SPRSPB9B July   2025  – October 2025 F28E120SB , F28E120SC

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
    1. 3.1 Functional Block Diagram
  5. Device Comparison
    1. 4.1 Related Products
  6. Pin Configuration and Functions
    1. 5.1 Pin Diagrams
    2. 5.2 Pin Attributes
    3. 5.3 Signal Descriptions
      1. 5.3.1 Analog Signals
      2. 5.3.2 Digital Signals
      3. 5.3.3 Power and Ground
      4. 5.3.4 Test, JTAG, and Reset
    4. 5.4 Pin Multiplexing
      1. 5.4.1 GPIO Muxed Pins
      2. 5.4.2 Digital Inputs on ADC Pins (AIOs)
      3. 5.4.3 Digital Inputs and Outputs on ADC Pins (AGPIOs)
      4. 5.4.4 GPIO Input X-BAR
      5. 5.4.5 GPIO Output X-BAR and PWM X-BAR
      6. 5.4.6 GPIO and ADC Allocation
    5. 5.5 Pins With Internal Pullup and Pulldown
    6. 5.6 Connections for Unused Pins
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Power Consumption Summary
      1. 6.4.1 System Current Consumption - Internal Supply
      2. 6.4.2 Operating Mode Test Description
      3. 6.4.3 Current Consumption Graphs
      4. 6.4.4 Reducing Current Consumption
    5. 6.5  Electrical Characteristics
    6. 6.6  Thermal Resistance Characteristics for PT Package
    7. 6.7  Thermal Resistance Characteristics for VFC Package
    8. 6.8  Thermal Resistance Characteristics for RHB Package
    9. 6.9  Thermal Design Considerations
    10. 6.10 System
      1. 6.10.1  Power Management Module (PMM)
        1. 6.10.1.1 Introduction
        2. 6.10.1.2 Overview
          1. 6.10.1.2.1 Power Rail Monitors
            1. 6.10.1.2.1.1 I/O POR (Power-On Reset) Monitor
            2. 6.10.1.2.1.2 I/O BOR (Brown-Out Reset) Monitor
          2. 6.10.1.2.2 External Supervisor Usage
          3. 6.10.1.2.3 Delay Blocks
        3. 6.10.1.3 External Components
          1. 6.10.1.3.1 Decoupling Capacitors
            1. 6.10.1.3.1.1 VDDIO Decoupling
        4. 6.10.1.4 Power Sequencing
          1. 6.10.1.4.1 Supply Pins Ganging
          2. 6.10.1.4.2 Signal Pins Power Sequence
          3. 6.10.1.4.3 Supply Pins Power Sequence
            1. 6.10.1.4.3.1 Internal Power-Up Sequence
            2. 6.10.1.4.3.2 Supply Sequencing Summary and Effects of Violations
            3. 6.10.1.4.3.3 Supply Slew Rate
        5. 6.10.1.5 Recommended Operating Conditions Applicability to the PMM
        6. 6.10.1.6 Power Management Module Electrical Data and Timing
          1. 6.10.1.6.1 Power Management Module Operating Conditions
          2. 6.10.1.6.2 Power Management Module Characteristics
      2. 6.10.2  Reset Timing
        1. 6.10.2.1 Reset Sources
        2. 6.10.2.2 Reset Electrical Data and Timing
          1. 6.10.2.2.1 Reset - XRSn - Timing Requirements
          2. 6.10.2.2.2 Reset - XRSn - Switching Characteristics
          3. 6.10.2.2.3 Reset Timing Diagrams
      3. 6.10.3  Clock Specifications
        1. 6.10.3.1 Clock Sources
        2. 6.10.3.2 Clock Frequencies, Requirements, and Characteristics
          1. 6.10.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times
            1. 6.10.3.2.1.1 Input Clock Frequency
            2. 6.10.3.2.1.2 XTAL Oscillator Characteristics
            3. 6.10.3.2.1.3 X1 Timing Requirements
            4. 6.10.3.2.1.4 PLL Characteristics
            5. 6.10.3.2.1.5 XCLKOUT Switching Characteristics - PLL Bypassed or Enabled
            6. 6.10.3.2.1.6 Internal Clock Frequencies
        3. 6.10.3.3 Input Clocks and PLLs
        4. 6.10.3.4 XTAL Oscillator
          1. 6.10.3.4.1 Introduction
          2. 6.10.3.4.2 Overview
            1. 6.10.3.4.2.1 Electrical Oscillator
              1. 6.10.3.4.2.1.1 Modes of Operation
                1. 6.10.3.4.2.1.1.1 Crystal Mode of Operation
                2. 6.10.3.4.2.1.1.2 Single-Ended Mode of Operation
              2. 6.10.3.4.2.1.2 XTAL Output on XCLKOUT
            2. 6.10.3.4.2.2 Quartz Crystal
          3. 6.10.3.4.3 Functional Operation
