Home Power management Gate drivers Low-side drivers

UCC27517

ACTIVE

4-A/4-A single-channel gate driver with 5-V UVLO and 13-ns prop delay in SOT-23 package

Product details

Number of channels 1 Power switch GaNFET, IGBT, MOSFET Peak output current (A) 4 Input supply voltage (min) (V) 4.5 Input supply voltage (max) (V) 18 Features Hysteretic Logic Operating temperature range (°C) -40 to 140 Rise time (ns) 9 Fall time (ns) 7 Propagation delay time (µs) 0.013 Input threshold CMOS, TTL Channel input logic Inverting, Non-Inverting Input negative voltage (V) 0 Rating Catalog Undervoltage lockout (typ) (V) 4 Driver configuration Inverting, Non-Inverting
Number of channels 1 Power switch GaNFET, IGBT, MOSFET Peak output current (A) 4 Input supply voltage (min) (V) 4.5 Input supply voltage (max) (V) 18 Features Hysteretic Logic Operating temperature range (°C) -40 to 140 Rise time (ns) 9 Fall time (ns) 7 Propagation delay time (µs) 0.013 Input threshold CMOS, TTL Channel input logic Inverting, Non-Inverting Input negative voltage (V) 0 Rating Catalog Undervoltage lockout (typ) (V) 4 Driver configuration Inverting, Non-Inverting
SOT-23 (DBV) 5 8.12 mm² 2.9 x 2.8
  • Low-Cost Gate-Driver Device Offering Superior Replacement
    of NPN and PNP Discrete Solutions
  • 4-A Peak-Source and 4-A Peak-Sink Symmetrical Drive
  • Fast Propagation Delays (13-ns Typical)
  • Fast Rise and Fall Times (9-ns and 7-ns Typical)
  • 4.5 to 18-V Single-Supply Range
  • Outputs Held Low During VDD UVLO (Ensures Glitch-Free
    Operation at Power Up and Power Down)
  • TTL and CMOS Compatible Input-Logic Threshold (Independent
    of Supply Voltage)
  • Hysteretic-Logic Thresholds for High-Noise Immunity
  • Dual Input Design (Choice of an Inverting (IN– pin) or
    Noninverting (IN+ Pin) Driver Configuration)
    • Unused Input Pin Can Be Used for Enable or Disable Function
  • Output Held Low When Input Pins Are Floating
  • Input Pin Absolute Maximum Voltage Levels Not Restricted
    by VDD Pin Bias Supply Voltage
  • Operating Temperature Range of –40°C to 140°C
  • 5-Pin DBV (SOT-23) and 6-Pin DRS (3-mm ×
    3-mm WSON With Exposed Thermal Pad) Package Options
  • Low-Cost Gate-Driver Device Offering Superior Replacement
    of NPN and PNP Discrete Solutions
  • 4-A Peak-Source and 4-A Peak-Sink Symmetrical Drive
  • Fast Propagation Delays (13-ns Typical)
  • Fast Rise and Fall Times (9-ns and 7-ns Typical)
  • 4.5 to 18-V Single-Supply Range
  • Outputs Held Low During VDD UVLO (Ensures Glitch-Free
    Operation at Power Up and Power Down)
  • TTL and CMOS Compatible Input-Logic Threshold (Independent
    of Supply Voltage)
  • Hysteretic-Logic Thresholds for High-Noise Immunity
  • Dual Input Design (Choice of an Inverting (IN– pin) or
    Noninverting (IN+ Pin) Driver Configuration)
    • Unused Input Pin Can Be Used for Enable or Disable Function
  • Output Held Low When Input Pins Are Floating
  • Input Pin Absolute Maximum Voltage Levels Not Restricted
    by VDD Pin Bias Supply Voltage
  • Operating Temperature Range of –40°C to 140°C
  • 5-Pin DBV (SOT-23) and 6-Pin DRS (3-mm ×
    3-mm WSON With Exposed Thermal Pad) Package Options

The UCC27516 and UCC27517 single-channel, high-speed, low-side gate driver devices can effectively drive MOSFET and IGBT power switches. Using a design that inherently minimizes shoot-through current, UCC27516 and UCC27517 can source and sink high peak-current pulses into capacitive loads offering rail-to-rail drive capability and extremely small propagation delay, typically 13 ns.

The UCC27516 and UCC27517 provides 4-A source, 4-A sink (symmetrical drive) peak-drive current capability at VDD = 12 V.

The UCC27516 and UCC27517 are designed to operate over a wide VDD range of 4.5 to 18 V and wide temperature range of –40°C to 140°C. Internal undervoltage lockout (UVLO) circuitry on the VDD pin holds output low outside VDD operating range. The capability to operate at low voltage levels such as below 5 V, along with best-in-class switching characteristics, is especially suited for driving emerging wide band-gap power-switching devices such as GaN power semiconductor devices.

The UCC27516 and UCC27517 devices feature a dual-input design which offers flexibility of implementing both inverting (IN– pin) and noninverting (IN+ pin) configurations with the same device. Either the IN+ or IN– pin can be used to control the state of the driver output. The unused input pin can be used for enable and disable function. For safety purpose, internal pullup and pulldown resistors on the input pins ensure that outputs are held low when input pins are in floating condition. Hence the unused input pin is not left floating and must be properly biased to ensure that driver output is in enabled for normal operation.

The input pin threshold of the UCC27516 and UCC27517 devices are based on TTL and CMOS compatible low-voltage logic which is fixed and independent of the VDD supply voltage. Wide hysteresis between the high and low thresholds offers excellent noise immunity.

The UCC27516 and UCC27517 single-channel, high-speed, low-side gate driver devices can effectively drive MOSFET and IGBT power switches. Using a design that inherently minimizes shoot-through current, UCC27516 and UCC27517 can source and sink high peak-current pulses into capacitive loads offering rail-to-rail drive capability and extremely small propagation delay, typically 13 ns.

The UCC27516 and UCC27517 provides 4-A source, 4-A sink (symmetrical drive) peak-drive current capability at VDD = 12 V.

The UCC27516 and UCC27517 are designed to operate over a wide VDD range of 4.5 to 18 V and wide temperature range of –40°C to 140°C. Internal undervoltage lockout (UVLO) circuitry on the VDD pin holds output low outside VDD operating range. The capability to operate at low voltage levels such as below 5 V, along with best-in-class switching characteristics, is especially suited for driving emerging wide band-gap power-switching devices such as GaN power semiconductor devices.

The UCC27516 and UCC27517 devices feature a dual-input design which offers flexibility of implementing both inverting (IN– pin) and noninverting (IN+ pin) configurations with the same device. Either the IN+ or IN– pin can be used to control the state of the driver output. The unused input pin can be used for enable and disable function. For safety purpose, internal pullup and pulldown resistors on the input pins ensure that outputs are held low when input pins are in floating condition. Hence the unused input pin is not left floating and must be properly biased to ensure that driver output is in enabled for normal operation.

The input pin threshold of the UCC27516 and UCC27517 devices are based on TTL and CMOS compatible low-voltage logic which is fixed and independent of the VDD supply voltage. Wide hysteresis between the high and low thresholds offers excellent noise immunity.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
UCC27517A ACTIVE 4-A/4-A single-channel gate driver with 5-V UVLO and negative input voltage handling Improved input negative voltage handling
Same functionality with different pin-out to the compared device
NEW UCC44273 ACTIVE 4-A/4-A single-channel low-side gate driver with 5-V UVLO Additional SOT-23 pinout option

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

UCD3138PFCEVM-026 — UCD3138 Digital Power Factor Correction Pre-regulator Evaluation Module

The Texas Instruments UCD3138PFCEVM-026 evaluation module (EVM) is a digitally controlled single phase PFC pre-regulator based on the UCD3138 programmable digital power controller. The EVM accepts universal ac line input from 90Vac to 264Vac, 47Hz to 63Hz. The nominal output voltage is 390VDC. (...)

User guide: PDF
Not available on TI.com
Simulation model

UCC27517 PSpice Transient Model (Rev. B)

SLUM286B.ZIP (51 KB) - PSpice Model
Simulation model

UCC27517 TINA-TI Transient Reference Design

SLUM317.TSC (67 KB) - TINA-TI Reference Design
Simulation model

UCC27517 TINA-TI Transient Spice Model

SLUM318.ZIP (8 KB) - TINA-TI Spice Model
Simulation model

UCC27517 Unencrypted PSpice Transient Model

SLUM491.ZIP (2 KB) - PSpice Model
Calculation tool

SLURB28 UCC27516 and UCC27517 Schematic Review Template

Supported products & hardware

Supported products & hardware

Products
Low-side drivers
UCC27516 4-A/4-A single-channel gate driver with 5-V UVLO and 13-ns prop delay in SON package UCC27517 4-A/4-A single-channel gate driver with 5-V UVLO and 13-ns prop delay in SOT-23 package
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)

Many TI reference designs include the UCC27517

Use our reference design selection tool to review and identify designs that best match your application and parameters.

Package Pins Download
SOT-23 (DBV) 5 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos