TIDUA05B June   2015  â€“ March 2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. System Description
    1. 1.1 Design Overview
    2. 1.2 Analog Sin/Cos Incremental Encoder
      1. 1.2.1 Sin/Cos Encoder Output Signals
      2. 1.2.2 Sin/Cos Encoder Electrical Parameter Examples
    3. 1.3 Method to Calculate High-Resolution Position With Sin/Cos Encoders
      1. 1.3.1 Theoretical Approach
        1. 1.3.1.1 Overview
        2. 1.3.1.2 Coarse Resolution Angle Calculation
        3. 1.3.1.3 Fine Resolution Angle Calculation
        4. 1.3.1.4 Interpolated High-Resolution Angle Calculation
        5. 1.3.1.5 Practical Implementaion for Non-Ideal Synchronization
        6. 1.3.1.6 Resolution, Accuracy, and Speed Considerations
    4. 1.4 Sin/Cos Encoder Parameters Impact on Analog Circuit Specification
      1. 1.4.1 Analog Signal Chain Design Consideration for Phase Interpolation
      2. 1.4.2 Comparator Function System Design for Incremental Count
  8. Design Features
    1. 2.1 Sin/Cos Encoder Interface
    2. 2.2 Host Processor Interface
    3. 2.3 Evaluation Firmware
    4. 2.4 Power Management
    5. 2.5 EMC Immunity
  9. Block Diagram
  10. Circuit Design and Component Selection
    1. 4.1 Analog Signal Chain
      1. 4.1.1 High-Resolution Signal Path With 16-Bit Dual Sampling ADC
        1. 4.1.1.1 Component Selection
        2. 4.1.1.2 Input Signal Termination and Protection
        3. 4.1.1.3 Differential Amplifier THS4531A and 16-Bit ADC ADS8354
      2. 4.1.2 Analog Signal Path With Single-Ended Output for MCU With Embedded ADC
      3. 4.1.3 Comparator Subsystem for Digital Signals A, B, and R
        1. 4.1.3.1 Non-Inverting Comparator With Hysteresis
    2. 4.2 Power Management
      1. 4.2.1 24-V Input to 6-V Intermediate Rail
      2. 4.2.2 Encoder Supply
      3. 4.2.3 Signal Chain Power Supply 5 V and 3.3 V
    3. 4.3 Host Processor Interface
      1. 4.3.1 Signal Description
      2. 4.3.2 High-Resolution Path Using 16-Bit Dual ADC ADS8354 With Serial Output
        1. 4.3.2.1 ADS8354 Input Full Scale Range Output Data Format
        2. 4.3.2.2 ADS8354 Serial Interface
        3. 4.3.2.3 ADS8354 Conversion Data Read
        4. 4.3.2.4 ADS8354 Register Configuration
    4. 4.4 Encoder Connector
    5. 4.5 Design Upgrades
  11. Software Design
    1. 5.1 Overview
    2. 5.2 C2000 Piccolo Firmware
    3. 5.3 User Interface
  12. Getting Started
    1. 6.1 TIDA-00176 PCB Overview
    2. 6.2 Connectors and Jumper Settings
      1. 6.2.1 Connector and Jumpers Overview
      2. 6.2.2 Default Jumper Configuration
    3. 6.3 Design Evaluation
      1. 6.3.1 Prerequisites
      2. 6.3.2 Hardware Setup
      3. 6.3.3 Software Setup
      4. 6.3.4 User Interface
  13. Test Results
    1. 7.1 Analog Performance Tests
      1. 7.1.1 High-Resolution Signal Path
        1. 7.1.1.1 Bode Plot of Analog Path from Encoder Connector to ADS8354 Input
        2. 7.1.1.2 Performance Plots (DFT) for Entire High-Resulation Signal Path
        3. 7.1.1.3 Background on AC Performance Definitions With ADCs
      2. 7.1.2 Differential to Single-Ended Analog Signal Path
      3. 7.1.3 Comparator Subsystem With Digital Output Signals ATTL, BTTL, and RTTL
    2. 7.2 Power Supply Tests
      1. 7.2.1 24-V DC/DC Input Supply
        1. 7.2.1.1 Load-Line Regulation
        2. 7.2.1.2 Output Voltage Ripple
        3. 7.2.1.3 Switching Node and Switching Frequency
        4. 7.2.1.4 Efficiency
        5. 7.2.1.5 Bode Plot
        6. 7.2.1.6 Thermal Plot
      2. 7.2.2 Encoder Power Supply Output Voltage
      3. 7.2.3 5-V and 3.3-V Point-of-Load
    3. 7.3 System Performance
      1. 7.3.1 Sin/Cos Encoder Output Signal Emulation
        1. 7.3.1.1 One Period (Incremental Phase) Test
        2. 7.3.1.2 One Mechanical Revolution Test at Maximum Speed
    4. 7.4 Sin/Cos Encoder System Tests
      1. 7.4.1 Zero Index Marker R
      2. 7.4.2 Functional System Tests
    5. 7.5 EMC Test Result
      1. 7.5.1 Test Setup
      2. 7.5.2 IEC-61000-4-2 ESD Test Results
      3. 7.5.3 IEC-61000-4-4 EFT Test Results
      4. 7.5.4 IEC-61000-4-5 Surge Test Results
  14. Design Files
    1. 8.1 Schematics
    2. 8.2 Bill of Materials
    3. 8.3 PCB Layout Guidelines
      1. 8.3.1 PCB Layer Plots
    4. 8.4 Altium Project
    5. 8.5 Gerber Files
    6. 8.6 Software Files
  15. References
  16. 10About the Author
    1.     Recognition
  17. 11Revision History

Overview

From a hardware perspective typically two approaches can be realized, which impact mainly the requirements for the A/D converter.

With the "over-sampling method", both sine and cosine signal would be sampled at least four times higher than the maximum sine and cosine frequency. The incremental count as well as the phase calculation would be done by subsequent digital signal processing on a host processor. That method would not need comparators, but rather high-speed dual sampling ADCs.

The typically used "under-sampling" method uses separate hardware blocks to calculate the incremental count and the interpolated incremental phase. The advantage of that method is that the sampling frequency and bandwidth of the ADC can be lower compared to the first method, as it does not impact the incremental count but only the interpolated phase. However, the under-sampling method requires a comparator each, for sine and the cosine, to generate the digital quadrature encoded signals A and B, which drive a directional up and down counter, often referred to as quadrature encoded pulse counter. The analog bandwidth of the dual sampling ADC needs to be at least equal to the maximum sine/cosine frequency. The under-sampling method is outlined in Figure 1-5.

TIDA-00176 Signal Processing Block Diagram for Interpolated Angle CalculationFigure 1-5 Signal Processing Block Diagram for Interpolated Angle Calculation

The total interpolated angular position is composed of coarse and fine angle. The interpolated angle is determined by the actual incremental line count and the phase within this incremental line. The phase within the incremental line is derived from the analog sine and cosine signals A and B at any specific time instant. Both the actual incremental count and the actual analog sine and cosine signals have to be latched at the same time, hence synchronously. The incremental line count provides the coarse angle, while the phase within of the sine and cosine within that incremental line provides the fine angle. The total interpolated angle is a compound of the coarse and fine angle, as shown with a simplified block diagram in Figure 1-5. The corresponding Equation 2 to Equation 4 are explained in the next paragraph.