JAJSKX2A August   2019  – May 2021 TPS53676

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Recommended Operating Conditions
    3. 6.3 ESD Ratings
    4. 6.4 Electrical Specifications
      1. 6.4.1  Thermal Information
      2. 6.4.2  Supply
      3. 6.4.3  DAC and Voltage Feedback
      4. 6.4.4  Control Loop Parameters
      5. 6.4.5  Dynamic VID (DVID) Tuning
      6. 6.4.6  Undershoot Reduction (USR) and Overshoot Reduciton (OSR)
      7. 6.4.7  Dynamic Phase Shedding (DPS)
      8. 6.4.8  Turbo Mode and Thermal Balance Management (TBM)
      9. 6.4.9  Overcurrent Limit (OCL)
      10. 6.4.10 Telemetry
      11. 6.4.11 Phase-Locked Loop and Closed-Loop Frequency Control
      12. 6.4.12 Logic Interface
      13. 6.4.13 Current Sensing and Current Sharing
      14. 6.4.14 Pin Detection Thresholds
      15. 6.4.15 ADDR Pinstrap Decoding
      16. 6.4.16 BOOT_CHA Pinstrap Decoding
      17. 6.4.17 Timing Specifications
      18. 6.4.18 Faults and Converter Protection
      19. 6.4.19 PMBus/AVS Interfaces
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Power-up and initialization
      1. 7.3.1 First power-up
      2. 7.3.2 Boot voltage configuration (BOOT_CHA)
      3. 7.3.3 Power Sequencing
    4. 7.4 Pin connections and bevahior
      1. 7.4.1  Supplies: VCC and VREF
      2. 7.4.2  Differential remote sensing and output voltage scaling: AVSP/AVSN, BVSP/BVSN
      3. 7.4.3  Input current sensing: VIN_CSNIN and CSPIN
      4. 7.4.4  Pin-strap detection and PIN_DETECT_OVERRIDE
      5. 7.4.5  Enable and disable: AVR_EN and BVR_EN
      6. 7.4.6  System feedback: AVR_RDY and BVR_RDY
      7. 7.4.7  Catastrophic fault alert: VR_FAULT#
      8. 7.4.8  Output voltage reset: RESET#
      9. 7.4.9  Synchronization: SYNC
      10. 7.4.10 Smart power stage connections: PWM, CSP and TSEN
      11. 7.4.11 PMBus pins: SMB_DIO, SMB_CLK, and SMB_ALERT#
      12. 7.4.12 AVSBus: AVS_CLK, AVS_MDATA, AVS_SDATA, and AVS_VDDIO
    5. 7.5 Advanced power management functions
      1. 7.5.1 Adaptive voltage scaling or dynamic VID (DVID)
      2. 7.5.2 Output voltage margining
      3. 7.5.3 Power supply telemetry and calibration
        1. 7.5.3.1 Output current calibration
        2. 7.5.3.2 Input current calibration (measured)
        3. 7.5.3.3 Input current calibration (calculated)
      4. 7.5.4 Flexible phase assignment
      5. 7.5.5 Thermal balance management (TBM)
      6. 7.5.6 Dynamic phase adding/shedding (DPA/DPS)
    6. 7.6 Control Loop Theory of Operation
      1. 7.6.1 Adaptive voltage positioning and DC load line (droop)
      2. 7.6.2 DCAP+ conceptual overview
      3. 7.6.3 Off-time control: loop compensation and transient tuning
      4. 7.6.4 On-time control: adaptive ton and autobalance current sharing
      5. 7.6.5 Load transient response
      6. 7.6.6 Forced minimum on-time, minimum off-time and leading-edge blanking time
      7. 7.6.7 Nonlinear: undershoot reduction (USR), overshoot reduction (OSR) and dynamic integration
    7. 7.7 Power supply fault protection
      1. 7.7.1 Host notification and status reporting
      2. 7.7.2 Fault type and response definitions
      3. 7.7.3 Fault behavior summary
      4. 7.7.4 Detailed fault descriptions
        1. 7.7.4.1  Overvoltage fault (OVF) and warning (OVW)
        2. 7.7.4.2  Undervoltage fault (UVF) and warning (UVW)
        3. 7.7.4.3  Maximum turn-on time exceeded (TON_MAX)
        4. 7.7.4.4  Output commanded out-of-bounds (VOUT_MIN_MAX)
        5. 7.7.4.5  Overcurrent fault (OCF), warning (OCW), and per-phase overcurrent limit (OCL)
        6. 7.7.4.6  Current share warning (ISHARE)
        7. 7.7.4.7  Overtemperature fault protection (OTF) and warning (OTW)
        8. 7.7.4.8  Powerstage fault (TAO_HIGH) and powerstage not ready (TAO_LOW)
        9. 7.7.4.9  Input overvoltage fault (VIN_OVF) and warning (VIN_OVW)
        10. 7.7.4.10 Input undervoltage fault (VIN_UVF), warning (VIN_UVW) and turn-on voltage (VIN_ON)
        11. 7.7.4.11 Input overcurrent fault (IIN_OCF) and warning (IIN_OCW)
        12. 7.7.4.12 Input overpower warning (PIN_OPW)
        13. 7.7.4.13 PMBus command, memory and logic errors (CML)
    8. 7.8 Programming
      1. 7.8.1 PMBus Interface
        1. 7.8.1.1 PMBus transaction types
        2. 7.8.1.2 PMBus data formats
          1. 7.8.1.2.1 Example PMBus number format conversions
          2. 7.8.1.2.2 Example system code for PMBus format conversion
        3. 7.8.1.3 Raw non-volatile memory programming
        4.       93
        5. 7.8.1.4 PMBus Command Descriptions
          1. 7.8.1.4.1   (00h) PAGE
          2. 7.8.1.4.2   (01h) OPERATION
          3. 7.8.1.4.3   (02h) ON_OFF_CONFIG
          4. 7.8.1.4.4   (03h) CLEAR_FAULTS
          5. 7.8.1.4.5   (04h) PHASE
          6. 7.8.1.4.6   (05h) PAGE_PLUS_WRITE
          7. 7.8.1.4.7   (06h) PAGE_PLUS_READ
          8. 7.8.1.4.8   (10h) WRITE_PROTECT
          9. 7.8.1.4.9   (15h) STORE_USER_ALL
          10. 7.8.1.4.10  (16h) RESTORE_USER_ALL
          11. 7.8.1.4.11  (19h) CAPABILITY
          12. 7.8.1.4.12  (1Bh) SMBALERT_MASK_WORD
          13. 7.8.1.4.13  (1Bh) SMBALERT_MASK_VOUT
          14. 7.8.1.4.14  (1Bh) SMBALERT_MASK_IOUT
          15. 7.8.1.4.15  (1Bh) SMBALERT_MASK_INPUT
          16. 7.8.1.4.16  (1Bh) SMBALERT_MASK_TEMPERATURE
          17. 7.8.1.4.17  (1Bh) SMBALERT_MASK_CML
          18. 7.8.1.4.18  (1Bh) SMBALERT_MASK_MFR
          19. 7.8.1.4.19  (20h) VOUT_MODE
          20. 7.8.1.4.20  (21h) VOUT_COMMAND
          21. 7.8.1.4.21  (22h) VOUT_TRIM
          22. 7.8.1.4.22  (24h) VOUT_MAX
          23. 7.8.1.4.23  (25h) VOUT_MARGIN_HIGH
          24. 7.8.1.4.24  (26h) VOUT_MARGIN_LOW
          25. 7.8.1.4.25  (27h) VOUT_TRANSITION_RATE
          26. 7.8.1.4.26  (28h) VOUT_DROOP
          27. 7.8.1.4.27  (29h) VOUT_SCALE_LOOP
          28. 7.8.1.4.28  (2Bh) VOUT_MIN
