TIDUA05B June   2015  â€“ March 2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. System Description
    1. 1.1 Design Overview
    2. 1.2 Analog Sin/Cos Incremental Encoder
      1. 1.2.1 Sin/Cos Encoder Output Signals
      2. 1.2.2 Sin/Cos Encoder Electrical Parameter Examples
    3. 1.3 Method to Calculate High-Resolution Position With Sin/Cos Encoders
      1. 1.3.1 Theoretical Approach
        1. 1.3.1.1 Overview
        2. 1.3.1.2 Coarse Resolution Angle Calculation
        3. 1.3.1.3 Fine Resolution Angle Calculation
        4. 1.3.1.4 Interpolated High-Resolution Angle Calculation
        5. 1.3.1.5 Practical Implementaion for Non-Ideal Synchronization
        6. 1.3.1.6 Resolution, Accuracy, and Speed Considerations
    4. 1.4 Sin/Cos Encoder Parameters Impact on Analog Circuit Specification
      1. 1.4.1 Analog Signal Chain Design Consideration for Phase Interpolation
      2. 1.4.2 Comparator Function System Design for Incremental Count
  8. Design Features
    1. 2.1 Sin/Cos Encoder Interface
    2. 2.2 Host Processor Interface
    3. 2.3 Evaluation Firmware
    4. 2.4 Power Management
    5. 2.5 EMC Immunity
  9. Block Diagram
  10. Circuit Design and Component Selection
    1. 4.1 Analog Signal Chain
      1. 4.1.1 High-Resolution Signal Path With 16-Bit Dual Sampling ADC
        1. 4.1.1.1 Component Selection
        2. 4.1.1.2 Input Signal Termination and Protection
        3. 4.1.1.3 Differential Amplifier THS4531A and 16-Bit ADC ADS8354
      2. 4.1.2 Analog Signal Path With Single-Ended Output for MCU With Embedded ADC
      3. 4.1.3 Comparator Subsystem for Digital Signals A, B, and R
        1. 4.1.3.1 Non-Inverting Comparator With Hysteresis
    2. 4.2 Power Management
      1. 4.2.1 24-V Input to 6-V Intermediate Rail
      2. 4.2.2 Encoder Supply
      3. 4.2.3 Signal Chain Power Supply 5 V and 3.3 V
    3. 4.3 Host Processor Interface
      1. 4.3.1 Signal Description
      2. 4.3.2 High-Resolution Path Using 16-Bit Dual ADC ADS8354 With Serial Output
        1. 4.3.2.1 ADS8354 Input Full Scale Range Output Data Format
        2. 4.3.2.2 ADS8354 Serial Interface
        3. 4.3.2.3 ADS8354 Conversion Data Read
        4. 4.3.2.4 ADS8354 Register Configuration
    4. 4.4 Encoder Connector
    5. 4.5 Design Upgrades
  11. Software Design
    1. 5.1 Overview
    2. 5.2 C2000 Piccolo Firmware
    3. 5.3 User Interface
  12. Getting Started
    1. 6.1 TIDA-00176 PCB Overview
    2. 6.2 Connectors and Jumper Settings
      1. 6.2.1 Connector and Jumpers Overview
      2. 6.2.2 Default Jumper Configuration
    3. 6.3 Design Evaluation
      1. 6.3.1 Prerequisites
      2. 6.3.2 Hardware Setup
      3. 6.3.3 Software Setup
      4. 6.3.4 User Interface
  13. Test Results
    1. 7.1 Analog Performance Tests
      1. 7.1.1 High-Resolution Signal Path
        1. 7.1.1.1 Bode Plot of Analog Path from Encoder Connector to ADS8354 Input
        2. 7.1.1.2 Performance Plots (DFT) for Entire High-Resulation Signal Path
        3. 7.1.1.3 Background on AC Performance Definitions With ADCs
      2. 7.1.2 Differential to Single-Ended Analog Signal Path
      3. 7.1.3 Comparator Subsystem With Digital Output Signals ATTL, BTTL, and RTTL
    2. 7.2 Power Supply Tests
      1. 7.2.1 24-V DC/DC Input Supply
        1. 7.2.1.1 Load-Line Regulation
        2. 7.2.1.2 Output Voltage Ripple
        3. 7.2.1.3 Switching Node and Switching Frequency
        4. 7.2.1.4 Efficiency
        5. 7.2.1.5 Bode Plot
        6. 7.2.1.6 Thermal Plot
      2. 7.2.2 Encoder Power Supply Output Voltage
      3. 7.2.3 5-V and 3.3-V Point-of-Load
    3. 7.3 System Performance
      1. 7.3.1 Sin/Cos Encoder Output Signal Emulation
        1. 7.3.1.1 One Period (Incremental Phase) Test
        2. 7.3.1.2 One Mechanical Revolution Test at Maximum Speed
    4. 7.4 Sin/Cos Encoder System Tests
      1. 7.4.1 Zero Index Marker R
      2. 7.4.2 Functional System Tests
    5. 7.5 EMC Test Result
      1. 7.5.1 Test Setup
      2. 7.5.2 IEC-61000-4-2 ESD Test Results
      3. 7.5.3 IEC-61000-4-4 EFT Test Results
      4. 7.5.4 IEC-61000-4-5 Surge Test Results
  14. Design Files
    1. 8.1 Schematics
    2. 8.2 Bill of Materials
    3. 8.3 PCB Layout Guidelines
      1. 8.3.1 PCB Layer Plots
    4. 8.4 Altium Project
    5. 8.5 Gerber Files
    6. 8.6 Software Files
  15. References
  16. 10About the Author
    1.     Recognition
  17. 11Revision History

Zero Index Marker R

The first test is to verify the synchronization or skew between the digital output signals A, B, and R available at the TIDA-00176 host processor interface connector J6, pin 12 (ATTL), pin 14 (BTTL), and pin 16 (RTTL). This test is to verify the proper configuration of the TIDA-00176 comparator subsystem.

TIDA-00176 Measured TTL Signals A, B, and R at TIDA-00176 Comparators Output J6-12, 14, and 18Figure 7-30 Measured TTL Signals A, B, and R at TIDA-00176 Comparators Output J6-12, 14, and 18

The transitions on the comparator output signal R occur only when both A and B are low, as expected. This result means the sequence between A, B, and R signals depends on the rotation direction of the Sin/Cos encoder shaft. In Figure 7-30, the encoder is turned clockwise as the rising edge of B occurs after the rising edge of A.

A closer look to the skew between A, B, and R has been done at a higher speed of around 400 rpm and for the rising and falling edge of R.. The rising and falling edge of R still occurs when both signals A and B are low.

Note that the rotation direction of Figure 7-31 and Figure 7-32 is counter clockwise (CCW).

TIDA-00176 Falling Index Signal R versus A and B in CCW DirectionFigure 7-31 Falling Index Signal R versus A and B in CCW Direction
TIDA-00176 Rising Index Signal R versus A and B in CCW DirectionFigure 7-32 Rising Index Signal R versus A and B in CCW Direction