GERU007B June   2015  – March 2025

 

  1.   1
  2.   Beschreibung
  3.   Ressourcen
  4.   Merkmale
  5.   Anwendungen
  6.   6
  7. Systembeschreibung
    1. 1.1 Design-Übersicht
    2. 1.2 Analoger inkrementelle Sin/Cos-Encoder
      1. 1.2.1 Sin/Cos-Encoder-Ausgangssignale
      2. 1.2.2 Beispiele für elektrische Sin/Cos-Encoder-Parameter
    3. 1.3 Methode zur Berechnung der hochauflösenden Position mit Sin/Cos-Encodern
      1. 1.3.1 Theoretischer Ansatz
        1. 1.3.1.1 Übersicht
        2. 1.3.1.2 Berechnung des Winkels mit grober Auflösung
        3. 1.3.1.3 Berechnung des Winkels mit feiner Auflösung
        4. 1.3.1.4 Berechnung des interpolierten hochauflösenden Winkels
        5. 1.3.1.5 Praktische Implementierung für nicht ideale Synchronisation
        6. 1.3.1.6 Überlegungen zu Auflösung, Genauigkeit und Geschwindigkeit
    4. 1.4 Auswirkungen von Sin/Cos-Encoder-Parametern auf die Spezifikation analoger Schaltkreise
      1. 1.4.1 Überlegungen zum Design der analogen Signalkette für die Phaseninterpolation
      2. 1.4.2 Systemdesign der Komparatorfunktion für inkrementelle Anzahl
  8. Designmerkmale
    1. 2.1 Sin/Cos-Encoder-Schnittstelle
    2. 2.2 Hostprozessor-Schnittstelle
    3. 2.3 Evaluierungs-Firmware
    4. 2.4 Power-Management
    5. 2.5 EMV-Störfestigkeit
  9. Blockschaltbild
  10. Schaltkreisdesign und Komponentenauswahl
    1. 4.1 Analoge Signalkette
      1. 4.1.1 Hochauflösender Signalweg mit 16-Bit-Doppelabtastungs-ADC
        1. 4.1.1.1 Komponentenauswahl
        2. 4.1.1.2 Eingangssignalabschluss und -schutz
        3. 4.1.1.3 Differenzialverstärker THS4531A und 16-Bit-ADC ADS8354
      2. 4.1.2 Analoger Signalweg mit unsymmetrischem Ausgang für MCU mit eingebettetem ADC
      3. 4.1.3 Komparator-Subsystem für die digitalen Signale A, B und R
        1. 4.1.3.1 Nicht invertierender Komparator mit Hysterese
    2. 4.2 Power-Management
      1. 4.2.1 24-V-Eingang auf 6-V-Zwischenschiene
      2. 4.2.2 Encoder-Versorgung
      3. 4.2.3 Signalketten-Stromversorgung 5 V und 3,3 V
    3. 4.3 Hostprozessor-Schnittstelle
      1. 4.3.1 Signalbeschreibung
      2. 4.3.2 Hochauflösender Pfad unter Verwendung des 16-Bit-Dual-ADC ADS8354 mit seriellem Ausgang
        1. 4.3.2.1 Ausgabedatenformat des Vollausschlagsbereichs von ADS8354
        2. 4.3.2.2 Serielle Datenschnittstelle von ADS8354
        3. 4.3.2.3 Wandlungsdaten von ADS8354 lesen
        4. 4.3.2.4 Registerkonfiguration für ADS8354
    4. 4.4 Encoder-Anschluss
    5. 4.5 Design-Upgrades
  11. Softwaredesign
    1. 5.1 Übersicht
    2. 5.2 C2000-Piccolo-Firmware
    3. 5.3 Benutzerschnittstelle
  12. Erste Schritte
    1. 6.1 TIDA-00176-Platinen-Übersicht
    2. 6.2 Anschlüsse und Jumpereinstellungen
      1. 6.2.1 Übersicht über Anschlüsse und Jumper
      2. 6.2.2 Standard-Jumperkonfiguration
    3. 6.3 Design-Evaluierung
      1. 6.3.1 Voraussetzungen
      2. 6.3.2 Hardware-Einrichtung
      3. 6.3.3 Software-Einrichtung
      4. 6.3.4 Benutzerschnittstelle
  13. Prüfergebnisse
    1. 7.1 Analoge Leistungstests
      1. 7.1.1 Hochauflösender Signalweg
        1. 7.1.1.1 Bode-Diagramm des Analogpfads vom Encoder-Anschluss bis zum ADS8354-Eingang
        2. 7.1.1.2 Leistungsdiagramme (DFT) für den gesamten hochauflösenden Signalweg
        3. 7.1.1.3 Hintergrundinformationen zu AC-Leistungsdefinitionen für ADCs
      2. 7.1.2 Analoger Differential-to-single-ended-Signalweg
      3. 7.1.3 Komparator-Subsystem mit digitalen Ausgangssignalen ATTL, BTTL und RTTL
    2. 7.2 Stromversorgungstests
      1. 7.2.1 24-V-DC/DC-Eingangsversorgung
        1. 7.2.1.1 Lastleitungsregelung
        2. 7.2.1.2 Ausgangsspannungswelligkeit
        3. 7.2.1.3 Schaltknoten und Schaltfrequenz
        4. 7.2.1.4 Wirkungsgrad
        5. 7.2.1.5 Bode-Diagramm
        6. 7.2.1.6 Thermisches Diagramm
      2. 7.2.2 Ausgangsspannung der Encoder-Stromversorgung
      3. 7.2.3 5-V- und 3,3-V-Point-of-Load
    3. 7.3 Systemleistung
      1. 7.3.1 Sin/Cos-Encoder-Ausgangssignal-Emulation
        1. 7.3.1.1 Ein-Perioden-Test (inkrementelle Phase)
        2. 7.3.1.2 Ein mechanischer Umdrehungstest bei maximaler Geschwindigkeit
    4. 7.4 Sin/Cos-Encoder-Systemtests
      1. 7.4.1 Nullindex-Marker R
      2. 7.4.2 System-Funktionstests
    5. 7.5 EMV-Testergebnis
      1. 7.5.1 Testeinrichtung
      2. 7.5.2 ESD-Prüfergebnisse nach IEC 61000-4-2
      3. 7.5.3 EFT-Prüfergebnisse nach IEC 61000-4-4
      4. 7.5.4 Stoßspannungsprüfungsergebnisse nach IEC 61000-4-5
  14. Designdateien
    1. 8.1 Schaltpläne
    2. 8.2 Stückliste
    3. 8.3 PCB-Layout-Richtlinien
      1. 8.3.1 Platinenschichtdiagramme
    4. 8.4 Altium-Projekt
    5. 8.5 Gerber-Dateien
    6. 8.6 Softwaredateien
  15. Quellennachweise
  16. 10Autorenprofil
    1.     Danksagung
  17. 11Revisionsverlauf

Blockschaltbild

Das Systemblockschaltbild dieses Designs ist in Abbildung 3-1 dargestellt. Die wichtigsten Bausteine dieses TI-Designs sind ein Doppelweg für die analoge Signalkette, ein Hochgeschwindigkeits-Komparatorblock, das Power-Management sowie die Schnittstellen zum Sin/Cos-Encoder und Host-Mikrocontroller für die digitale Signalverarbeitung und hochauflösende Positionsberechnung. Um die einfache Evaluierung des TIDA-00176-Designs zu ermöglichen, wird eine Beispiel-Firmware für das Piccolo-LaunchPad F28069M bereitgestellt, welche die Winkelposition über einen virtuellen COM-Port ausgibt.

TIDA-00176 System-Blockdiagramm des TIDA-00176 mit Piccolo LaunchPad F28069MAbbildung 3-1 System-Blockdiagramm des TIDA-00176 mit Piccolo LaunchPad F28069M

Die analoge Signalkette bietet eine 120-Ω-Terminierung mit EMV-Schutz und dient der Verstärkung und Pegelverschiebung der differenziellen 1-V-PP-Sinus- bzw. Kosinus-Eingangssignale. Eine Option für zwei Signalwege wird ermöglicht durch einen auf der Platine integrierten Hochgeschwindigkeits-Dual-16-Bit-ADC ADS8354 mit simultaner Abtastung und SPI sowie einen analogen Weg mit zwei analogen Ausgängen mit 1,65-V-Vorspannung zur Schnittstelle mit einem externen Dual-S/H-ADC, der beispielsweise auf MCUs wie C2000 Piccolo eingebettet ist.

Der Hochgeschwindigkeits-Komparatorblock mit geringer Ausbreitungsverzögerung bietet eine einstellbare Hysterese für bessere Rauschunempfindlichkeit und wandelt die analogen Signale A, B und den Marker R in digitale Signale mit 3,3-V-TTL-Pegel um, um eine Schnittstelle zu einem Quadratur-Encoder-Impulsmodul wie dem QEP-Modul des Piccolo-MCU C2000™ zu schaffen.

Die integrierte 24-V-Stromversorgung mit großem Eingangsspannungsbereich stellt die erforderlichen Spannungen für die analoge Signalkette sowie die 5,25 V für den Sin/Cos-Encoder bereit.

Die Sin/Cos-Encoder-Schnittstelle bietet entweder einen geschirmten 15-poligen Sub-D-Steckverbinder oder eine 8-polige Stiftleiste. Die Schnittstelle zur Host-MCU bietet digitale 3,3-V-TTL-konforme Signale für SPI und A, B und R sowie die analogen Signale A und B von 0 bis 3,3 V skaliert mit einer 1,65-V-Vorspannung.