          29. 7.8.1.4.29  (33h) FREQUENCY_SWITCH
          30. 7.8.1.4.30  (34h) POWER_MODE
          31. 7.8.1.4.31  (35h) VIN_ON
          32. 7.8.1.4.32  (38h) IOUT_CAL_GAIN
          33. 7.8.1.4.33  (39h) IOUT_CAL_OFFSET
          34. 7.8.1.4.34  (40h) VOUT_OV_FAULT_LIMIT
          35. 7.8.1.4.35  (41h) VOUT_OV_FAULT_RESPONSE
          36. 7.8.1.4.36  (42h) VOUT_OV_WARN_LIMIT
          37. 7.8.1.4.37  (43h) VOUT_UV_WARN_LIMIT
          38. 7.8.1.4.38  (44h) VOUT_UV_FAULT_LIMIT
          39. 7.8.1.4.39  (45h) VOUT_UV_FAULT_RESPONSE
          40. 7.8.1.4.40  (46h) IOUT_OC_FAULT_LIMIT
          41. 7.8.1.4.41  (47h) IOUT_OC_FAULT_RESPONSE
          42. 7.8.1.4.42  (4Ah) IOUT_OC_WARN_LIMIT
          43. 7.8.1.4.43  (4Fh) OT_FAULT_LIMIT
          44. 7.8.1.4.44  (50h) OT_FAULT_RESPONSE
          45. 7.8.1.4.45  (51h) OT_WARN_LIMIT
          46. 7.8.1.4.46  (55h) VIN_OV_FAULT_LIMIT
          47. 7.8.1.4.47  (56h) VIN_OV_FAULT_RESPONSE
          48. 7.8.1.4.48  (57h) VIN_OV_WARN_LIMIT
          49. 7.8.1.4.49  (58h) VIN_UV_WARN_LIMIT
          50. 7.8.1.4.50  (59h) VIN_UV_FAULT_LIMIT
          51. 7.8.1.4.51  (5Ah) VIN_UV_FAULT_RESPONSE
          52. 7.8.1.4.52  (5Bh) IIN_OC_FAULT_LIMIT
          53. 7.8.1.4.53  (5Ch) IIN_OC_FAULT_RESPONSE
          54. 7.8.1.4.54  (5Dh) IIN_OC_WARN_LIMIT
          55. 7.8.1.4.55  (60h) TON_DELAY
          56. 7.8.1.4.56  (61h) TON_RISE
          57. 7.8.1.4.57  (62h) TON_MAX_FAULT_LIMIT
          58. 7.8.1.4.58  (63h) TON_MAX_FAULT_RESPONSE
          59. 7.8.1.4.59  (64h) TOFF_DELAY
          60. 7.8.1.4.60  (65h) TOFF_FALL
          61. 7.8.1.4.61  (6Bh) PIN_OP_WARN_LIMIT
          62. 7.8.1.4.62  (78h) STATUS_BYTE
          63. 7.8.1.4.63  (79h) STATUS_WORD
          64. 7.8.1.4.64  (7Ah) STATUS_VOUT
          65. 7.8.1.4.65  (7Bh) STATUS_IOUT
          66. 7.8.1.4.66  (7Ch) STATUS_INPUT
          67. 7.8.1.4.67  (7Dh) STATUS_TEMPERATURE
          68. 7.8.1.4.68  (7Eh) STATUS_CML
          69. 7.8.1.4.69  (80h) STATUS_MFR_SPECIFIC
          70. 7.8.1.4.70  (88h) READ_VIN
          71. 7.8.1.4.71  (89h) READ_IIN
          72. 7.8.1.4.72  (8Bh) READ_VOUT
          73. 7.8.1.4.73  (8Ch) READ_IOUT
          74. 7.8.1.4.74  (8Dh) READ_TEMPERATURE_1
          75. 7.8.1.4.75  (96h) READ_POUT
          76. 7.8.1.4.76  (97h) READ_PIN
          77. 7.8.1.4.77  (98h) PMBUS_REVISION
          78. 7.8.1.4.78  (99h) MFR_ID
          79. 7.8.1.4.79  (9Ah) MFR_MODEL
          80. 7.8.1.4.80  (9Bh) MFR_REVISION
          81. 7.8.1.4.81  (9Dh) MFR_DATE
          82. 7.8.1.4.82  (ADh) IC_DEVICE_ID
          83. 7.8.1.4.83  (AEh) IC_DEVICE_REV
          84. 7.8.1.4.84  (B1h) USER_DATA_01 (COMPENSATION_CONFIG)
          85. 7.8.1.4.85  (B2h) USER_DATA_02 (NONLINEAR_CONFIG)
          86. 7.8.1.4.86  (B3h) USER_DATA_03 (PHASE_CONFIG)
          87. 7.8.1.4.87  (B4h) USER_DATA_04 (DVID_CONFIG)
          88. 7.8.1.4.88  (B7h) USER_DATA_07 (PHASE_SHED_CONFIG)
          89. 7.8.1.4.89  (B8h) USER_DATA_08 (AVSBUS_CONFIG)
          90. 7.8.1.4.90  (BAh) USER_DATA_10 (ISHARE_CONFIG)
          91. 7.8.1.4.91  (BBh) USER_DATA_11 (MFR_PROTECTION_CONFIG)
          92. 7.8.1.4.92  (BDh) USER_DATA_13 (MFR_CALIBRATION_CONFIG)
          93. 7.8.1.4.93  (CDh) MFR_SPECIFIC_CD (MULTIFUNCTION_PIN_CONFIG_1)
          94. 7.8.1.4.94  (CEh) MFR_SPECIFIC_CD (MULTIFUNCTION_PIN_CONFIG_2)
          95. 7.8.1.4.95  (CFh) SMBALERT_MASK_EXTENDED
          96. 7.8.1.4.96  (D1h) READ_VOUT_MIN_MAX
          97. 7.8.1.4.97  (D2h) READ_IOUT_MIN_MAX
          98. 7.8.1.4.98  (D3h) READ_TEMPERATURE_MIN_MAX)
          99. 7.8.1.4.99  (D4h) READ_MFR_VOUT
          100. 7.8.1.4.100 (D5h) READ_VIN_MIN_MAX
          101. 7.8.1.4.101 (D6h) READ_IIN_MIN_MAX
          102. 7.8.1.4.102 (D7h) READ_PIN_MIN_MAX
          103. 7.8.1.4.103 (D8h) READ_POUT_MIN_MAX
          104. 7.8.1.4.104 (DAh) READ_ALL
          105. 7.8.1.4.105 (DBh) STATUS_ALL
          106. 7.8.1.4.106 (DCh) STATUS_PHASES
          107. 7.8.1.4.107 (DDh) STATUS_EXTENDED
          108. 7.8.1.4.108 (E0h) AVSBUS_LOG
          109. 7.8.1.4.109 (E3h) MFR_SPECIFIC_E3 (VR_FAULT_CONFIG)
          110. 7.8.1.4.110 (E4h) SYNC_CONFIG
          111. 7.8.1.4.111 (EDh) MFR_SPECIFIC_ED (MISC_OPTIONS)
          112. 7.8.1.4.112 (EEh) MFR_SPECIFIC_EE (PIN_DETECT_OVERRIDE)
          113. 7.8.1.4.113 (EFh) MFR_SPECIFIC_EF (SLAVE_ADDRESS)
          114. 7.8.1.4.114 (F0h) MFR_SPECIFIC_F0 (NVM_CHECKSUM)
          115. 7.8.1.4.115 (F5h) MFR_SPECIFIC_F5 (USER_NVM_INDEX)
          116. 7.8.1.4.116 (F6h) MFR_SPECIFIC_F6 (USER_NVM_EXECUTE)
          117. 7.8.1.4.117 (FAh) NVM_LOCK
          118. 7.8.1.4.118 (FBh) MFR_SPECIFIC_WRITE_PROTECT
      2. 7.8.2 AVSBus Interface
        1. 7.8.2.1 AVSBus transaction types
        2. 7.8.2.2 Example AVSBus Frames
        3. 7.8.2.3 Example AVSBus number format conversions
        4. 7.8.2.4 AVSBus fault and warning behavior
        5. 7.8.2.5 AVSBus Command Descriptions
          1. 7.8.2.5.1 (0h) AVSBus Output Voltage
          2. 7.8.2.5.2 (1h) AVSBus Transition Rate
          3. 7.8.2.5.3 (2h) AVSBus Output Current
          4. 7.8.2.5.4 (3h) AVSBus Temperature
          5. 7.8.2.5.5 (4h) AVSBus Reset Voltage
          6. 7.8.2.5.6 (5h) AVSBus Power Mode
          7. 7.8.2.5.7 (Eh) AVSBus Status
          8. 7.8.2.5.8 (Fh) AVSBus Version
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Schematic
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
      4. 8.2.4 Application Performance Plots
  9. Power Supply Recommendations
  10. 10Layout
  11. 11Device and Documentation Support
    1. 11.1 ドキュメントの更新通知を受け取る方法
    2. 11.2 サポート・リソース
    3. 11.3 Trademarks
    4. 11.4 静電気放電に関する注意事項
    5. 11.5 用語集
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information
      2. 12.1.2 Tape and Reel Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Detailed Design Procedure

The following steps illustrate the key components selection for the 0.88-V / 250-A, 1-V / 30-A ASIC application.

Inductor Selection

Smaller inductance yields better transient performance, but leads to higher ripple current and lower efficiency. Higher inductance has the opposite effect. It is common practice to limit the ripple current to between 20%-40% of maximum per-phase current for balanced performance. In this design example, 30% of the maximum per-phase current is used for channel A.

Equation 48. ΔI RIPPLE(target) = I CC(MAX) N Φ × 30 % = 250 A 6 phases × 0.3 = 12.5   A
Equation 49. L target = V OUT ×( V in(max) - V OUT ) V in(max) × ΔI RIPPLE(target) × f SW = 0.88 V ×( 13.2 V - 0.88 V ) 13.2 V × 12.5 A × 500 kHz = 0.131 μH

Considering the variation and derating of the inductance and a standard inductor value of 150nH with DCR 0.125 mΩ, is selected. Then use Equation 50 to re-calculate the actual output ripple.

Equation 50. I RIPPLE(actual) = V OUT × V in(max) - V OUT V in(max) × f SW × L actual = 0.88 V ×( 13.2 V - 0.88 V ) 13.2 V × 500 kHz × 0.150 μH = 10.9 A

With same design procedure for channel B, a standard inductor value of 150 nH with DCR 0.125 mΩ from ITG is chosen.

Output Capacitor Selection

Generally, consider output ripple and output voltage deviation during load transient when selecting output capacitors.

When available, follow the output capacitance recommendation for the load ASIC reference design. With TPS53676 device, it is possible to meet the load transient with lower output capacitance due to the high-speed nature of DCAP+ control. Output Capacitor Recommendations is the output capacitance recommendation for the above rail specification.

Table 8-2 Output Capacitors
Capacitor location Channel A Channel B
Bulk capacitors near power stages 12x 470 μF / 2.5V / 3mΩ ESR 2x 470 μF / 2.5V / 3mΩ ESR
Top side 24x 220 μF / 4V / X5R/ 1206
18x 100 μF / 4V / X5R / 1206
4x 220 μF / 4V / X5R / 1206
3x 100 μF / 4V / X5R / 1206
Bottom side 24x 220 μF / 4V / X5R / 1206
18x 100 μF / 4V / X5R / 1206
4x 220 μF / 4V / X5R / 1206
3x 100 μF / 4V / X5R / 1206
Total output capacitance 19.8 mF 1874 μF

Select Per-Phase Valley Current Limit

The equation below shows the calculation of per-phase valley current limit based on maximum processor current, the operating phase number and per-phase current ripple ΔIRIPPLE(actual).

For the channel A,

Equation 51. I OCL = K margin × I CC(max) N Φ - ΔI RIPPLE 2 = 1.25 × 250 A 6 phases - 10.9 A 2 = 46.6 A

Where Kmargin is the maximum operating margin factor. Choose 125% margin to avoid triggering current limit during load transient events. For this design, choose the 47A valley current limit for channel A.

Equation 52. I SAT(min) = I OCL + Δ I RIPPLE = 47 A + 10.9 A = 57.9 A

The calculation above shows the minimum saturation current for inductor. Using same design procedure, the valley current limit for channel B is selected to be 26 A.

Set USR threshold to improve load transient performance

There are two levels of undershoot reduction (USR1, USR2) options. USR1 enables up to 3, 4, 5 or all normal phases and USR2 enables all available phases. To select the proper value, start with each USR threshold set to be disabled, and then systematically lower the threshold, enabling fast-phase-addition to meet the load transient requirement.

For this design, phase shedding is disabled. USR1 and USR2 are selected to be disabled for both channel A and channel B.

Input Current Sensing (Shunt/ Calculated Iin/ Inductor DCR)

TPS53676 has three input current sensing options: shunt current sensing, calculated input current sensing and inductor DCR current sensing. Either option may be chosen for precision input current reporting.

Shunt current sensing

In this design, the external shunt resistor 0.5 mΩ ± 1%, 3 W, 4026 package is selected. Once properly calibrated, Input current reporting is within the tolerance target.

Calculated input current sensing

TPS53676 includes an option to impute input current for situations in which the addition of a shunt or input inductor is prohibitive. Connect pins 46 (VIN_CSNIN) and 47 (CSPIN) together, and place a minimum 1 μF effective capacitance bypass cap from pin 46 to GND, then connect pin 46 to input supply (12 V nominally) before input inductor. Configure the calculated input current option through the NVM settings in MFR_SPECIFIC_ED (MISC OPTIONS).

Inductor DCR Current Sensing

This section describes the procedure to determine an inductor DCR thermal compensation network design. The image below shows a typical DCR sensing circuit. From the equations below, when the time constant of the RC network is equal to the L/R time constant of the inductor, the capacitor voltage VC across the CSENSE capacitor can be used to obtain the inductor current. However, inductor windings have a positive temperature coefficient of approximately 3900 ppm/°C. So an NTC thermistor is used to cancel thermal variation from the inductor DCR.

The design goal is for the DCR value to be invariant with the temperature. Therefore, the voltage across sense capacitor would be only dependent on the inductor current over the temperature range of interest.

GUID-20200601-SS0I-FSQN-VLX2-NWFCP69C1PGJ-low.gif Figure 8-5 Input DCR Network
Equation 53. C SENSE × R EQ = L R DCR
Equation 54. I IN × R DCR = V DCR

The equivalent resistance of the RSEQU, RNTC, RSERIES and RPAR values is given by REQ. Use the equations below to derive the values of RSEQU, RNTC, RSERIES and RPAR.

Equation 55. R EQ = R P_N R P_N + R SEQU s
Equation 56. R P_N = R PAR ×( R NTC + R SERIES ) R PAR + R NTC + R SERIES
Equation 57. V C = V DCR × R EQ = I IN × R DCR × R P_N R P_N + R SEQU = β × I IN

Finally the value of β, given in the equation below, represents the effective current sense gain after thermal compensation. This value can be used as the sense element resistance to derive the PMBus settings as described in Input current calibration (measured).

Equation 58. β = R DCR × R P_N R P_N + R SEQU

For this design, select thermistor RNTC as 1 kΩ, 5%, 0603, B-constant is 3650k, P/N: NCP18XQ102J03B from Murata. Select CSENSE as 1 μF X7R or better dielectric (C0G preferred).

In order to solve the value of RSEQU, RSERIES and RPAR, the β at three temperature points are set equal. set β = 0.15 mΩ equally at temperature 0 °C, 25 °C and 75 °C. With the calculation, three resistors value can be found as RSEQU = 332 Ω, RSERIES = 432 Ω, RPAR = 1.40 kΩ.

Figure 8-6 Inductor DCR sensing voltage over temperature

TI offers an application note and excel spreadsheet to streamline input DCR netowrk calculations. Contact your local field/sales representative to get a copy of the document.

Loop compensation design

  • 5 mΩ: Typical gain from power stage current sense
  • ACLL: Programmable AC load line, provides direct output voltage feedback.
  • DCLL: Programmable DC load line, provides adaptive voltage positioning
  • KDIV : Fixed scalar with value of 0.5
  • τINT : Programmable integration time constant, adjustable from 1µs to 16 µs (scale = 1 µs)
  • KINT : Programmable integration gain which can be adjustable from 0.5x, 1x, 1.5x, 2x
  • KAC : Programmable AC gain which is adjustable from 0.5x, 1x, 1.5x, 2x
  • VRAMP : Programmable ramp voltage which is adjustable from 80 mV to 320 mV(scale = 40 mV)

For this design, the optimal loop compensation values were derived by tuning. The final valuea are listed .

Table 8-3
PARAMETER Channel A Channel B
DCLL 0.0 mΩ 0.0 mΩ
ACLL 0.2 mΩ 0.5 mΩ
τINT 1 µs 7 µs
KINT 2.0 1.0
KAC 1.0 1.0
VRAMP 320 mV 200 mV

Select ADDR pin resistors

Based on the design requirements of PMBus address select the upper and lower ADDR pin resistors, RHA and RLA according to ADDR pin decoding.

Table 8-4
PMBus address RHA RLA
96d / C0h 110 kΩ 37.4 kΩ

Select the boot voltage VBOOT for each channel

The boot voltage for channel A is determined by pinstrapping on the BOOT_CHA pin. Based on BOOT_CHA pinstrap decoding, select RHB = 20.0 kΩ and RLB = 59.0 kΩ to select 0.88 V as the channel A boot voltage.

The boot voltage for channel B is stored in NVM. Update the NVM value for VOUT_COMMAND to 1.0 V , and store the value to non-volatile memory.