SLLSFE8B November   2024  – November 2025 TCAN2845-Q1 , TCAN2847-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  IEC ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Supply Characteristics
    7. 6.7  Electrical Characteristics
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  VSUP Pin
      2. 8.3.2  VCC1 Regulator
      3. 8.3.3  VCC2 Regulator
        1. 8.3.3.1 VCC2 Short to Battery Protection
      4. 8.3.4  nRST Pin
      5. 8.3.5  VEXCC Regulator
      6. 8.3.6  CAN FD Transceiver
        1. 8.3.6.1 Driver and Receiver Function
        2. 8.3.6.2 CAN Bus Biasing
      7. 8.3.7  LIN Transceiver
        1. 8.3.7.1 LIN Transmitter Characteristics
        2. 8.3.7.2 LIN Receiver Characteristics
        3. 8.3.7.3 LIN Termination
      8. 8.3.8  GND
      9. 8.3.9  LIMP Pin
      10. 8.3.10 High-side Switches (HSS1- HSS4)
      11. 8.3.11 WAKE1, WAKE2 and WAKE3/DIR Pins
        1. 8.3.11.1 WAKE Pins Alternate Configurations
          1. 8.3.11.1.1 VBAT monitoring
            1. 8.3.11.1.1.1 Interaction Between WAKE1_SENSE/OV_WAKE12SW_DIS and HSS4 Function in Normal Mode
          2. 8.3.11.1.2 Direct Drive
      12. 8.3.12 SDO Pin
      13. 8.3.13 nCS Pin
      14. 8.3.14 SCK Pin
      15. 8.3.15 SDI Pin
      16. 8.3.16 Interrupt Function (nINT)
      17. 8.3.17 SW Pin
      18. 8.3.18 GFO Pin
    4. 8.4 Device Functional Modes
      1. 8.4.1 Init Mode
      2. 8.4.2 Normal Mode
      3. 8.4.3 Standby Mode
      4. 8.4.4 Restart Mode
      5. 8.4.5 Fail-Safe Mode
        1. 8.4.5.1 SBC Faults
        2. 8.4.5.2 CAN Transceiver Faults
        3. 8.4.5.3 LIN Transceiver Faults ( TCAN2847x-Q1)
      6. 8.4.6 Sleep Mode
      7. 8.4.7 Wake Functions
        1. 8.4.7.1 CAN Bus Wake Using CRXD Request (BWRR) in Sleep Mode
        2. 8.4.7.2 LIN Bus Wake
        3. 8.4.7.3 Local Wake Up (LWU) via WAKEx Input Terminal
          1. 8.4.7.3.1 Static Wake
          2. 8.4.7.3.2 Cyclic Sensing Wake
        4. 8.4.7.4 Cyclic Wake
        5. 8.4.7.5 Direct Drive in Sleep Mode
        6. 8.4.7.6 Selective Wake-up
          1. 8.4.7.6.1 Selective Wake Mode
          2. 8.4.7.6.2 Frame Detection
          3. 8.4.7.6.3 Wake-Up Frame (WUF) Validation
          4. 8.4.7.6.4 WUF ID Validation
          5. 8.4.7.6.5 WUF DLC Validation
          6. 8.4.7.6.6 WUF Data Validation
          7. 8.4.7.6.7 Frame Error Counter
          8. 8.4.7.6.8 CAN FD Frame Tolerance
          9. 8.4.7.6.9 8Mbps Filtering
      8. 8.4.8 Protection Features
        1. 8.4.8.1  Fail-safe Features
          1. 8.4.8.1.1 Sleep Mode Using Sleep Wake Error
        2. 8.4.8.2  Device Reset
        3. 8.4.8.3  Floating Terminals
        4. 8.4.8.4  TXD Dominant Time Out (DTO)
        5. 8.4.8.5  LIN Bus Stuck Dominant System Fault: False Wake Up Lockout
        6. 8.4.8.6  CAN Bus Short Circuit Current Limiting
        7. 8.4.8.7  Thermal Shutdown
        8. 8.4.8.8  Under and Over Voltage Lockout and Unpowered Device
          1. 8.4.8.8.1 Under-voltage
            1. 8.4.8.8.1.1 VSUP and VHSS Under-voltage
            2. 8.4.8.8.1.2 VCC1 Under-voltage
            3. 8.4.8.8.1.3 VCC2 and VEXCC Under-voltage
            4. 8.4.8.8.1.4 VCAN Under-voltage
          2. 8.4.8.8.2 VCC1, VCC2 and VEXCC Over-voltage
          3. 8.4.8.8.3 VCC1, VCC2 and VEXCC Short Circuit
        9. 8.4.8.9  Watchdog
          1. 8.4.8.9.1 Watchdog Error Counter and Action
          2. 8.4.8.9.2 Watchdog SPI Programming
            1. 8.4.8.9.2.1 Watchdog Configuration Registers Lock and Unlock
              1. 8.4.8.9.2.1.1 Watchdog Configuration in SPI Two-byte Mode
          3. 8.4.8.9.3 Watchdog Timing
          4. 8.4.8.9.4 Question and Answer Watchdog
            1. 8.4.8.9.4.1 WD Question and Answer Basic Information
            2. 8.4.8.9.4.2 Question and Answer Register and Settings
            3. 8.4.8.9.4.3 WD Question and Answer Value Generation
              1. 8.4.8.9.4.3.1 Answer Comparison
              2. 8.4.8.9.4.3.2 Sequence of the 2-bit Watchdog Answer Counter
            4. 8.4.8.9.4.4 Question and Answer WD Example
              1. 8.4.8.9.4.4.1 Example Configuration for Desired Behavior
              2. 8.4.8.9.4.4.2 Example of Performing a Question and Answer Sequence
        10. 8.4.8.10 Bus Fault Detection and Communication
    5. 8.5 Programming
      1. 8.5.1 SPI Communication
        1. 8.5.1.1 Cyclic Redundancy Check
        2. 8.5.1.2 Chip Select Not (nCS):
        3. 8.5.1.3 SPI Clock Input (SCK):
        4. 8.5.1.4 SPI Data Input (SDI):
        5. 8.5.1.5 SPI Data Output (SDO):
      2. 8.5.2 EEPROM
  10. Registers
    1. 9.1 Registers
      1. 9.1.1  DEVICE_ID_y Register (Address = 00h + formula) [reset = xxh]
      2. 9.1.2  REV_ID Register (Address = 08h) [reset = 2Xh]
      3. 9.1.3  SPI_CONFIG Register (Address = 09h) [reset = 00h]
      4. 9.1.4  CRC_CNTL Register (Address = 0Ah) [reset = 00h]
      5. 9.1.5  CRC_POLY_SET (Address = 0Bh) [reset = 00h]
      6. 9.1.6  SBC_CONFIG (Address = 0Ch) [reset = 06h]
      7. 9.1.7  VREG_CONFIG1 (Address = 0Dh) [reset = 80h]
      8. 9.1.8  SBC_CONFIG1 Register (Address = 0Eh) [reset = 01h]
      9. 9.1.9  Scratch_Pad_SPI Register (Address = 0Fh) [reset = 00h]
      10. 9.1.10 CAN_CNTRL_1 Register (Address = 10h) [reset = 04h]
      11. 9.1.11 WAKE_PIN_CONFIG1 Register (Address = 11h) [reset = 00h]
      12. 9.1.12 WAKE_PIN_CONFIG2 Register (Address = 12h) [reset = 02h]
      13. 9.1.13 WD_CONFIG_1 Register (Address = 13h) [reset = 82h]
      14. 9.1.14 WD_CONFIG_2 Register (Address = 14h) [reset = 60h]
      15. 9.1.15 WD_INPUT_TRIG Register (Address = 15h) [reset = 00h]
      16. 9.1.16 WD_RST_PULSE Register (Address = 16h) [reset = 00h]
      17. 9.1.17 FSM_CONFIG Register (Address = 17h) [reset = 00h]
      18. 9.1.18 FSM_CNTR Register (Address = 18h) [reset = 00h]
      19. 9.1.19 DEVICE_CONFIG0 Register (Address = 19h) [reset = 10h]
      20. 9.1.20 DEVICE_CONFIG1 (Address = 1Ah) [reset = 00h]
      21. 9.1.21 DEVICE_CONFIG2 (Address = 1Bh) [reset = 00h]
      22. 9.1.22 SWE_TIMER (Address = 1Ch) [reset = 28h]
      23. 9.1.23 LIN_CNTL (Address = 1Dh) [reset = 20h]
      24. 9.1.24 HSS_CNTL (Address = 1Eh) [reset = 00h]
      25. 9.1.25 PWM1_CNTL1 (Address = 1Fh) [reset = 00h]
      26. 9.1.26 PWM1_CNTL2 (Address = 20h) [reset = 00h]
      27. 9.1.27 PWM1_CNTL3 (Address = 21h) [reset = 00h]
      28. 9.1.28 PWM2_CNTL1 (Address = 22h) [reset = 00h]
      29. 9.1.29 PWM2_CNTL2 (Address = 23h) [reset = 00h]
      30. 9.1.30 PWM2_CNTL3 (Address = 24h) [reset = 00h]
      31. 9.1.31 TIMER1_CONFIG (Address = 25h) [reset = 00h]
      32. 9.1.32 TIMER2_CONFIG (Address = 26h) [reset = 00h]
      33. 9.1.33 RSRT_CNTR (Address = 28h) [reset = 40h]
      34. 9.1.34 nRST_CNTL (Address = 29h) [reset = 2Ch]
      35. 9.1.35 WAKE_PIN_CONFIG3 Register (Address = 2Ah) [reset = E0h]
      36. 9.1.36 WAKE_PIN_CONFIG4 Register (Address = 2Bh) [reset = 22h]
      37. 9.1.37 WD_QA_CONFIG Register (Address = 2Dh) [reset = 0Ah]
      38. 9.1.38 WD_QA_ANSWER Register (Address = 2Eh) [reset = 00h]
      39. 9.1.39 WD_QA_QUESTION Register (Address = 2Fh) [reset = 3Ch]
      40. 9.1.40 SW_ID1 Register (Address = 30h) [reset = 00h]
      41. 9.1.41 SW_ID2 Register (Address = 31h) [reset = 00h]
      42. 9.1.42 SW_ID3 Register (Address = 32h) [reset = 00h]
      43. 9.1.43 SW_ID4 Register (Address = 33h) [reset = 00h]
      44. 9.1.44 SW_ID_MASK1 Register (Address = 34h) [reset = 00h]
      45. 9.1.45 SW_ID_MASK2 Register (Address = 35h) [reset = 00h]
      46. 9.1.46 SW_ID_MASK3 Register (Address = 36h) [reset = 00h]
      47. 9.1.47 SW_ID_MASK4 Register (Address = 37h) [reset = 00h]
      48. 9.1.48 SW_ID_MASK_DLC Register (Address = 38h) [reset = 00h]
      49. 9.1.49 DATA_y Register (Address = 39h + formula) [reset = 00h]
      50. 9.1.50 SW_RSVD_y Register (Address = 41h + formula) [reset = 00h]
      51. 9.1.51 SW_CONFIG_1 Register (Address = 44h) [reset = 50h]
      52. 9.1.52 SW_CONFIG_2 Register (Address = 45h) [reset = 00h]
      53. 9.1.53 SW_CONFIG_3 Register (Address = 46h) [reset = 1Fh]
      54. 9.1.54 SW_CONFIG_4 Register (Address = 47h) [reset = 00h]
      55. 9.1.55 SW_CONFIG_RSVD_y Register (Address = 48h + formula) [reset = 00h]
      56. 9.1.56 HSS_CNTL2 (Address = 4Dh) [reset = 00h]
      57. 9.1.57 EEPROM_CONFIG (Address = 4Eh) [reset = 00h]
      58. 9.1.58 HSS_CNTL3 (Address = 4Fh) [reset = 00h]
      59. 9.1.59 INT_GLOBAL Register (Address = 50h) [reset = 00h]
      60. 9.1.60 INT_1 Register (Address = 51h) [reset = 00h]
      61. 9.1.61 INT_2 Register (Address = 52h) [reset = 40h]
      62. 9.1.62 INT_3 Register (Address 53h) [reset = 00h]
      63. 9.1.63 INT_CANBUS_1 Register (Address = 54h) [reset = 00h]
      64. 9.1.64 INT_7 (Address = 55h) [reset = 00h]
      65. 9.1.65 INT_EN_1 Register (Address = 56h) [reset = FFh]
      66. 9.1.66 INT_EN_2 Register (Address = 57h) [reset = 7Eh]
      67. 9.1.67 INT_EN_3 Register (Address = 58h) [reset = FEh]
      68. 9.1.68 INT_EN_CANBUS_1 Register (Address = 59h) [reset = BFh]
      69. 9.1.69 INT_4 Register (Address = 5Ah) [reset = 00h]
      70. 9.1.70 INT_6 Register (Address 5Ch) [reset = 00h]
      71. 9.1.71 INT_EN_4 Register (Address = 5Eh) [reset = DFh]
      72. 9.1.72 INT_EN_6 Register (Address = 60h) [reset = FFh]
      73. 9.1.73 INT_EN_7 Register (Address = 62) [reset = FFh]
  11. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 CAN BUS Loading, Length and Number of Nodes
      2. 10.1.2 CAN Termination
        1. 10.1.2.1 Termination
      3. 10.1.3 Channel Expansion
        1. 10.1.3.1 Channel Expansion for LIN
        2. 10.1.3.2 Channel Expansion for CAN FD
      4. 10.1.4 Device Brownout information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
        1. 10.2.1.1 LTXD Dominant State Timeout Application Note
      2. 10.2.2 Detailed Design Procedures
        1. 10.2.2.1 CAN Detailed Design Procedure
        2. 10.2.2.2 LIN Detailed Design Procedures
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 CAN Transceiver Physical Layer Standards:
      2. 11.1.2 LIN Transceiver Physical Layer Standards
      3. 11.1.3 EMC Requirements:
      4. 11.1.4 Conformance Test Requirements:
      5. 11.1.5 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Timing Requirements

Over recommended operating range (unless otherwise noted)
Parameter Test Condition MIN NOM MAX UNIT
SUPPLY
tPWRUP Time after VSUP exceeds  UVSUP  and VCC1> UVCC1 (5) Device powers up enters restart 3.5 ms
tVCCSS Softstart time for VCC1, VCC2 and VEXCC (5) Time required for VCC1, VCC2 and VEXCC to ramp from 0V to 90% of regulated value 0.75 1.25 ms
tUVFLTR Under-voltage detection filter time for VCC1, VCC2 and VEXCC (5) 25 50 µs
tUVCC1PR Under-voltage filter time for VCC1 pre-warning (5) 2 12 µs
tUVCANFLTR Under-voltage filter time for VCAN (5) 2 10 µs
tOVFLTR Over-voltage detect filter time on VCC1, VCC2 and VEXCC (5) 20 45 µs
tOVFLTRVHSS Over-voltage detect filter time on VHSS (5) 4 12 µs
tVSC Short to ground on VCC1, VCC2 and VEXCC detection filter time (5) 75 100 125 µs
tVSCLS Short to ground for VCC1 and VEXCC detection filter time when load sharing (5) 75 100 125 µs
tLDOON Time LDO is on to determine if a fault event is present after a previous uncleared detection (5) See Figure 7-19 3.8 ms
tLDOOFF Time VCC1 LDO is off in fail-safe mode before accepting wake events and checking for fault conditions (5) 250 300 350 ms
MODE CHANGE
tMODE_STBY_NOM_CTRX CAN transceiver state change time based upon SPI write from off or wake capable to on or listen state where CRXD mirror CAN bus (5) 70 µs
tMODE_STBY_NOM_LTRX LIN transceiver state change time based upon SPI write from off or wake capable to on or fast state where LRXD mirror LIN bus (5) 70 µs
tMODE_NOM_SLP Time from SPI sleep command where CAN and/or LIN transceiver is off and RXD does not reflect the bus (5) See Figure 7-20 200 µs
tMODE_NOM_STBY SPI write to go to standby from normal mode (5) See Figure 7-21 70 µs
DEVICE TIMING
tRSTN_act Reset delay after recovering from undervoltage (VCC1 ≥ UVCC1R to nRST release) (5) See Figure 7-18, Figure 7-19, Figure 8-29 and  Figure 10-8 as examples     1.5 2 2.5 ms
tNRSTIN Input pulse required on the nRST pin to recognize a device reset (5) See Figure 8-44 75 100 125 µs
tRSTTO Restart timer. Timer starts when VCC1 < UVCC1F. The device enters fail-safe mode (if enabled) or Sleep mode (fail-safe mode disabled) when the timer expires before the UVCC1 recovery.  (5) Measured from nRST active to LIMP active 120 150 180 ms
tNRST_TOG Reset pulse duration due to watchdog error (5) Register 8'h29[5] = 0, see Figure 8-25 1.5 2 2.5 ms
Register 8'h29[5] = 1, see Figure 8-25 10 15 20 ms
tnINT_TI nINT output pulse width (low) when nINT_TOG_EN is enabled. (5) Register 8'h1B[0] = 1b 75 100 125 µs
tnINT_TP nINT output pulse width (high) when nINT_TOG_EN is enabled (5) Register 8'h1B[0] = 1b 75 100 125 µs
tWK_TIMEOUT Bus wake-up timeout value See Figure 8-29 0.8 2 ms
tWK_FILTER Bus time to meet filtered bus requirements for wake up request See Figure 8-29 0.5 1.8 µs
tWK_WIDTH_MIN Minimum WAKE Pin pulse width(2)(3)(4)(5)

See Figure 8-34
Register 8'h11[3:2] = 00b 10 ms
Register 8'h11[3:2] = 01b 20 ms
Register 8'h11[3:2] = 10b 40 ms
Register 8'h11[3:2] = 11b 80 ms
tWK_WIDTH_INVALID Maximum WAKE Pin pulse width that is considered invalid (2)(3)(4)(5)

See Figure 8-34
Register 8'h11[3:2] = 00b 5 ms
Register 8'h11[3:2] = 01b 10 ms
Register 8'h11[3:2] = 10b 20 ms
Register 8'h11[3:2] = 11b 40 ms
tWK_WIDTH_MAX Maximum WAKE Pin pulse window (2)(3)(4)(5)

See Figure 8-34
Register 8'h11[1:0] = 00b 750 950 ms
Register 8'h11[1:0] = 01b 1000 1250 ms
Register 8'h11[1:0] = 10b 1500 1875 ms
Register 8'h11[1:0] = 11b 2000 2500 ms
tWK_CYC Sampling window for cyclic sensing; Standby or Sleep mode. (5)
see Figure 8-37
Register 8'h12[5] = 0b 10 25 35 µs
Register 8'h12[5] = 1b 55 75 85 µs
tSILENCE_CAN Timeout for bus inactivity Timer is reset and restarted, when bus changes from dominant to recessive or inversely .(5) 0.6 1.2 s
tINACTIVE SWE timer used for fail-safe and mode inactivity Can be programmed to different values using register 8'h1C[6:3] 4 5 6 min
tBias Time from the start of a dominant-recessive-dominant sequence Each phase 6µs until Vsym ≥ 0.1. See Figure 7-10 250 µs
tSW SW pin filter time for a state change to be recognized (5) 130 µs
tINITWD Initial long window for watchdog (5)

see Figure 8-62
WD_CONFIG_1 register 8'h13[1:0] = 00b 127 150 173 ms
WD_CONFIG_1 register 8'h13[1:0] = 01b 255 300 345 ms
WD_CONFIG_1 register 8'h13[1:0] = 10b (default) 510 600 690 ms
WD_CONFIG_1 register 8'h13[1:0] = 11b 850 1000 1150 ms
fPWM-ACC HSS1-4 PWM Frequency accuracy(5) HSS set to PWM and PWM frequency set to 200Hz or 400Hz per PWMx_FREQ bit –10 10 %
tWD-ACC Timeout watchdog timing accuracy(5) Timeout watchdog enabled. Typical values for watchdog timer selected per Table 8-16 –15  tWD 15 %
Window and Q&A watchdog timing accuracy(5) Window watchdog or Q&A watchdog enabled. Typical values for watchdog timer selected per Table 8-16 –10  tWD 10 %
tTMR-ACC  Timer1, Timer2 period/on-time accuracy OR  SWE timer accuracy(5) Typical value of Timer1 or Timer2 configured per register 8'h25 (TIMER1_CONFIG) or 8'h26 (TIMER2_CONFIG); Typical value of SWE timer configured per 8'h25 (SWE_TIMER_SET) –15 15 %
tCTXD_DTO CAN TXD dominant time out(1)(5) RL = 60Ω, CL = open; See Figure 7-7 1 5 ms
tLTXD_DTO LIN TXD dominant time out(5) 20 45 80 ms
tTOGGLE RXD pin toggle timing when programmed after a WUP (5) See Figure 8-29 5 10 15 µs
FOSC-16M 16MHz clock frequency 15.36 16 16.64 MHz
FOSC-1M 1MHz clock frequency 0.94 1.04 1.14 MHz
FOSC-10k 10kHz clock frequency 8.8 10.4 12 kHz
The CTXD dominant time out (tCTXD_DTO) disables the driver of the transceiver once the CTXD has been dominant longer than tCTXD_DTO, which releases the CAN bus lines to recessive, preventing a local failure from locking the bus dominant. The driver can only transmit dominant again after CTXD has been returned HIGH (recessive). The dominant timeout feature protects the CAN bus from locking the bus dominant but limits the minimum data rate possible. The CAN protocol allows a maximum of eleven successive dominant bits (on CTXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the tCTXD_DTO minimum, limits the minimum bit rate. The minimum bit rate can be calculated by:
Equation 1. M i n i m u m   B i t   R a t e = 11 t C T X D _ D T O = 11   b i t s 1.2 m s = 9.2 k b p s
This parameter is valid only when register 11h[7:6] = 11b
This is the minimum pulse width for a WAKE pin input that device detects as a good pulse. Value between the minimum tWK_WIDTH_MIN and maximum tWK_WIDTH_INVALID is indeterminate and is sometimes but not always considered valid.
This parameter is set based upon the programmed value for tWK_WIDTH_INVALID register 11h[3:2]
Specified by design and characterization