SLVA959B November   2018  – October 2021 DRV10866 , DRV10963 , DRV10964 , DRV10970 , DRV10974 , DRV10975 , DRV10983 , DRV10983-Q1 , DRV10987 , DRV11873 , DRV3205-Q1 , DRV3220-Q1 , DRV3245E-Q1 , DRV3245Q-Q1 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8312 , DRV8313 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8332 , DRV8343-Q1 , DRV8350 , DRV8350R , DRV8353 , DRV8353R , DRV8412 , DRV8701 , DRV8702-Q1 , DRV8702D-Q1 , DRV8703-Q1 , DRV8703D-Q1 , DRV8704 , DRV8711 , DRV8800 , DRV8801 , DRV8801-Q1 , DRV8801A-Q1 , DRV8802 , DRV8802-Q1 , DRV8803 , DRV8804 , DRV8805 , DRV8806 , DRV8811 , DRV8812 , DRV8813 , DRV8814 , DRV8816 , DRV8818 , DRV8821 , DRV8823 , DRV8823-Q1 , DRV8824 , DRV8824-Q1 , DRV8825 , DRV8828 , DRV8829 , DRV8830 , DRV8832 , DRV8832-Q1 , DRV8833 , DRV8833C , DRV8834 , DRV8835 , DRV8836 , DRV8837 , DRV8837C , DRV8838 , DRV8839 , DRV8840 , DRV8841 , DRV8842 , DRV8843 , DRV8844 , DRV8846 , DRV8847 , DRV8848 , DRV8850 , DRV8860 , DRV8870 , DRV8871 , DRV8871-Q1 , DRV8872 , DRV8872-Q1 , DRV8873-Q1 , DRV8880 , DRV8881 , DRV8884 , DRV8885 , DRV8886 , DRV8886AT , DRV8889-Q1

 

  1.   Trademarks
  2. 1Grounding Optimization
    1. 1.1 Frequently Used Terms/Connections
    2. 1.2 Using a Ground Plane
      1. 1.2.1 Two-Layer Board Techniques
    3. 1.3 Common Problems
      1. 1.3.1 Capacitive and Inductive Coupling
      2. 1.3.2 Common and Differential Noise
    4. 1.4 EMC Considerations
  3. 2Thermal Overview
    1. 2.1 PCB Conduction and Convection
    2. 2.2 Continuous Top-Layer Thermal Pad
    3. 2.3 Copper Thickness
    4. 2.4 Thermal Via Connections
    5. 2.5 Thermal Via Width
    6. 2.6 Summary of Thermal Design
  4. 3Vias
    1. 3.1 Via Current Capacity
    2. 3.2 Via Layout Recommendations
      1. 3.2.1 Multi-Via Layout
      2. 3.2.2 Via Placement
  5. 4General Routing Techniques
  6. 5Bulk and Bypass Capacitor Placement
    1. 5.1 Bulk Capacitor Placement
    2. 5.2 Charge Pump Capacitor
    3. 5.3 Bypass/Decoupling Capacitor Placement
      1. 5.3.1 Near Power Supply
      2. 5.3.2 Near Power Stage
      3. 5.3.3 Near Switch Current Source
      4. 5.3.4 Near Current Sense Amplifiers
      5. 5.3.5 Near Voltage Regulators
  7. 6MOSFET Placement and Power Stage Routing
    1. 6.1 Common Power MOSFET Packages
      1. 6.1.1 DPAK
      2. 6.1.2 D2PAK
      3. 6.1.3 TO-220
      4. 6.1.4 8-Pin SON
    2. 6.2 MOSFET Layout Configurations
    3. 6.3 Power Stage Layout Design
      1. 6.3.1 Switch Node
      2. 6.3.2 High-Current Loop Paths
      3. 6.3.3 VDRAIN Sense Pin
  8. 7Current Sense Amplifier Routing
    1. 7.1 Single High-Side Current Shunt
    2. 7.2 Single Low-Side Current Shunt
    3. 7.3 Two-Phase and Three-Phase Current Shunt Amplifiers
    4. 7.4 Component Selection
    5. 7.5 Placement
    6. 7.6 Routing
    7. 7.7 Useful Tools (Net Ties and Differential Pairs)
    8. 7.8 Input and Output Filters
    9. 7.9 Do's and Don'ts
  9. 8References
  10. 9Revision History

Thermal Via Connections

Thermal vias should connect the top and bottom layers together so heat can dissipate from the IC onto both layers. Thermal relief connections should not be used for thermal vias because the path for heat to flow from the top plane through the via to the bottom plane is constricted. This constricted path for heat flow results in an increased temperature on the remaining part of the top plane around the via. Directly connecting vias allows for the lowest possible thermal resistance between the via and copper layers. The thermal vias should make their connection to the internal ground plane with a complete connection around the entire circumference of the plated through hole. Do not cover the vias with solder mask which causes excessive voiding. Figure 2-3 shows temperature differences between thermal relief and direct-connect vias.

GUID-6C857DD0-B4F5-4AC7-9633-5E1F07E6213B-low.gifFigure 2-3 Thermal Relief vs Direct-Connect Heat Map

Thermal relief joints connect planes with vias or components electrically, but they reduce the flow of heat between the component or via and the plane. This is done so a soldering iron or reflow oven only heats the component and ensures a reliable solder connection. This method can be effective for applications where the vias are not required for thermal conduction between planes. However, power applications, such as motor drivers, require that these vias be directly bonded to the plane for optimal thermal performance between layers.