            1. 6.10.3.4.3.1 ESR – Effective Series Resistance
            2. 6.10.3.4.3.2 Rneg – Negative Resistance
            3. 6.10.3.4.3.3 Start-up Time
              1. 6.10.3.4.3.3.1 X1/X2 Precondition
            4. 6.10.3.4.3.4 DL – Drive Level
          4. 6.10.3.4.4 How to Choose a Crystal
          5. 6.10.3.4.5 Testing
          6. 6.10.3.4.6 Common Problems and Debug Tips
          7. 6.10.3.4.7 Crystal Oscillator Specifications
            1. 6.10.3.4.7.1 Crystal Oscillator Parameters
            2. 6.10.3.4.7.2 Crystal Equivalent Series Resistance (ESR) Requirements
            3. 6.10.3.4.7.3 Crystal Oscillator Electrical Characteristics
        5. 6.10.3.5 Internal Oscillators
          1. 6.10.3.5.1 System Oscillator SYSOSC
          2. 6.10.3.5.2 Wide Range Oscillator WROSC
      4. 6.10.4  Flash Parameters
        1. 6.10.4.1 Flash Parameters 
      5. 6.10.5  RAM Specifications
      6. 6.10.6  ROM Specifications
      7. 6.10.7  Emulation/JTAG
        1. 6.10.7.1 JTAG Electrical Data and Timing
          1. 6.10.7.1.1 JTAG Timing Requirements
          2. 6.10.7.1.2 JTAG Switching Characteristics
          3. 6.10.7.1.3 JTAG Timing Diagram
        2. 6.10.7.2 cJTAG Electrical Data and Timing
          1. 6.10.7.2.1 cJTAG Timing Requirements
          2. 6.10.7.2.2 cJTAG Switching Characteristics
          3. 6.10.7.2.3 cJTAG Timing Diagram
      8. 6.10.8  GPIO Electrical Data and Timing
        1. 6.10.8.1 GPIO – Output Timing
          1. 6.10.8.1.1 General-Purpose Output Switching Characteristics
          2. 6.10.8.1.2 General-Purpose Output Timing Diagram
        2. 6.10.8.2 GPIO – Input Timing
          1. 6.10.8.2.1 General-Purpose Input Timing Requirements
          2. 6.10.8.2.2 Sampling Mode
        3. 6.10.8.3 Sampling Window Width for Input Signals
      9. 6.10.9  Interrupts
        1. 6.10.9.1 External Interrupt (XINT) Electrical Data and Timing
          1. 6.10.9.1.1 External Interrupt Timing Requirements
          2. 6.10.9.1.2 External Interrupt Switching Characteristics
          3. 6.10.9.1.3 External Interrupt Timing
      10. 6.10.10 Low-Power Modes
        1. 6.10.10.1 Clock-Gating Low-Power Modes
        2. 6.10.10.2 Low-Power Mode Wake-up Timing
          1. 6.10.10.2.1 IDLE Mode Timing Requirements
          2. 6.10.10.2.2 IDLE Mode Switching Characteristics
          3. 6.10.10.2.3 IDLE Entry and Exit Timing Diagram
          4. 6.10.10.2.4 STANDBY Mode Timing Requirements
          5. 6.10.10.2.5 STANDBY Mode Switching Characteristics
          6. 6.10.10.2.6 STANDBY Entry and Exit Timing Diagram
          7. 6.10.10.2.7 HALT Mode Timing Requirements
          8. 6.10.10.2.8 HALT Mode Switching Characteristics
          9. 6.10.10.2.9 HALT Entry and Exit Timing Diagram
    11. 6.11 Analog Peripherals
      1. 6.11.1 Analog Pins and Internal Connections
      2. 6.11.2 Analog-to-Digital Converter (ADC)
        1. 6.11.2.1 ADC Configurability
          1. 6.11.2.1.1 Signal Mode
        2. 6.11.2.2 ADC Electrical Data and Timing
          1. 6.11.2.2.1 ADC Operating Conditions
          2. 6.11.2.2.2 ADC Characteristics
          3. 6.11.2.2.3 ADC INL and DNL
          4. 6.11.2.2.4 ADC Performance Per Pin
          5. 6.11.2.2.5 ADC Input Model
          6. 6.11.2.2.6 ADC Timing Diagrams
      3. 6.11.3 Comparator Subsystem (CMPSS_LITE)
        1. 6.11.3.1 COMPDACOUT
        2. 6.11.3.2 CMPSS Connectivity Diagram
        3. 6.11.3.3 Block Diagram
        4. 6.11.3.4 CMPSS Electrical Data and Timing
          1. 6.11.3.4.1 CMPSS_LITE Comparator Electrical Characteristics
          2.        CMPSS Comparator Input Referred Offset and Hysteresis
          3. 6.11.3.4.2 CMPSS_LITE DAC Static Electrical Characteristics
          4. 6.11.3.4.3 CMPSS Illustrative Graphs
          5. 6.11.3.4.4 Buffered Output from CMPx_LITE_DACL Operating Conditions
          6. 6.11.3.4.5 Buffered Output from CMPx_LITE_DACL Electrical Characteristics
      4. 6.11.4 Programmable Gain Amplifier (PGA)
        1. 6.11.4.1 PGA Electrical Data and Timing
          1. 6.11.4.1.1 PGA Operating Conditions
          2. 6.11.4.1.2 PGA Characteristics
      5. 6.11.5 Temperature Sensor
        1. 6.11.5.1 Temperature Sensor Electrical Data and Timing
          1. 6.11.5.1.1 Temperature Sensor Characteristics
    12. 6.12 Control Peripherals
      1. 6.12.1 Multichannel Pulse Width Modulator (MCPWM)
        1. 6.12.1.1 Control Peripherals Synchronization
        2. 6.12.1.2 MCPWM Electrical Data and Timing
          1. 6.12.1.2.1 MCPWM Timing Requirements
          2. 6.12.1.2.2 MCPWM Switching Characteristics
          3. 6.12.1.2.3 Trip-Zone Input Timing
            1. 6.12.1.2.3.1 PWM Hi-Z Characteristics Timing Diagram
      2. 6.12.2 External ADC Start-of-Conversion Electrical Data and Timing
        1. 6.12.2.1 External ADC Start-of-Conversion Switching Characteristics
        2. 6.12.2.2 ADCSOCAO or ADCSOCBO Timing Diagram
      3. 6.12.3 Enhanced Quadrature Encoder Pulse (eQEP)
        1. 6.12.3.1 eQEP Electrical Data and Timing
          1. 6.12.3.1.1 eQEP Timing Requirements
          2. 6.12.3.1.2 eQEP Switching Characteristics
      4. 6.12.4 Enhanced Capture (eCAP)
        1. 6.12.4.1 eCAP Block Diagram
        2. 6.12.4.2 eCAP Synchronization
        3. 6.12.4.3 eCAP Electrical Data and Timing
          1. 6.12.4.3.1 eCAP Switching Characteristics
    13. 6.13 Communications Peripherals
      1. 6.13.1 Inter-Integrated Circuit (I2C)
        1. 6.13.1.1 I2C Electrical Data and Timing
          1. 6.13.1.1.1 I2C Timing Requirements
          2. 6.13.1.1.2 I2C Switching Characteristics
          3. 6.13.1.1.3 I2C Timing Diagram
      2. 6.13.2 Universal Asynchronous Receiver-Transmitter (UART)
      3. 6.13.3 Serial Peripheral Interface (SPI)
        1. 6.13.3.1 SPI Controller Mode Timings
          1. 6.13.3.1.1 SPI Controller Mode Timing Requirements
          2. 6.13.3.1.2 SPI Controller Mode Switching Characteristics - Clock Phase 0
          3. 6.13.3.1.3 SPI Controller Mode Switching Characteristics - Clock Phase 1
          4. 6.13.3.1.4 SPI Controller Mode Timing Diagrams
        2. 6.13.3.2 SPI Peripheral Mode Timings
          1. 6.13.3.2.1 SPI Peripheral Mode Timing Requirements
          2. 6.13.3.2.2 SPI Peripheral Mode Switching Characteristics
          3. 6.13.3.2.3 SPI Peripheral Mode Timing Diagrams
      4. 6.13.4 Serial Communications Interface (SCI)
  8. Detailed Description
    1. 7.1  Overview
    2. 7.2  Memory
      1. 7.2.1 C28x Memory Map
        1. 7.2.1.1 Dedicated RAM (Mx RAM)
      2. 7.2.2 Flash Memory Map
      3. 7.2.3 Peripheral Registers Memory Map
    3. 7.3  Identification
    4. 7.4  C28x Processor
      1. 7.4.1 Floating-Point Unit (FPU)
    5. 7.5  Direct Memory Access (DMA)
    6. 7.6  Device Boot Modes
      1. 7.6.1 Device Boot Configurations
        1. 7.6.1.1 Configuring Boot Mode Pins
        2. 7.6.1.2 Configuring Boot Mode Table Options
      2. 7.6.2 GPIO Assignments
    7. 7.7  Security
      1. 7.7.1 Securing the Boundary of the Chip
        1. 7.7.1.1 JTAGLOCK
        2. 7.7.1.2 Zero-pin Boot
      2. 7.7.2 Dual-Zone Security
      3. 7.7.3 Disclaimer
    8. 7.8  Watchdog
    9. 7.9  C28x Timers
    10. 7.10 Dual-Clock Comparator (DCC)
      1. 7.10.1 Features
      2. 7.10.2 Mapping of DCCx Clock Source Inputs
  9. Applications, Implementation, and Layout
    1. 8.1 Typical Application
      1. 8.1.1 Reference Design
  10. Device and Documentation Support
    1. 9.1 Device Nomenclature
    2. 9.2 Markings
    3. 9.3 Tools and Software
    4. 9.4 Documentation Support
    5. 9.5 Support Resources
    6. 9.6 Trademarks
    7. 9.7 Electrostatic Discharge Caution
    8. 9.8 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1.     TAPE AND REEL INFORMATION

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RHB|32
  • PT|48
  • VFC|32
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Reference Design

The TI Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all reference designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at the Select TI reference designs page.

Below is a partial list of applicable reference designs. A full listing of supported reference designs for this device, as well as other C2000 MCUs, is maintained inside TI resource explorer.

3-kW, 180-W/in3 single-phase totem-pole bridgeless PFC reference design with 16-A max input
This reference design demonstrates a method to control a continuous conduction mode Totem pole power factor correction converter (PFC) using C2000™ microcontrollers. The PFC also works as inverter in grid connected (current controlled) mode. The converter is designed to support a maximum input current of 16-ARMS and peak power of 3.6 kW.

GaN-based, 6.6-kW, bidirectional, onboard charger reference design
The PMP22650 reference design is a 6.6-kW, bidirectional, onboard charger. The design employs a two-phase totem pole PFC and a full-bridge CLLLC converter with synchronous rectification. The CLLLC utilizes both frequency and phase modulation to regulate the output across the required regulation range.

Bidirectional CLLLC resonant dual active bridge (DAB) reference design for HEV/EV onboard charger
CLLLC resonant DAB with bidirectional power flow capability and soft switching characteristics is a candidate for Hybrid Electric Vehicle/Electric Vehicle (HEV/EV) on-board chargers and energy storage applications. This design illustrates control of this power topology using a C2000™ MCU in closed voltage and closed current-loop mode.

48-V Three-Phase Inverter With Shunt-Based In-Line Motor Phase Current Sensing Evaluation Module
The BOOSTXL-3PHGANINV evaluation module features a 48-V/10-A three-phase GaN inverter with precision in-line shunt-based phase current sensing for accurate control of precision drives such as servo drives.

C2000 DesignDRIVE position manager BoosterPack™ plug-in module
The PositionManager BoosterPack is a flexible low voltage platform intended for evaluating interfaces to absolute encoders and analog sensors like resolvers and SinCos transducers. When combined with the DesignDRIVE Position Manager software solutions this low-cost evaluation module becomes a powerful tool for interfacing many popular position encoder types such as EnDat, BiSS and T-format with C2000 Real-Time Control devices. C2000 Position Manager technology integrates interfaces to the most popular digital and analog position sensors onto C2000 Real-Time Controller, thus eliminating the need for external FPGAs for these functions.

C2000™ MCU evaluation module for high-voltage three-phase inverter motor control
The TIEVM-MTR-HVINV is a 750W development board for high-voltage motor drive applications. This EVM implements sensorless FOC control for a three-phase permanent-magnet synchronous motor (PMSM) with the InstaSPIN-FOC FAST and eSMO sensorless observers. The modular design allows for plug-and-play support of different daughterboard attachments to the same motherboard. The hardware and firmware of this EVM are tested and ready-to-use to help accelerate development time, with design details and test results available in this user's guide.

250W motor inverter reference design
This reference design is a 250W motor drive for a major appliances or similar applications, which illustrates a GaN IPM DRV7308 based high efficiency motor inverter without heat sink, also demo a low standby power design with UCC28911. This reference design shows a method to implement sensorless FOC control for a 3-phase PMSM with a FAST™ software encoder or eSMO. With a modular design, this reference design supports both the C2000™ MCU and MSPM0 series microcontroller daughter-board on the same motherboard. The hardware and software available with this reference design are tested and ready-to-use to help accelerate development time to market. The design details and test results are found in this design guide.

DRV8323RS three-phase smart gate driver with buck, shunt amps (SPI interface) evaluation module
The BOOSTXL-DRV8323RS is a 15A, 3-phase brushless DC drive stage based on the DRV8323RH gate driver and CSD88599Q5DC NexFETTM power blocks. The module has individual DC bus and phase voltage sense as well as individual low-side current shunt amplifiers, making this evaluation module ideal for sensorless BLDC algorithms. The module supplies MCU 3.3V power with an integrated 0.6A step down buck regulator. The drive stage is fully protected with short circuit, thermal, shoot-through, and under voltage protection and easily configurable via the devices SPI registers.

DRV8323RH Three-Phase Smart Gate Driver With Buck, Shunt Amps (Hardware Interface) Evaluation Module
The BOOSTXL-DRV8323RH is a 15A, 3-phase brushless DC drive stage based on the DRV8323RH gate driver and CSD88599Q5DC NexFETTM power blocks. The module has individual DC bus and phase voltage sense as well as individual low-side current shunt amplifiers, making this EVM a good choice for sensorless BLDC algorithms. The module supplies MCU 3.3V power with an integrated 0.6A step down buck regulator. The drive stage is fully protected with short circuit, thermal, shoot-through, and under voltage protection and easily configurable via different hardware configuration pins.

DRV8329A evaluation module for three-phase BLDC gate driver
The DRV8329AEVM is a 30-A, 3-phase brushless DC drive stage based on the DRV8329A gate driver for BLDC motors. The DRV8329 incorporates three diodes for bootstrap operation without the need for external diodes. The device includes a current shunt amplifier for low-side current measurement, 80-mA LDO, dead time control pin, VDS overcurrent level pin, and gaet driver shutoff pin. The EVM includes switches, potentiometers, and resistors to evaluate these settings as well as configurability for the A variant (6x PWM) and B variant (3x PWM) of the DRV8329 device.

DRV8316R three-phase PWM motor driver evaluation module
The DRV8316REVM provides three half-H-bridge integrated MOSFET drivers for driving a three-phase brushless DC (BLDC) motor with 8-A Peak current drive, for 12-V/24-V DC rails or battery powered applications.

DRV8353RS evaluation module, three-phase brushless DC smart gate driver
The DRV8353RS-EVM is a 15A, 3-phase brushless DC drive stage based on the DRV8353RS gate driver and CSD19532Q5B NexFET™ MOSFETs.

1.3kW GaN totem pole PFC and motor inverter reference design
The TIDA-010282 reference design is a 1.3-kW totem pole power factor correction and motor inverter for major appliances and similar products. The design illustrates a method to implement digital Totem Pole PFC and sensorless vector control of 3-phase permanent magnet synchronous motor (PMSM) to meet higher efficiency and low profile requirements with a single C2000™ microcontroller. The hardware and software available with this reference design are tested and ready-to-use to help accelerate development time to market. The design details and test results can be found in this design guide.