Space grade C6727B floating-point DSP - rad-tolerant class V with ceramic package

SMV320C6727B-SP

ACTIVE

Product details

DSP 1 C67x+ DSP MHz (Max) 250 CPU 32-/64-bit Operating system DSP/BIOS Rating Space Operating temperature range (C) -55 to 115, -55 to 125
DSP 1 C67x+ DSP MHz (Max) 250 CPU 32-/64-bit Operating system DSP/BIOS Rating Space Operating temperature range (C) -55 to 115, -55 to 125
CFP (HFH) 256 58 mm² 36 x 36
  • 32- and 64-Bit 250-MHz Floating-Point DSPs
  • Single Event Latch-Up Immune to
    LET = 117 MeV cm2/mg
  • Radiation Tolerance: 100 kRad TID (Si)
  • Upgrades to C67x+ CPU From C67x DSP Generation:
    • 2X CPU Registers [64 General-Purpose]
    • Compatible With the C67x CPU
  • Enhanced Memory System
    • 256K-Byte Unified Program and Data RAM
    • 384K-Byte Unified Program and Data ROM
    • Single-Cycle Data Access From CPU
    • Large Program Cache (32K Byte) Supports RAM, ROM,
      and External Memory
  • External Memory Interface (EMIF) Supports
    • 133-MHz SDRAM (16- or 32-Bit)
    • Asynchronous NOR Flash, SRAM (8-,16-, or 32-Bit)
    • NAND Flash (8- or 16-Bit)
  • Enhanced I/O System
    • High-Performance Crossbar Switch
    • Dedicated McASP DMA Bus
    • Deterministic I/O Performance
  • dMAX (Dual Data Movement Accelerator)
    Supports:
    • 16 Independent Channels
    • Concurrent Processing of Two Transfer Requests
    • 1-, 2-, and 3-Dimensional Memory-to-Memory and
      Memory-to-Peripheral Data Transfers
    • Circular Addressing Where the Size of a Circular
      Buffer (FIFO) is not Limited to 2n
    • Table-Based Multi-Tap Delay Read and Write Transfers
      From and To a Circular Buffer
  • Three Multichannel Serial Ports
    • Transmit and Receive Clocks up to 50 MHz
    • Six Clock Zones and 16 Serial Data Pins
  • Universal Host-Port Interface (UHPI)
    • 32-Bit-Wide Data Bus for High Bandwidth
    • Muxed and Non-Muxed Address and Data
  • Two 10-MHz SPI Ports With 3-, 4-, and 5-Pin Options
  • Two Inter-Integrated Circuit (I2C) Ports
  • Real-Time Interrupt Counter and Watchdog
  • Oscillator- and Software-Controlled PLL
  • Available Temperature Ranges
    • M-Temp (–55°C to 125°C Tcase)
    • W-Temp (–55°C to 115°C Tcase)
  • 256-Pin, 0.5-mm, Ceramic Quad Flatpack (CQFP) [HFH Suffix]
  • Engineering Evaluation (/EM) Samples are Available(1)

(1) These units are intended for engineering evaluation only. They are processed to a non-compliant flow (e.g. no burn-in, etc.) and are tested to temperature rating of 25°C only. These units are not suitable for qualification, production, radiation testing or flight use. Parts are not warranted for performance on full MIL specified temperature range of –55°C to 125°C or operating life.

  • 32- and 64-Bit 250-MHz Floating-Point DSPs
  • Single Event Latch-Up Immune to
    LET = 117 MeV cm2/mg
  • Radiation Tolerance: 100 kRad TID (Si)
  • Upgrades to C67x+ CPU From C67x DSP Generation:
    • 2X CPU Registers [64 General-Purpose]
    • Compatible With the C67x CPU
  • Enhanced Memory System
    • 256K-Byte Unified Program and Data RAM
    • 384K-Byte Unified Program and Data ROM
    • Single-Cycle Data Access From CPU
    • Large Program Cache (32K Byte) Supports RAM, ROM,
      and External Memory
  • External Memory Interface (EMIF) Supports
    • 133-MHz SDRAM (16- or 32-Bit)
    • Asynchronous NOR Flash, SRAM (8-,16-, or 32-Bit)
    • NAND Flash (8- or 16-Bit)
  • Enhanced I/O System
    • High-Performance Crossbar Switch
    • Dedicated McASP DMA Bus
    • Deterministic I/O Performance
  • dMAX (Dual Data Movement Accelerator)
    Supports:
    • 16 Independent Channels
    • Concurrent Processing of Two Transfer Requests
    • 1-, 2-, and 3-Dimensional Memory-to-Memory and
      Memory-to-Peripheral Data Transfers
    • Circular Addressing Where the Size of a Circular
      Buffer (FIFO) is not Limited to 2n
    • Table-Based Multi-Tap Delay Read and Write Transfers
      From and To a Circular Buffer
  • Three Multichannel Serial Ports
    • Transmit and Receive Clocks up to 50 MHz
    • Six Clock Zones and 16 Serial Data Pins
  • Universal Host-Port Interface (UHPI)
    • 32-Bit-Wide Data Bus for High Bandwidth
    • Muxed and Non-Muxed Address and Data
  • Two 10-MHz SPI Ports With 3-, 4-, and 5-Pin Options
  • Two Inter-Integrated Circuit (I2C) Ports
  • Real-Time Interrupt Counter and Watchdog
  • Oscillator- and Software-Controlled PLL
  • Available Temperature Ranges
    • M-Temp (–55°C to 125°C Tcase)
    • W-Temp (–55°C to 115°C Tcase)
  • 256-Pin, 0.5-mm, Ceramic Quad Flatpack (CQFP) [HFH Suffix]
  • Engineering Evaluation (/EM) Samples are Available(1)

(1) These units are intended for engineering evaluation only. They are processed to a non-compliant flow (e.g. no burn-in, etc.) and are tested to temperature rating of 25°C only. These units are not suitable for qualification, production, radiation testing or flight use. Parts are not warranted for performance on full MIL specified temperature range of –55°C to 125°C or operating life.

The SMV320C6727B is the next generation of Texas Instruments’ C67x generation of high-performance 32- and 64-bit floating-point digital signal processors.

Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic.

Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program and data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices.

The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported:

  • Two 64-bit data accesses from the C67x+ CPU
  • One 256-bit program fetch from the core and program cache
  • One 32-bit data access from the peripheral system (either dMAX or UHPI)

The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program and data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM.

High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections).

Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme.

The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU.

dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform data movement acceleration. The data movement accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C6727B DSPs. The dMAX allows movement of data to and from any addressable memory space including internal memory, peripherals, and external memory.

The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer or FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to and from different sources and destinations).

External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C6727B supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide.

SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks.

The C6727B extends SDRAM support to 256M-bit and 512M-bit devices.

Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines.

The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes.

Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C6727B UHPI:

  • Multiplexed Address and Data - Half-Word (16-bit-wide) Mode (similar to C6713)
  • Multiplexed Address and Data - Full Word (32-bit-wide) Mode
  • Non-Multiplexed Mode - 16-bit Address and 32-bit Data Bus

The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C6727B; this page can be changed, but only by the C6727B CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement.

The UHPI is only available on the C6727B.

Multichannel Serial Ports (McASP0, McASP1, and McASP2). The multichannel serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices.

Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic.

As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion.

The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory.

Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C6727B includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C6727B DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device.

The two I2C serial ports are pin-multiplexed with the SPI0 serial port.

Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C6727B DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals.

The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput.

The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1.

Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes:

  • Two 32-bit counter and prescaler pairs
  • Two input captures (tied to McASP direct memory access [DMA] events for sample rate measurement)
  • Four compares with automatic update capability
  • Digital Watchdog (optional) for enhanced system robustness

Clock Generation (PLL and OSC). The C6727B DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin.

The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF.

The SMV320C6727B is the next generation of Texas Instruments’ C67x generation of high-performance 32- and 64-bit floating-point digital signal processors.

Enhanced C67x+ CPU. The C67x+ CPU is an enhanced version of the C67x CPU used on the C671x DSPs. It is compatible with the C67x CPU but offers significant improvements in speed, code density, and floating-point performance per clock cycle. The CPU natively supports 32-bit fixed-point, 32-bit single-precision floating-point, and 64-bit double-precision floating-point arithmetic.

Efficient Memory System. The memory controller maps the large on-chip 256K-byte RAM and 384K-byte ROM as unified program and data memory. Development is simplified since there is no fixed division between program and data memory size as on some other devices.

The memory controller supports single-cycle data accesses from the C67x+ CPU to the RAM and ROM. Up to three parallel accesses to the internal RAM and ROM from three of the following four sources are supported:

  • Two 64-bit data accesses from the C67x+ CPU
  • One 256-bit program fetch from the core and program cache
  • One 32-bit data access from the peripheral system (either dMAX or UHPI)

The large (32K-byte) program cache translates to a high hit rate for most applications. This prevents most program and data access conflicts to the on-chip memory. It also enables effective program execution from an off-chip memory such as an SDRAM.

High-Performance Crossbar Switch. A high-performance crossbar switch acts as a central hub between the different bus masters (CPU, dMAX, UHPI) and different targets (peripherals and memory). The crossbar is partially connected; some connections are not supported (for example, UHPI-to-peripheral connections).

Multiple transfers occur in parallel through the crossbar as long as there is no conflict between bus masters for a particular target. When a conflict does occur, the arbitration is a simple and deterministic fixed-priority scheme.

The dMAX is given highest-priority since it is responsible for the most time-critical I/O transfers, followed next by the UHPI, and finally by the CPU.

dMAX Dual Data Movement Accelerator. The dMAX is a module designed to perform data movement acceleration. The data movement accelerator (dMAX) controller handles user-programmed data transfers between the internal data memory controller and the device peripherals on the C6727B DSPs. The dMAX allows movement of data to and from any addressable memory space including internal memory, peripherals, and external memory.

The dMAX controller includes features such as the capability to perform three-dimensional data transfers for advanced data sorting, and the capability to manage a section of the memory as a circular buffer or FIFO with delay-tap based reading and writing of data. The dMAX controller is capable of concurrently processing two transfer requests (provided that they are to and from different sources and destinations).

External Memory Interface (EMIF) for Flexibility and Expansion. The external memory interface on the C6727B supports a single bank of SDRAM and a single bank of asynchronous memory. The EMIF data width is 16 bits wide.

SDRAM support includes x16 and x32 SDRAM devices with 1, 2, or 4 banks.

The C6727B extends SDRAM support to 256M-bit and 512M-bit devices.

Asynchronous memory support is typically used to boot from a parallel non-multiplexed NOR flash device that can be 8, 16, or 32 bits wide. Booting from larger flash devices than are natively supported by the dedicated EMIF address lines is accomplished by using general-purpose I/O pins for upper address lines.

The asynchronous memory interface can also be configured to support 8- or 16-bit-wide NAND flash. It includes a hardware ECC calculation (for single-bit errors) that can operate on blocks of data up to 512 bytes.

Universal Host-Port Interface (UHPI) for High-Speed Parallel I/O. The Universal Host-Port Interface (UHPI) is a parallel interface through which an external host CPU can access memories on the DSP. Three modes are supported by the C6727B UHPI:

  • Multiplexed Address and Data - Half-Word (16-bit-wide) Mode (similar to C6713)
  • Multiplexed Address and Data - Full Word (32-bit-wide) Mode
  • Non-Multiplexed Mode - 16-bit Address and 32-bit Data Bus

The UHPI can also be restricted to accessing a single page (64K bytes) of memory anywhere in the address space of the C6727B; this page can be changed, but only by the C6727B CPU. This feature allows the UHPI to be used for high-speed data transfers even in systems where security is an important requirement.

The UHPI is only available on the C6727B.

Multichannel Serial Ports (McASP0, McASP1, and McASP2). The multichannel serial port (McASP) seamlessly interfaces to CODECs, DACs, ADCs, and other devices.

Each McASP includes a transmit and receive section which may operate independently or synchronously; furthermore, each section includes its own flexible clock generator and extensive error-checking logic.

As data passes through the McASP, it can be realigned so that the fixed-point representation used by the application code can be independent of the representation used by the external devices without requiring any CPU overhead to make the conversion.

The McASP is a configurable module and supports between 2 and 16 serial data pins. It also has the option of supporting a Digital Interface Transmitter (DIT) mode with a full 384 bits of channel status and user data memory.

Inter-Integrated Circuit Serial Ports (I2C0, I2C1). The C6727B includes two inter-integrated circuit (I2C) serial ports. A typical application is to configure one I2C serial port as a slave to an external user-interface microcontroller. The other I2C serial port may then be used by the C6727B DSP to control external peripheral devices, such as a CODEC or network controller, which are functionally peripherals of the DSP device.

The two I2C serial ports are pin-multiplexed with the SPI0 serial port.

Serial Peripheral Interface Ports (SPI0, SPI1). As in the case of the I2C serial ports, the C6727B DSP also includes two serial peripheral interface (SPI) serial ports. This allows one SPI port to be configured as a slave to control the DSP while the other SPI serial port is used by the DSP to control external peripherals.

The SPI ports support a basic 3-pin mode as well as optional 4- and 5-pin modes. The optional pins include a slave chip-select pin and an enable pin which implements handshaking automatically in hardware for maximum SPI throughput.

The SPI0 port is pin-multiplexed with the two I2C serial ports (I2C0 and I2C1). The SPI1 serial port is pin-multiplexed with five of the serial data pins from McASP0 and McASP1.

Real-Time Interrupt Timer (RTI). The real-time interrupt timer module includes:

  • Two 32-bit counter and prescaler pairs
  • Two input captures (tied to McASP direct memory access [DMA] events for sample rate measurement)
  • Four compares with automatic update capability
  • Digital Watchdog (optional) for enhanced system robustness

Clock Generation (PLL and OSC). The C6727B DSP includes an on-chip oscillator that supports crystals in the range of 12 MHz to 25 MHz. Alternatively, the clock can be provided externally through the CLKIN pin.

The DSP includes a flexible, software-programmable phase-locked loop (PLL) clock generator. Three different clock domains (SYSCLK1, SYSCLK2, and SYSCLK3) are generated by dividing down the PLL output. SYSCLK1 is the clock used by the CPU, memory controller, and memories. SYSCLK2 is used by the peripheral subsystem and dMAX. SYSCLK3 is used exclusively for the EMIF.

Download

More Information

The SMV320C6727B-SP’s (SMV320C6727BHFHM(–55°C to 125°C) or SMV320C6727BHFHW (–55°C to 115°C)) wafer fabrication, assembly, and test is in accordance with the Texas Instruments QML MIL-PRF-38535 Class V process baseline; however, due to bondpad-to-bondpad spacing, the device is not considered a QML Class V device and a DLA SMD is not assigned. However, each lot will still ship with all standard TI lot documents including Group A-D, WLA, and Group E (100krad RHA) summaries.

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 31
Type Title Date
* Data sheet Floating-Point Digital Signal Processor. datasheet (Rev. G) 02 Jan 2014
* Errata TMS320C6727/B, TMS320C6726/B, TMS32C6722/B, TMS320C6720 DSPs Silicon Errata (Rev. F) 23 Oct 2008
* Radiation & reliability report SMV320C6727B-SP Total Ionizing Dose Radiation Report 05 Jun 2017
Selection guide TI Space Products (Rev. H) 27 Jan 2021
Application note Heavy Ion Orbital Environment Single-Event Effects Estimations 18 May 2020
Application note Single-Event Effects Confidence Interval Calculations 14 Jan 2020
More literature TI Engineering Evaluation Units vs. MIL-PRF-38535 QML Class V Processing 17 Jun 2019
Technical article Bringing the next evolution of machine learning to the edge 27 Nov 2018
Technical article How quality assurance on the Processor SDK can improve software scalability 22 Aug 2018
Technical article Clove: Low-Power video solutions based on Sitara™ AM57x processors 21 Jul 2016
Technical article Spring has sprung. A sale has sprung. 04 Apr 2016
Application note Introduction to TMS320C6000 DSP Optimization 06 Oct 2011
Application note Using the TMS320C672x Bootloader (Rev. D) 10 Sep 2009
Application note Common Object File Format (COFF) 15 Apr 2009
User guide TMS320C672x DSP Universal Host Port Interface (UHPI) Reference Guide (Rev. A) 06 Mar 2009
Application note Configuring External Interrupts on TMS320C672x Devices 11 Jul 2008
User guide TMS320C672x DSP Multichannel Audio Serial Port (McASP) Reference Guide (Rev. B) 13 Mar 2008
Application note Using ROM Contents on TMS320C672x 05 Feb 2008
User guide TMS320C672x DSP Inter-Integrated Circuit (I2C) Module Reference Guide (Rev. E) 11 Dec 2007
User guide TMS320C672x DSP Serial Peripheral Interface (SPI) Reference Guide (Rev. B) 12 Jul 2007
Application note Thermal Considerations for the DM64xx, DM64x, and C6000 Devices 20 May 2007
User guide TMS320C672x DSP External Memory Interface (EMIF) User's Guide (Rev. C) 02 Apr 2007
User guide TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide (Rev. A) 07 Nov 2006
Application note C9230C100 TMS320C672x Floating-Point Digital Signal Processor ROM (Rev. C) 25 Sep 2006
Application note TMS320C672x Hardware Designer's Resource Guide (Rev. A) 22 Sep 2006
Application note TMS320C672x Power Consumption Summary (Rev. B) 22 Sep 2006
User guide TMS320C672x DSP Peripherals Overview Reference Guide (Rev. B) 25 Jun 2006
Application note How to Create Delay-based Audio Effects on a TMS320C6727 DSP 01 Nov 2005
Application note Migrating from TMS320C6713 to TMS320C672x 23 May 2005
User guide TMS320C672x DSP Software-Programmable Phase-Locked Loop (PLL) Controller RG (Rev. A) 23 May 2005
User guide TMS320C672x DSP Real-Time Interrupt Reference Guide 13 Apr 2005

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Debug probe

TMDSEMU560V2STM-U — XDS560v2 System Trace USB Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Debug probe

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB & Ethernet Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Driver or library

MATHLIB — DSP Math Library for Floating Point Devices

The Texas Instruments math library is an optimized floating-point math function library for C programmers using TI floating point devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed is critical. By using these routines instead (...)
Driver or library

SPRC223 — C672x Chip Support Libraries (CSL)

The Chip Support Library (CSL) provides an application programming interface (API) used for configuring and controlling the DSP on-chip peripherals for ease of use and hardware abstraction. This will shorten development time by providing standardization and portability. The functions listed in the (...)
Driver or library

SPRC265 — TMS320C6000 DSP Library (DSPLIB)

TMS320C6000 Digital Signal Processor Library (DSPLIB) is a platform-optimized DSP function library for C programmers. It includes C-callable, general-purpose signal-processing routines that are typically used in computationally intensive real-time applications. With these routines, higher (...)
Driver or library

TELECOMLIB — Telecom and Media Libraries - FAXLIB, VoLIB and AEC/AER for TMS320C64x+ and TMS320C55x Processors

Voice Library - VoLIB provides components that, together, facilitate the development of the signal processing chain for Voice over IP applications such as infrastructure, enterprise, residential gateways and IP phones. Together with optimized implementations of ITU-T voice codecs, that can be acquired (...)
Design tool

PROCESSORS-3P-SEARCH — Arm-based MPU, arm-based MCU and DSP third-party search tool

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)
Package Pins Download
CFP (HFH) 256 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos