Product details

We are not able to display this information. Please refer to the product data sheet.
  • High-Performance Digital Media Processor
    • 720-MHz, 900-MHz C64x+™ Clock Rates
    • 1.39 ns (-720), 1.11 ns (-900) Instruction Cycle Time
    • 5760, 7200 MIPS
    • Eight 32-Bit C64x+ Instructions/Cycle
    • Fully Software-Compatible With C64x/Debug
    • Commercial Temperature Ranges (-720, -900 only)
    • Industrial Temperature Ranges (-720, -900 only)
  • VelociTI.2™ Extensions to VelociTI™ Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x+™ DSP Core
    • Eight Highly Independent Functional Units With VelociTI.2 Extensions:
      • Six ALUs (32-/40-Bit), Each Supports Single 32-bit, Dual 16-bit, or Quad 8-bit Arithmetic per Clock Cycle
      • Two Multipliers Support Four 16 x 16-bit Multiplies (32-bit Results) per Clock Cycle or Eight 8 x 8-bit Multiplies (16-Bit Results) per Clock Cycle
    • Load-Store Architecture With Non-Aligned Support
    • 64 32-bit General-Purpose Registers
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
    • Additional C64x+™ Enhancements
      • Protected Mode Operation
      • Exceptions Support for Error Detection and Program Redirection
      • Hardware Support for Modulo Loop Auto-Focus Module Operation
  • C64x+ Instruction Set Features
    • Byte-Addressable (8-/16-/32-/64-bit Data)
    • 8-bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • VelociTI.2 Increased Orthogonality
    • C64x+ Extensions
      • Compact 16-bit Instructions
      • Additional Instructions to Support Complex Multiplies
  • C64x+ L1/L2 Memory Architecture
    • 256K-bit (32K-byte) L1P Program RAM/Cache [Direct Mapped]
    • 256K-bit (32K-byte) L1D Data RAM/Cache
      [2-Way Set-Associative]
    • 1408KB L2 Unified Mapped RAM/Cache [Flexible Allocation]
  • Supports Little Endian Mode Only
  • External Memory Interfaces (EMIFs)
    • 32-Bit DDR2 SDRAM Memory Controller With 512M-Byte Address Space (1.8-V I/O)
    • Asynchronous 16-Bit Wide EMIF (EMIFA)
      • Up to 128M-Byte Total Address Reach
      • 64M-Byte Address Reach per CE Space
    • Glueless Interface to Asynchronous Memories (SRAM, Flash, and EEPROM)
    • Synchronous Memories (SBSRAM and ZBT SRAM)
    • Supports Interface to Standard Sync Devices and Custom Logic (FPGA, CPLD, ASICs, etc.)
  • Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent Channels)
  • 3-Port Gigabit Ethernet Switch Subsystem
  • Four 64-Bit General-Purpose Timers (Each Configurable as Two 32-Bit Timers)
  • One UART (With RTS and CTS Flow Control)
  • One 4-wire Serial Port Interface (SPI) With Two Chip-Selects
  • Master/Slave Inter-Integrated Circuit (I2C Bus™)
  • Two Telecom Serial Interface Ports (TSIP0/1)
  • Multichannel Audio Serial Port (McASP)
    • Ten Serializers and SPDIF (DIT) Mode
  • 16/32-Bit Host-Port Interface (HPI)
  • Advanced Event Triggering (AET) Compatible
  • 32-Bit 33-/66-MHz, 3.3-V Peripheral Component Interconnect (PCI) Master/Slave Interface Conforms to PCI Specification 2.3
  • VLYNQ™ Interface (FPGA Interface)
  • On-Chip ROM Bootloader
  • Individual Power-Saving Modes
  • Flexible PLL Clock Generators
  • IEEE-1149.1 (JTAG™) Boundary-Scan-Compatible
  • 32 General-Purpose I/O (GPIO) Pins (Multiplexed With Other Device Functions)
  • Package:
    • 529-pin nFBGA (ZUT suffix)
    • 19x19 mm 0.8 mm pitch BGA
    • 0.09-µm/6-Level Cu Metal Process (CMOS)
  • 3.3-V and 1.8-V I/O, 1.2-V Internal (-720,-900)
  • High-Performance Digital Media Processor
    • 720-MHz, 900-MHz C64x+™ Clock Rates
    • 1.39 ns (-720), 1.11 ns (-900) Instruction Cycle Time
    • 5760, 7200 MIPS
    • Eight 32-Bit C64x+ Instructions/Cycle
    • Fully Software-Compatible With C64x/Debug
    • Commercial Temperature Ranges (-720, -900 only)
    • Industrial Temperature Ranges (-720, -900 only)
  • VelociTI.2™ Extensions to VelociTI™ Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x+™ DSP Core
    • Eight Highly Independent Functional Units With VelociTI.2 Extensions:
      • Six ALUs (32-/40-Bit), Each Supports Single 32-bit, Dual 16-bit, or Quad 8-bit Arithmetic per Clock Cycle
      • Two Multipliers Support Four 16 x 16-bit Multiplies (32-bit Results) per Clock Cycle or Eight 8 x 8-bit Multiplies (16-Bit Results) per Clock Cycle
    • Load-Store Architecture With Non-Aligned Support
    • 64 32-bit General-Purpose Registers
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
    • Additional C64x+™ Enhancements
      • Protected Mode Operation
      • Exceptions Support for Error Detection and Program Redirection
      • Hardware Support for Modulo Loop Auto-Focus Module Operation
  • C64x+ Instruction Set Features
    • Byte-Addressable (8-/16-/32-/64-bit Data)
    • 8-bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • VelociTI.2 Increased Orthogonality
    • C64x+ Extensions
      • Compact 16-bit Instructions
      • Additional Instructions to Support Complex Multiplies
  • C64x+ L1/L2 Memory Architecture
    • 256K-bit (32K-byte) L1P Program RAM/Cache [Direct Mapped]
    • 256K-bit (32K-byte) L1D Data RAM/Cache
      [2-Way Set-Associative]
    • 1408KB L2 Unified Mapped RAM/Cache [Flexible Allocation]
  • Supports Little Endian Mode Only
  • External Memory Interfaces (EMIFs)
    • 32-Bit DDR2 SDRAM Memory Controller With 512M-Byte Address Space (1.8-V I/O)
    • Asynchronous 16-Bit Wide EMIF (EMIFA)
      • Up to 128M-Byte Total Address Reach
      • 64M-Byte Address Reach per CE Space
    • Glueless Interface to Asynchronous Memories (SRAM, Flash, and EEPROM)
    • Synchronous Memories (SBSRAM and ZBT SRAM)
    • Supports Interface to Standard Sync Devices and Custom Logic (FPGA, CPLD, ASICs, etc.)
  • Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent Channels)
  • 3-Port Gigabit Ethernet Switch Subsystem
  • Four 64-Bit General-Purpose Timers (Each Configurable as Two 32-Bit Timers)
  • One UART (With RTS and CTS Flow Control)
  • One 4-wire Serial Port Interface (SPI) With Two Chip-Selects
  • Master/Slave Inter-Integrated Circuit (I2C Bus™)
  • Two Telecom Serial Interface Ports (TSIP0/1)
  • Multichannel Audio Serial Port (McASP)
    • Ten Serializers and SPDIF (DIT) Mode
  • 16/32-Bit Host-Port Interface (HPI)
  • Advanced Event Triggering (AET) Compatible
  • 32-Bit 33-/66-MHz, 3.3-V Peripheral Component Interconnect (PCI) Master/Slave Interface Conforms to PCI Specification 2.3
  • VLYNQ™ Interface (FPGA Interface)
  • On-Chip ROM Bootloader
  • Individual Power-Saving Modes
  • Flexible PLL Clock Generators
  • IEEE-1149.1 (JTAG™) Boundary-Scan-Compatible
  • 32 General-Purpose I/O (GPIO) Pins (Multiplexed With Other Device Functions)
  • Package:
    • 529-pin nFBGA (ZUT suffix)
    • 19x19 mm 0.8 mm pitch BGA
    • 0.09-µm/6-Level Cu Metal Process (CMOS)
  • 3.3-V and 1.8-V I/O, 1.2-V Internal (-720,-900)

The TMS320C64x+™ DSPs (including the TMS320C6452 device is the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6452 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices.

Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively.

With performance of up to 7200 million instructions per second (MIPS) at a clock rate of 900MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 3600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732).

The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1408KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.

The device has a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; two telecom serial interface ports (TSIP); four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface.

The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system.

The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.

The TMS320C64x+™ DSPs (including the TMS320C6452 device is the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The C6452 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices.

Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively.

With performance of up to 7200 million instructions per second (MIPS) at a clock rate of 900MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for up to 3600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for up tp 8800 MMACS. For more details on the C64x+ DSP, see the (literature number SPRU732).

The devices also have application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 256K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1408KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.

The device has a 1000 Mbps Ethernet Switch Subsystem with a management data input/output (MDIO) module and two SGMII ports; a 4-bit transmit, 4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) bus interface; a multichannel audio serial port (McASP) with ten serializers; two telecom serial interface ports (TSIP); four 64-bit general-purpose timers each configurable as two independent 32-bit timers; a user-configurable 16-bit or 32-bit host-port interface (HPI); 32 pins for general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; one UART; and two glueless external memory interfaces: a synchronous and asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher DDR2 SDRAM interface.

The management data input/output (MDIO) module continuously polls all 32 MDIO addresses to enumerate all PHY devices in the system.

The I2C and VLYNQ ports allow the device to easily control peripheral modules and/or communicate with host processors.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

The devices have a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.

Download

No design support from TI available

This product does not have ongoing design support from TI for new projects, such as new content or software updates. If available, you will find relevant collateral, software and tools in the product folder. You can also search for archived information in the TI E2ETM support forums.

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 24
Type Title Date
* Data sheet TMS320C6452 Digital Signal Processors datasheet (Rev. F) 10 Apr 2012
* Errata TMS320C6452 Digital Signal Processor Silicon Errata (Rev. D) 01 Nov 2011
Application note How to Migrate CCS 3.x Projects to the Latest CCS (Rev. A) PDF | HTML 19 May 2021
User guide SYS/BIOS (TI-RTOS Kernel) User's Guide (Rev. V) 01 Jun 2020
Application note Using DSPLIB FFT Implementation for Real Input and Without Data Scaling PDF | HTML 11 Jun 2019
Application note Error Detection and Correction Mechanism of TMS320C64x+/C674x (Rev. A) 19 Jul 2013
Application note TMS320C6452 Power Consumption Summary (Rev. C) 06 Jan 2010
User guide TMS320C6452 DSP 3 Port Switch Ethernet Subsystem User's Guide (Rev. B) 14 Jul 2009
User guide TMS320C6452 DSP Subsystem User's Guide (Rev. B) 26 Jun 2009
Application note Using the TMS320C6452 Bootloader (Rev. A) 01 Jun 2009
User guide TMS320C6452 64-Bit Timer User's Guide (Rev. A) 10 Mar 2009
User guide TMS320C6452 DSP External Memory Interface User's Guide 01 Dec 2008
Application note Migrating from EDMA v2.0 to EDMA v3.0 TMS320C64X DSP (Rev. A) 21 Aug 2008
User guide TMS320C6452/6451 Telecom Serial Interface Port (TSIP) User's Guide (Rev. A) 30 Jun 2008
User guide TMS320C6452/6451 Host Port Interface (HPI) User's Guide (Rev. A) 30 May 2008
Application note Implementing DDR2 PCB Layout on the TMS320C6452 DMSoC (Rev. A) 25 Mar 2008
User guide TMS320C6452 General Purpose Input/Output (GPIO) User's Guide 02 Oct 2007
User guide TMS320C6452 Inter-Integrated Circuit (I2C) Module User's Guide 02 Oct 2007
User guide TMS320C6452 Multichannel Audio Serial Port (McASP) User's Guide 02 Oct 2007
User guide TMS320C6452 Peripheral Component Interconnect (PCI) User's Guide 02 Oct 2007
User guide TMS320C6452 Serial Port Interface (SPI) User's Guide 02 Oct 2007
User guide TMS320C6452 Universal Asynchronous Receiver/Transmitter (UART) User's Guide 02 Oct 2007
User guide TMS320C6452 VLYNQ Port User's Guide 02 Oct 2007
User guide TMS320C6452 DDR2 Memory Controller User's Guide 01 Oct 2007

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Debug probe

TMDSEMU200-U — XDS200 USB Debug Probe

The XDS200 is a debug probe (emulator) used for debugging TI embedded devices.  The XDS200 features a balance of low cost with good performance as compared to the low cost XDS110 and the high performance XDS560v2.  It supports a wide variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a (...)

Not available on TI.com
Debug probe

TMDSEMU560V2STM-U — XDS560™ software v2 system trace USB debug probe

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

Not available on TI.com
Debug probe

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB & Ethernet Debug Probe

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

Not available on TI.com
Driver or library

SPRC122 — C62x/C64x Fast Run-Time Support (RTS) Library

The C62x/64x FastRTS Library is an optimized, floating-point function library for C programmers using either TMS320C62x or TMS320C64x devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed is critical. By replacing the current (...)
Driver or library

SPRC265 — TMS320C6000 DSP Library (DSPLIB)

TMS320C6000 Digital Signal Processor Library (DSPLIB) is a platform-optimized DSP function library for C programmers. It includes C-callable, general-purpose signal-processing routines that are typically used in computationally intensive real-time applications. With these routines, higher (...)
IDE, configuration, compiler or debugger

CCSTUDIO Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It comprises a suite of tools used to develop and debug embedded applications.  Code Composer Studio is available for download across Windows®, Linux® and macOS® (...)

Supported products & hardware

Supported products & hardware

This design resource supports most products in these categories.

Check the product details page to verify support.

Products
Automotive mmWave radar sensors
AWR1243 76-GHz to 81-GHz high-performance automotive MMIC AWR1443 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating MCU and hardware accelerator AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR1843AOP Single-chip 76-GHz to 81-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR2243 76-GHz to 81-GHz automotive second-generation high-performance MMIC AWR2944 Automotive 2nd-generation, 76-GHz to 81-GHz, high-performance SoC for corner and long-range radar AWR6443 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating MCU and radar accelerator AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843AOP Single-chip 60-GHz to 64-GHz automotive radar sensor integrating antenna on package, DSP and MCU
Industrial mmWave radar sensors
IWR1443 Single-chip 76-GHz to 81-GHz mmWave sensor integrating MCU and hardware accelerator IWR1642 Single-chip 76-GHz to 81-GHz mmWave sensor integrating DSP and MCU IWR1843 Single-chip 76-GHz to 81-GHz industrial radar sensor integrating DSP, MCU and radar accelerator IWR6443 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating MCU and hardware accelerator IWR6843 Single-chip 60-GHz to 64-GHz intelligent mmWave sensor integrating processing capability IWR6843AOP Single-chip 60-GHz to 64-GHz intelligent mmWave sensor with integrated antenna on package (AoP)
Develop in the cloud Download options
Simulation model

C6452 ZUT BSDL Model (Rev. A)

SPRM348A.ZIP (9 KB) - BSDL Model
Simulation model

C6452 ZUT BSDL version 1.1 Model

SPRM362.ZIP (10 KB) - BSDL Model
Simulation model

C6452 ZUT IBIS Model (Rev. A)

SPRM349A.ZIP (676 KB) - IBIS Model
Design tool

PROCESSORS-3P-SEARCH — Arm®-based MPU, Arm-based MCU and DSP third-party search tool

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)
Package Pins Download
(CUT) 529 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos