GERU007B June   2015  – March 2025

 

  1.   1
  2.   Beschreibung
  3.   Ressourcen
  4.   Merkmale
  5.   Anwendungen
  6.   6
  7. Systembeschreibung
    1. 1.1 Design-Übersicht
    2. 1.2 Analoger inkrementelle Sin/Cos-Encoder
      1. 1.2.1 Sin/Cos-Encoder-Ausgangssignale
      2. 1.2.2 Beispiele für elektrische Sin/Cos-Encoder-Parameter
    3. 1.3 Methode zur Berechnung der hochauflösenden Position mit Sin/Cos-Encodern
      1. 1.3.1 Theoretischer Ansatz
        1. 1.3.1.1 Übersicht
        2. 1.3.1.2 Berechnung des Winkels mit grober Auflösung
        3. 1.3.1.3 Berechnung des Winkels mit feiner Auflösung
        4. 1.3.1.4 Berechnung des interpolierten hochauflösenden Winkels
        5. 1.3.1.5 Praktische Implementierung für nicht ideale Synchronisation
        6. 1.3.1.6 Überlegungen zu Auflösung, Genauigkeit und Geschwindigkeit
    4. 1.4 Auswirkungen von Sin/Cos-Encoder-Parametern auf die Spezifikation analoger Schaltkreise
      1. 1.4.1 Überlegungen zum Design der analogen Signalkette für die Phaseninterpolation
      2. 1.4.2 Systemdesign der Komparatorfunktion für inkrementelle Anzahl
  8. Designmerkmale
    1. 2.1 Sin/Cos-Encoder-Schnittstelle
    2. 2.2 Hostprozessor-Schnittstelle
    3. 2.3 Evaluierungs-Firmware
    4. 2.4 Power-Management
    5. 2.5 EMV-Störfestigkeit
  9. Blockschaltbild
  10. Schaltkreisdesign und Komponentenauswahl
    1. 4.1 Analoge Signalkette
      1. 4.1.1 Hochauflösender Signalweg mit 16-Bit-Doppelabtastungs-ADC
        1. 4.1.1.1 Komponentenauswahl
        2. 4.1.1.2 Eingangssignalabschluss und -schutz
        3. 4.1.1.3 Differenzialverstärker THS4531A und 16-Bit-ADC ADS8354
      2. 4.1.2 Analoger Signalweg mit unsymmetrischem Ausgang für MCU mit eingebettetem ADC
      3. 4.1.3 Komparator-Subsystem für die digitalen Signale A, B und R
        1. 4.1.3.1 Nicht invertierender Komparator mit Hysterese
    2. 4.2 Power-Management
      1. 4.2.1 24-V-Eingang auf 6-V-Zwischenschiene
      2. 4.2.2 Encoder-Versorgung
      3. 4.2.3 Signalketten-Stromversorgung 5 V und 3,3 V
    3. 4.3 Hostprozessor-Schnittstelle
      1. 4.3.1 Signalbeschreibung
      2. 4.3.2 Hochauflösender Pfad unter Verwendung des 16-Bit-Dual-ADC ADS8354 mit seriellem Ausgang
        1. 4.3.2.1 Ausgabedatenformat des Vollausschlagsbereichs von ADS8354
        2. 4.3.2.2 Serielle Datenschnittstelle von ADS8354
        3. 4.3.2.3 Wandlungsdaten von ADS8354 lesen
        4. 4.3.2.4 Registerkonfiguration für ADS8354
    4. 4.4 Encoder-Anschluss
    5. 4.5 Design-Upgrades
  11. Softwaredesign
    1. 5.1 Übersicht
    2. 5.2 C2000-Piccolo-Firmware
    3. 5.3 Benutzerschnittstelle
  12. Erste Schritte
    1. 6.1 TIDA-00176-Platinen-Übersicht
    2. 6.2 Anschlüsse und Jumpereinstellungen
      1. 6.2.1 Übersicht über Anschlüsse und Jumper
      2. 6.2.2 Standard-Jumperkonfiguration
    3. 6.3 Design-Evaluierung
      1. 6.3.1 Voraussetzungen
      2. 6.3.2 Hardware-Einrichtung
      3. 6.3.3 Software-Einrichtung
      4. 6.3.4 Benutzerschnittstelle
  13. Prüfergebnisse
    1. 7.1 Analoge Leistungstests
      1. 7.1.1 Hochauflösender Signalweg
        1. 7.1.1.1 Bode-Diagramm des Analogpfads vom Encoder-Anschluss bis zum ADS8354-Eingang
        2. 7.1.1.2 Leistungsdiagramme (DFT) für den gesamten hochauflösenden Signalweg
        3. 7.1.1.3 Hintergrundinformationen zu AC-Leistungsdefinitionen für ADCs
      2. 7.1.2 Analoger Differential-to-single-ended-Signalweg
      3. 7.1.3 Komparator-Subsystem mit digitalen Ausgangssignalen ATTL, BTTL und RTTL
    2. 7.2 Stromversorgungstests
      1. 7.2.1 24-V-DC/DC-Eingangsversorgung
        1. 7.2.1.1 Lastleitungsregelung
        2. 7.2.1.2 Ausgangsspannungswelligkeit
        3. 7.2.1.3 Schaltknoten und Schaltfrequenz
        4. 7.2.1.4 Wirkungsgrad
        5. 7.2.1.5 Bode-Diagramm
        6. 7.2.1.6 Thermisches Diagramm
      2. 7.2.2 Ausgangsspannung der Encoder-Stromversorgung
      3. 7.2.3 5-V- und 3,3-V-Point-of-Load
    3. 7.3 Systemleistung
      1. 7.3.1 Sin/Cos-Encoder-Ausgangssignal-Emulation
        1. 7.3.1.1 Ein-Perioden-Test (inkrementelle Phase)
        2. 7.3.1.2 Ein mechanischer Umdrehungstest bei maximaler Geschwindigkeit
    4. 7.4 Sin/Cos-Encoder-Systemtests
      1. 7.4.1 Nullindex-Marker R
      2. 7.4.2 System-Funktionstests
    5. 7.5 EMV-Testergebnis
      1. 7.5.1 Testeinrichtung
      2. 7.5.2 ESD-Prüfergebnisse nach IEC 61000-4-2
      3. 7.5.3 EFT-Prüfergebnisse nach IEC 61000-4-4
      4. 7.5.4 Stoßspannungsprüfungsergebnisse nach IEC 61000-4-5
  14. Designdateien
    1. 8.1 Schaltpläne
    2. 8.2 Stückliste
    3. 8.3 PCB-Layout-Richtlinien
      1. 8.3.1 Platinenschichtdiagramme
    4. 8.4 Altium-Projekt
    5. 8.5 Gerber-Dateien
    6. 8.6 Softwaredateien
  15. Quellennachweise
  16. 10Autorenprofil
    1.     Danksagung
  17. 11Revisionsverlauf

Power-Management

Das Power-Management besteht aus einem DC/DC-Abwärtswandler, um eine 6-V-Zwischenschiene aus der 24-V-Eingangsspannung zu erzeugen. Die Encoder-Versorgungsspannung sowie die 5-V- und 3,3-V-Schienen werden von der Zwischenspannung abgeleitet, wie in Abbildung 4-8 dargestellt.

TIDA-00176 Power-Management-LösungAbbildung 4-8 Power-Management-Lösung

Aufgrund der hohen Leistung, die für das System und die Lösung erforderlich ist, werden die meisten Stromschienen von rauscharmen LDOs bereitgestellt. Der Nachteil ist der begrenzte Wirkungsgrad und die geringe Ausgangsstromfähigkeit. Der maximale Ausgangsstrom ist aufgrund der hohen Leistungsverluste durch die thermische Leistung begrenzt.

Zur Reduzierung des Spannungsabfalls über den LDO-Regler ist ein hocheffizienter DC/DC-Schaltwandler zur Erzeugung einer
6-V-Zwischenschiene aus dem 24-V-Eingang erforderlich. Achten Sie darauf, das Rauschen der Schaltreglerlösung durch die richtige Anordnung und Komponentenauswahl zu minimieren.