Product details

Vin (Min) (V) 1.5 Vin (Max) (V) 45 Vout (Min) (V) 1.5 Vout (Max) (V) 300 Regulated outputs (#) 1 Switching frequency (Min) (kHz) 100 Switching frequency (Max) (kHz) 2200 Iq (Typ) (mA) 0.45 Features Adjustable Current Limit, Frequency Synchronization, Power Good, UVLO Adjustable Duty cycle (Max) (%) 93 TI functional safety category Functional Safety-Capable Rating Catalog Operating temperature range (C) -40 to 125
Vin (Min) (V) 1.5 Vin (Max) (V) 45 Vout (Min) (V) 1.5 Vout (Max) (V) 300 Regulated outputs (#) 1 Switching frequency (Min) (kHz) 100 Switching frequency (Max) (kHz) 2200 Iq (Typ) (mA) 0.45 Features Adjustable Current Limit, Frequency Synchronization, Power Good, UVLO Adjustable Duty cycle (Max) (%) 93 TI functional safety category Functional Safety-Capable Rating Catalog Operating temperature range (C) -40 to 125
WSON (DSS) 12 6 mm² 3 x 2
  • Functional Safety-Capable
    • Documentation available to aid functional safety system design
  • Wide input operating range for battery applications
    • 3.5-V to 45-V operating range
    • 2.97-V to 16-V when BIAS = VCC
    • Minimum boost supply voltage 1.5 V when BIAS ≥ 3.5 V
    • Input transient protection up to 50 V
  • Minimized battery drain
    • Low shutdown current (IQ ≤ 2.6 µA)
    • Low operating current (IQ ≤ 480 µA)
  • Small solution size and low cost
    • Maximum switching frequency of 2.2 MHz
    • 12-Pin WSON package (3 mm × 2 mm)
    • Integrated error amplifier allows primary-side regulation without optocoupler (flyback)
    • Minimized undershoot during cranking (start-stop application)
  • Higher efficiency with low-power dissipation
    • 100-mV ±7% Low current limit threshold
    • Strong 1.5-A peak standard MOSFET driver
    • Supports external VCC supply
  • Avoid AM band interference and crosstalk
    • Optional clock synchronization
    • Dynamically programmable switching frequency from 100 kHz to 2.2 MHz
  • Integrated protection features
    • Constant peak current limiting over input voltage
    • Optional hiccup mode short-circuit protection (see the Device Comparison Table)
    • Programmable line UVLO
    • OVP protection
    • Thermal shutdown
  • Accurate ±1% accuracy feedback reference
  • Programmable extra slope compensation
  • Adjustable soft start
  • PGOOD indicator
  • Create a custom design using the LM5155x with the WEBENCH power designer
  • Functional Safety-Capable
    • Documentation available to aid functional safety system design
  • Wide input operating range for battery applications
    • 3.5-V to 45-V operating range
    • 2.97-V to 16-V when BIAS = VCC
    • Minimum boost supply voltage 1.5 V when BIAS ≥ 3.5 V
    • Input transient protection up to 50 V
  • Minimized battery drain
    • Low shutdown current (IQ ≤ 2.6 µA)
    • Low operating current (IQ ≤ 480 µA)
  • Small solution size and low cost
    • Maximum switching frequency of 2.2 MHz
    • 12-Pin WSON package (3 mm × 2 mm)
    • Integrated error amplifier allows primary-side regulation without optocoupler (flyback)
    • Minimized undershoot during cranking (start-stop application)
  • Higher efficiency with low-power dissipation
    • 100-mV ±7% Low current limit threshold
    • Strong 1.5-A peak standard MOSFET driver
    • Supports external VCC supply
  • Avoid AM band interference and crosstalk
    • Optional clock synchronization
    • Dynamically programmable switching frequency from 100 kHz to 2.2 MHz
  • Integrated protection features
    • Constant peak current limiting over input voltage
    • Optional hiccup mode short-circuit protection (see the Device Comparison Table)
    • Programmable line UVLO
    • OVP protection
    • Thermal shutdown
  • Accurate ±1% accuracy feedback reference
  • Programmable extra slope compensation
  • Adjustable soft start
  • PGOOD indicator
  • Create a custom design using the LM5155x with the WEBENCH power designer

The LM5155x (LM5155 and LM51551) is a wide input range, non-synchronous boost controller that uses peak current mode control. The device can be used in boost, SEPIC, and flyback topologies.

