current using fluxgate sensors. Also provided is an alternative measurement circuit with external differential SAR ADCs as well as circuits for high-speed (...)
Reference designs

TIDA-01012 — Wireless IoT, Bluetooth® Low Energy, 4½ Digit, 100kHz True RMS Digital Multimeter

Many products are now becoming connected through the Internet of Things (IoT), including test equipment such as digital multimeters (DMM).  Enabled by Texas Instruments’ SimpleLink™ ultra-low power wireless microcontroller (MCU) platform, the TIDA-01012 reference design (...)
Reference designs

TIDA-01014 — Enhanced Accuracy Battery Fuel Gauge Reference Design for Low Power Industrial IoT Field Metering

The Internet of Things (IoT) revolution is efficiently connecting applications and instruments, enabling battery powered, wide scale very low power sensor deployment.  New technologies, such as TI’s advanced sensor and low power connectivity devices, are enabling these instruments to be (...)
Reference designs

TIDA-00499 — Transient and Digital Fault Recorder AFE Using Differential Amplifiers and HS ADC Reference Design

While Digital Fault Recorders (DFRs) can detect transients in 17/20 μs at 60/50 Hz, transient recorders capture disturbances that can peak and decay well within a microsecond. This reference design demonstrates the capturing of transient inputs at up to 1 MHz for DFR and 25 MHz for (...)
Reference designs

TIPD117 — Dual Channel Data Acquisition System for Optical Encoders, 12 Bit, 1MSPS

This TI Precision Verified Design provides the theory, component selection, simulation, PCB design, and measurement details for a 12-bit 1-MSPS single supply dual channel simultaneous data acquisition system. This circuit achieves 73 dB SINAD for a 4.5 V differential signal at 2 KHz input (...)
Package Pins Download
QFN (RUN) 10 View options
SOIC (D) 8 View options
VSSOP (DGK) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos