TIDUA05B June   2015  – March 2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. System Description
    1. 1.1 Design Overview
    2. 1.2 Analog Sin/Cos Incremental Encoder
      1. 1.2.1 Sin/Cos Encoder Output Signals
      2. 1.2.2 Sin/Cos Encoder Electrical Parameter Examples
    3. 1.3 Method to Calculate High-Resolution Position With Sin/Cos Encoders
      1. 1.3.1 Theoretical Approach
        1. 1.3.1.1 Overview
        2. 1.3.1.2 Coarse Resolution Angle Calculation
        3. 1.3.1.3 Fine Resolution Angle Calculation
        4. 1.3.1.4 Interpolated High-Resolution Angle Calculation
        5. 1.3.1.5 Practical Implementaion for Non-Ideal Synchronization
        6. 1.3.1.6 Resolution, Accuracy, and Speed Considerations
    4. 1.4 Sin/Cos Encoder Parameters Impact on Analog Circuit Specification
      1. 1.4.1 Analog Signal Chain Design Consideration for Phase Interpolation
      2. 1.4.2 Comparator Function System Design for Incremental Count
  8. Design Features
    1. 2.1 Sin/Cos Encoder Interface
    2. 2.2 Host Processor Interface
    3. 2.3 Evaluation Firmware
    4. 2.4 Power Management
    5. 2.5 EMC Immunity
  9. Block Diagram
  10. Circuit Design and Component Selection
    1. 4.1 Analog Signal Chain
      1. 4.1.1 High-Resolution Signal Path With 16-Bit Dual Sampling ADC
        1. 4.1.1.1 Component Selection
        2. 4.1.1.2 Input Signal Termination and Protection
        3. 4.1.1.3 Differential Amplifier THS4531A and 16-Bit ADC ADS8354
      2. 4.1.2 Analog Signal Path With Single-Ended Output for MCU With Embedded ADC
      3. 4.1.3 Comparator Subsystem for Digital Signals A, B, and R
        1. 4.1.3.1 Non-Inverting Comparator With Hysteresis
    2. 4.2 Power Management
      1. 4.2.1 24-V Input to 6-V Intermediate Rail
      2. 4.2.2 Encoder Supply
      3. 4.2.3 Signal Chain Power Supply 5 V and 3.3 V
    3. 4.3 Host Processor Interface
      1. 4.3.1 Signal Description
      2. 4.3.2 High-Resolution Path Using 16-Bit Dual ADC ADS8354 With Serial Output
        1. 4.3.2.1 ADS8354 Input Full Scale Range Output Data Format
        2. 4.3.2.2 ADS8354 Serial Interface
        3. 4.3.2.3 ADS8354 Conversion Data Read
        4. 4.3.2.4 ADS8354 Register Configuration
    4. 4.4 Encoder Connector
    5. 4.5 Design Upgrades
  11. Software Design
    1. 5.1 Overview
    2. 5.2 C2000 Piccolo Firmware
    3. 5.3 User Interface
  12. Getting Started
    1. 6.1 TIDA-00176 PCB Overview
    2. 6.2 Connectors and Jumper Settings
      1. 6.2.1 Connector and Jumpers Overview
      2. 6.2.2 Default Jumper Configuration
    3. 6.3 Design Evaluation
      1. 6.3.1 Prerequisites
      2. 6.3.2 Hardware Setup
      3. 6.3.3 Software Setup
      4. 6.3.4 User Interface
  13. Test Results
    1. 7.1 Analog Performance Tests
      1. 7.1.1 High-Resolution Signal Path
        1. 7.1.1.1 Bode Plot of Analog Path from Encoder Connector to ADS8354 Input
        2. 7.1.1.2 Performance Plots (DFT) for Entire High-Resulation Signal Path
        3. 7.1.1.3 Background on AC Performance Definitions With ADCs
      2. 7.1.2 Differential to Single-Ended Analog Signal Path
      3. 7.1.3 Comparator Subsystem With Digital Output Signals ATTL, BTTL, and RTTL
    2. 7.2 Power Supply Tests
      1. 7.2.1 24-V DC/DC Input Supply
        1. 7.2.1.1 Load-Line Regulation
        2. 7.2.1.2 Output Voltage Ripple
        3. 7.2.1.3 Switching Node and Switching Frequency
        4. 7.2.1.4 Efficiency
        5. 7.2.1.5 Bode Plot
        6. 7.2.1.6 Thermal Plot
      2. 7.2.2 Encoder Power Supply Output Voltage
      3. 7.2.3 5-V and 3.3-V Point-of-Load
    3. 7.3 System Performance
      1. 7.3.1 Sin/Cos Encoder Output Signal Emulation
        1. 7.3.1.1 One Period (Incremental Phase) Test
        2. 7.3.1.2 One Mechanical Revolution Test at Maximum Speed
    4. 7.4 Sin/Cos Encoder System Tests
      1. 7.4.1 Zero Index Marker R
      2. 7.4.2 Functional System Tests
    5. 7.5 EMC Test Result
      1. 7.5.1 Test Setup
      2. 7.5.2 IEC-61000-4-2 ESD Test Results
      3. 7.5.3 IEC-61000-4-4 EFT Test Results
      4. 7.5.4 IEC-61000-4-5 Surge Test Results
  14. Design Files
    1. 8.1 Schematics
    2. 8.2 Bill of Materials
    3. 8.3 PCB Layout Guidelines
      1. 8.3.1 PCB Layer Plots
    4. 8.4 Altium Project
    5. 8.5 Gerber Files
    6. 8.6 Software Files
  15. References
  16. 10About the Author
    1.     Recognition
  17. 11Revision History

Comparator Subsystem for Digital Signals A, B, and R

The comparators are required to detect the zero-crossing of the analog signals A and B, as well as the zero index pulse with the marker R and generate the corresponding digital 3.3-V TTL-compatible signals ATTL, BTTL, and RTTL, often referred to as ABZ. As outlined in Section 1.4 a low propagation delay comparator offers additional margin to the system.

The comparators selected are the TLV3201 (single) and TLV3202 (dual), 40 ns, microPOWER, push-pull output comparators, with the following main characteristics:

  • Low propagation delay of typical 40 ns
  • Low input offset voltage of typical 1 mV, to ensure minimum drift of switching threshold
  • Push-pull outputs, to drive the input of a 3.3-V I/O host processor
  • Industrial temperature range

The TLC372 dual comparator with 250-ns propagation delay is a lower cost option, depending overall system propagation delay and maximum frequency. The advantage of the TLV320x family is that it allows other components to add more delay while still keep the required 500-ns maximum delay at 500 kHz. For example, a larger hysteresis would increase the propagation delay while improve immunity against noise.