The LM5155x can start up from a 1-cell battery with a minimum of 2.97 V if the BIAS pin is connected to the VCC pin. It can operate with the input supply voltage as low as 1.5 V if the BIAS pin is greater than 3.5 V.

The LM5155x (LM5155 and LM51551) is a wide input range, non-synchronous boost controller that uses peak current mode control. The device can be used in boost, SEPIC, and flyback topologies.

The LM5155x can start up from a 1-cell battery with a minimum of 2.97 V if the BIAS pin is connected to the VCC pin. It can operate with the input supply voltage as low as 1.5 V if the BIAS pin is greater than 3.5 V.

Download

Similar products you might be interested in

open-in-new Compare products
Pin-for-pin with same functionality to the compared device.
LM51551 ACTIVE 2.2-MHz wide VIN nonsynchronous boost, flyback, & SEPIC controller with hiccup This product provides additional hiccup protection mode.
Same functionality with different pin-out to the compared device.
LM5156H ACTIVE 2.2-MHz wide VIN nonsynchronous boost, flyback, & SEPIC controller with dual random spread spectrum Higher operating input voltage up to 60 V with spread spectrum and HTSSOP package.
NEW LM5157-Q1 ACTIVE 6-A, 50-V, 2.2-MHz wide VIN boost, flyback, & SEPIC converter with dual random spread spectrum This boost converter also includes an integrated FET.
NEW LM51571-Q1 ACTIVE 4-A, 50-V, 2.2-MHz wide VIN boost, flyback, & SEPIC converter with dual random spread spectrum This boost converter also includes an integrated FET.

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 11
Type Title Date
* Data sheet LM5155x 2.2-MHz Wide Input Nonsynchronous Boost, SEPIC, Flyback Controller datasheet (Rev. D) 07 Jan 2021
Application note IEEE 802.3cg 10BASE-T1L Power over Data Lines Powered Device Design 26 Jan 2022
E-book An Engineer’s Guide to Low EMI in DC/DC Regulators 21 Apr 2021
Functional safety information LM5155x FIT Rate and Failure Mode Distribution 04 Feb 2020
Application note How to design an isolated flyback using LM5155 05 Feb 2019
Application note How to Design a Boost Converter Using LM5155 17 Dec 2018
User guide LM5155EVM-BST User's Guide 11 Dec 2018
Technical article How to add overvoltage protection to a synchronous boost controller 17 Sep 2018
User guide LM5155EVM-FLY User's Guide 02 Aug 2018
User guide LM5155EVM-SEPIC User's Guide 02 Aug 2018
Application note Improve DC/DC Regulator EMI for Free with Optimized Power Stage Layout 13 Nov 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DRV5825PEVM-AMPS097 — 4.5-V to 26.4-V, 7.5-A stereo, 15-A mono, Piezo driver with smart I/V protection evaluation module

The DRV5825PEVM evaluation module (EVM) showcases the latest TI digital input Class-D closed-loop amplifier for Piezo application. The DRV5825P is a digital input Class-D audio amplifier with Smart Piezo Driver Algorithm. The EVM can be used as stand-alone platform with default I2C register (...)
In stock
Limit: 2
Evaluation board

LM5155EVM-BST — LM5155 Boost Controller Evaluation Module

The LM5155EVM-BST evaluation module showcases the features and performance of the LM5155, wide input non-synchronous boost controller. The standard configuration is designed to provide a regulate output of 24V at 2A from an input of 6V to 18V, switching at 440 kHz.

This EVM is designed for ease of (...)

In stock
Limit: 5
Evaluation board

LM5155EVM-FLY — LM5155 Flyback Controller Evaluation Module

The LM5155EVM-FLY evaluation module showcases the features and performance of the LM5155 as a wide input non-synchronous flyback controller. The standard configuration is designed to provide a regulated output of 5V at 4A from an input of 18V to 36V, switching at 250 kHz. This evaluation module is (...)
In stock
Limit: 5
Evaluation board

LM5155EVM-SEPIC — LM5155 SEPIC evaluation module

The LM5155EVM-SEPIC evaluation module showcases the features and performance of the LM5155 as wide input non-synchronous SEPIC controller. The standard configuration is designed to provide a regulated output of 12V at up to 2A from an input of 3V to 42V, switching at 2.2 MHz.
In stock
Limit: 2
Simulation model

LM5155-Q1 PSpice Transient Model (unencrypted) (Rev. E)

SNVMBL2E.ZIP (204 KB) - PSpice Model
Simulation model

LM5155-Q1 TINA-TI TRANSIENT SPICE MODEL

SNVMBV7.ZIP (52 KB) - TINA-TI Spice Model
Simulation model

LM5155-Q1 TINA-TI STARTUP REFERENCE DESIGN

SNVMBV8.TSC (1162 KB) - TINA-TI Reference Design
Simulation model

Unencrypted LM5155-Q1 PSpice Average Model (Rev. B)

SNVMBY3B.ZIP (81 KB) - PSpice Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Calculation tool

LM5155/56 Flyback Controller Quick Start Calculator

SNVC240.ZIP (5304 KB)
Calculation tool

LM5155/56 SEPIC Controller Quick Start Calculator

SNVR481.ZIP (1265 KB)
Reference designs

PMP40679 — 9.8~13.5-V input, 46-V 300-W output interleave boost reference design

This reference design is a 300-W power output interleaving combination of two boost converters using LM5155 controller. Each converter outputs continuous 150-W and 200-W peak. A LMC555 circuit generates 150k-Hz square wave signal and its anti-phase signal for synchronous clock for the two LM5155, (...)
Reference designs

PMP40488 — 6-W dual-output SEPIC converter reference design

This reference design employs LM5155 Boost/Flyback/SEPIC controller to provide 6-W outputs with dual-output SEPIC topology. The input is 12-VDC, and outputs are ±60 V/50 mA. The switching frequency is set at 500k Hz. This design achieves 88.2% peak efficiency. The cross regulation of -60-V (...)
Reference designs

PMP22151 — 70-W flyback and 37-W boost power reference design

This reference design uses two LM5155 devices to make a flyback and boost power stage. The flyback creates an isolated 28 Vdc bus from a 24 +/-10% Vdc bus and the boost creates a 37 Vdc bus from the output of the flyback. The flyback can be loaded up to 70 W and the boost can be loaded up to 37-W. (...)
Reference designs

PMP40555 — 9~60-Vdc input, 12-V/2-A output flyback reference design

This reference design is a wide input, 12-V/2-A output isolated flyback converter using LM5155. The switching frequency is 250 kHz and the peak efficiency of the system is 89.19% at 24-V input. The load regulation in the whole input range is within ±0.5%. Peak-to-peak ripple of the output (...)
Reference designs

PMP40569 — 36~57-Vdc input, 5-V/4-A output isolated flyback with synchronous rectification reference design

This reference design is a 36~57-Vdc input, 5-V/4-A output isolated flyback converter using LM5155 and UCC24612. The switching frequency is 250 kHz. With the synchronous rectification controller UCC24612 and a MOSFET at the secondary side, the system achieves 89.29% peak efficiency at 36-V input, (...)
Reference designs

TIDA-050023 — Type-3 IEEE802.3bt-ready flyback converter PoE powered device reference design

This design showcases a low cost, Type-3, Class 6, 51W flyback converter for powered devices through Power over Ethernet. The TPS2373-3 PD controller provides detection and classification while also powering up the LM51551-Q1 PWM controller through its advanced startup feature. This design takes in (...)
Package Pins Download
WSON (DSS) 12 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos