SLYY234 December   2024 AMC0106M05 , AMC0106M25 , AMC0136 , AMC0311D , AMC0311S , AMC0386 , AMC0386-Q1 , AMC1100 , AMC1106M05 , AMC1200 , AMC1200-Q1 , AMC1202 , AMC1203 , AMC1204 , AMC1211-Q1 , AMC1300 , AMC1300B-Q1 , AMC1301 , AMC1301-Q1 , AMC1302-Q1 , AMC1303M2510 , AMC1304L25 , AMC1304M25 , AMC1305M25 , AMC1305M25-Q1 , AMC1306M05 , AMC1306M25 , AMC1311 , AMC1311-Q1 , AMC131M03 , AMC1336 , AMC1336-Q1 , AMC1350 , AMC1350-Q1 , AMC23C12 , AMC3301 , AMC3330 , AMC3330-Q1

 

  1.   1
  2.   Introduction
  3.   Introduction to Isolated Signal Chain
    1.     Comparing Isolated Amplifiers and Isolated Modulators
      1.      Abstract
      2.      Introduction to Isolated Amplifiers
      3.      Introduction to Isolated Modulators
      4.      Performance Comparison Between Isolated Amplifiers and Isolated Modulators
      5.      Isolated Modulators in Traction Inverters
      6.      Isolated Amplifier and Modulator Recommendations
      7.      Conclusion
    2.     TI’s First Isolated Amplifiers With Ultra-Wide Creepage and Clearance
      1.      Application Brief
  4.   Selection Trees
  5.   Current Sensing
    1.     Shunt Resistor Selection for Isolated Data Converters
      1.      17
    2.     Design considerations for isolated current sensing
      1.      19
      2.      Conclusion
      3.      References
      4.      Related Websites
    3.     Isolated Current-Sensing Circuit With ±50-mV Input and Single-Ended Output
      1.      24
    4.     Isolated Current-Sensing Circuit With ±50-mV Input and Differential Output
      1.      26
    5.     Isolated Current-Sensing Circuit With ±250-mV Input Range and Single-Ended Output Voltage
      1.      Design Goals
      2.      Design Description
      3.      Design Notes
      4.      Design Steps
      5.      Design Simulations
      6.      DC Simulation Results
      7.      Closed-Loop AC Simulation Results
      8.      Transient Simulation Results
      9.      Design References
      10.      Design Featured Isolated Amplifier
      11.      Design Alternate Isolated Amplifier
    6.     Isolated current-measurement circuit with ±250-mV input and differential output
      1.      Design Goals
      2.      Design Description
      3.      Design Notes
      4.      Design Steps
      5.      Design Simulations
      6.      DC Simulation Results
      7.      Closed Loop AC Simulation Results
      8.      Transient Simulation Results
      9.      Design References
      10.      Design Featured Op Amp
      11.      Design Alternate Op Amp
    7.     Isolated Overcurrent Protection Circuit
      1.      52
    8.     Interfacing a Differential-Output (Isolated) Amp to a Single-Ended Input ADC
      1.      54
    9.     Utilizing AMC3311 to Power AMC23C11 for Isolated Sensing and Fault Detection
      1.      Application Brief
    10.     Isolated Current-Sensing Circuit With Front-End Gain Stage
      1.      58
    11.     Accuracy Comparison of Isolated Shunt and Closed-Loop Current Sensing
      1.      60
  6.   Voltage Sensing
    1.     Maximizing Power Conversion and Motor Control Efficiency With Isolated Voltage Sensing
      1.      63
      2.      Solutions for high-voltage sensing
      3.      Integrated resistor devices
      4.      Single-ended output devices
      5.      Integrated isolated voltage-sensing use cases
      6.      Conclusion
      7.      Additional resources
    2.     Increased Accuracy and Performance with Integrated High Voltage Resistor Isolated Amplifiers and Modulators
      1.      Abstract
      2.      Introduction
      3.      High Voltage Resistor Isolated Amplifiers and Modulators Advantages
        1.       Space Savings
        2.       Improved Temperature and Lifetime Drift of Integrated HV Resistors
        3.       Accuracy Results
        4.       Fully Integrated Resistors vs. Additional External Resistor Example
        5.       Device Selection Tree and AC/DC Common Use Cases
      4.      Summary
      5.      References
    3.     Isolated Amplifiers With Differential, Single-Ended Fixed Gain and Ratiometric Outputs for Voltage Sensing Applications
      1.      Abstract
      2.      Introduction
      3.      Overview of Differential, Single-Ended Fixed Gain and Ratiometric Outputs
        1.       Isolated Amplifiers with Differential Output
        2.       Isolated Amplifiers With Single-Ended, Fixed-Gain Output
        3.       Isolated Amplifiers With Single-Ended, Ratiometric Output
      4.      Application Examples
        1.       Product Selection Tree
      5.      Summary
      6.      References
    4.     Isolated Voltage-Measurement Circuit With ±250-mV Input and Differential Output
      1.      93
    5.     Split-Tap Connection for Line-to-Line Isolated Voltage Measurement Using AMC3330
      1.      95
    6.     ±12V Voltage Sensing Circuit With an Isolated Amplifier and Pseudo-Differential Input SAR ADC
      1.      97
    7.     ±12-V voltage sensing circuit with an isolated amplifier and differential input SAR ADC
      1.      99
    8.     Isolated Undervoltage and Overvoltage Detection Circuit
      1.      101
    9.     Isolated Zero-Cross Detection Circuit
      1.      103
    10.     ±480V Isolated Voltage-Sensing Circuit With Differential Output
      1.      105
  7.   EMI Performance
    1.     Best in Class Radiated Emissions EMI Performance with Isolated Amplifiers
      1.      Best in Class Radiated Emissions EMI Performance with Isolated Amplifiers
      2.      Introduction
      3.      Current Generation of Texas Instruments Isolated Amplifiers Radiated Emissions Performance
      4.      Previous Generations of Texas Instruments Isolated Amplifiers Radiated Emissions Performance
      5.      Conclusion
      6.      References
    2.     Best Practices to Attenuate AMC3301 Family Radiated Emissions EMI
      1.      Abstract
      2.      Introduction
      3.      Effects of Input Connections on AMC3301 Family Radiated Emissions
      4.      Attenuating AMC3301 Family Radiated Emissions
        1.       Ferrite Beads and Common Mode Chokes
        2.       PCB Schematics and Layout Best Practices for AMC3301 Family
      5.      Using Multiple AMC3301 Devices
        1.       Device Orientation
        2.       PCB Layout Best Practices for Multiple AMC3301
      6.      Conclusion
      7.      AMC3301 Family Table
  8.   End Equipment
    1.     Comparing Shunt- and Hall-Based Isolated Current-Sensing Solutions in HEV/EV
      1.      128
    2.     Design Considerations for Current Sensing in DC EV Charging Applications
      1.      Abstract
      2.      Introduction
        1.       DC Charging Station for Electric Vehicles
        2.       Current-Sensing Technology Selection and Equivalent Model
          1.        Sensing of the Current With Shunt-Based Solution
          2.        Equivalent Model of the Sensing Technology
      3.      Current Sensing in AC/DC Converters
        1.       Basic Hardware and Control Description of AC/DC
          1.        AC Current Control Loops
          2.        DC Voltage Control Loop
        2.       Point A and B – AC/DC AC Phase-Current Sensing
          1.        Impact of Bandwidth
            1.         Steady State Analysis: Fundamental and Zero Crossing Currents
            2.         Transient Analysis: Step Power and Voltage Sag Response
          2.        Impact of Latency
            1.         Fault Analysis: Grid Short-Circuit
          3.        Impact of Gain Error
            1.         Power Disturbance in AC/DC Caused by Gain Error
            2.         AC/DC Response to Power Disturbance Caused by Gain Error
          4.        Impact of Offset
        3.       Point C and D – AC/DC DC Link Current Sensing
          1.        Impact of Bandwidth on Feedforward Performance
          2.        Impact of Latency on Power Switch Protection
          3.        Impact of Gain Error on Power Measurement
            1.         Transient Analysis: Feedforward in Point D
          4.        Impact of Offset
        4.       Summary of Positives and Negatives at Point A, B, C1/2 and D1/2 and Product Suggestions
      4.      Current Sensing in DC/DC Converters
        1.       Basic Operation Principle of Isolated DC/DC Converter With Phase-Shift Control
        2.       Point E, F - DC/DC Current Sensing
          1.        Impact of Bandwidth
          2.        Impact of Gain Error
          3.        Impact of Offset Error
        3.       Point G - DC/DC Tank Current Sensing
        4.       Summary of Sensing Points E, F, and G and Product Suggestions
      5.      Conclusion
      6.      References
    3.     Using isolated comparators for fault detection in electric motor drives
      1.      Introduction
      2.      Introduction to electric motor drives
      3.      Understanding fault events in electric motor drives
      4.      Achieving reliable detection and protection in electric motor drives
      5.      Use case No. 1: Bidirectional in-phase overcurrent detection
      6.      Use case No. 2: DC+ overcurrent detection
      7.      Use case No. 3: DC– overcurrent or short-circuit detection
      8.      Use case No. 4: DC-link (DC+ to DC–) overvoltage and undervoltage detection
      9.      Use case No. 5: IGBT module overtemperature detection
    4.     Discrete DESAT for Opto-Compatible Isolated Gate Driver UCC23513 in Motor Drives
      1.      Abstract
      2.      Introduction
      3.      System Challenge on Isolated Gate Drivers With Integrated DESAT
      4.      System Approach With UCC23513 and AMC23C11
        1.       System Overview and Key Specification
        2.       Schematic Design
          1.        Circuit Schematic
          2.        Configure VCE(DESAT) Threshold and DESAT Bias Current
          3.        DESAT Blanking Time
          4.        DESAT Deglitch Filter
        3.       Reference PCB Layout
      5.      Simulation and Test Results
        1.       Simulation Circuit and Results
          1.        Simulation Circuit
          2.        Simulation Results
        2.       Test Results With 3-Phase IGBT Inverter
          1.        Brake IGBT Test
          2.        Test Results on a 3-Phase Inverter With Phase to Phase Short
      6.      Summary
      7.      References
    5.     Isolated voltage sensing in AC motor drives
      1.      Introduction
      2.      Conclusion
      3.      References
    6.     Achieving High-Performance Isolated Current and Voltage Sensing in Server PSUs
      1.      Application Brief
  9.   Additional Reference Designs/Circuits
    1.     Designing a Bootstrap Charge-Pump Power Supply for an Isolated Amplifier
      1.      Abstract
      2.      Introduction
      3.      Bootstrap Power Supply Design
        1.       Selection of Charge Pump Capacitor
        2.       Simulation in TINA-TI
        3.       Hardware Test with AMC1311-Q1
      4.      Summary
      5.      Reference
    2.     Clock Edge Delay Compensation With Isolated Modulators Digital Interface to MCUs
      1.      Abstract
      2.      Introduction
      3.      Design Challenge With Digital Interface Timing Specifications
      4.      Design Approach With Clock Edge Delay Compensation
        1.       Clock Signal Compensation With Software Configurable Phase Delay
        2.       Clock Signal Compensation With Hardware Configurable Phase Delay
        3.       Clock Signal Compensation by Clock Return
        4.       Clock Signal Compensation by Clock Inversion at the MCU
      5.      Test and Validation
        1.       Test Equipment and Software
        2.       Testing of Clock Signal Compensation With Software Configurable Phase Delay
          1.        Test Setup
          2.        Test Measurement Results
        3.       Testing of Clock Signal Compensation by Clock Inversion at MCU
          1.        Test Setup
          2.        Test Measurement Results
            1.         Test Result – No Clock Inversion of Clock Input at GPIO123
            2.         Test Result – Clock Inversion of Clock Input at GPIO123
        4.       Digital Interface Timing Validation by Calculation Tool
          1.        Digital Interface With No Compensation Method
          2.        Commonly Used Method - Reduction of the Clock Frequency
          3.        Clock Edge Compensation With Software Configurable Phase Delay
      6.      Conclusion
      7.      References
    3.     Utilizing AMC3311 to Power AMC23C11 for Isolated Sensing and Fault Detection
      1.      Application Brief

Design Goals

Current Source

Input Voltage

Output Voltage Single Power Supply
IIN MIN IIN MAX VIN DIFF, MIN VIN DIFF, MAX

VOUT SE

VDD
–50A 50A –50mV 50mV

55mV to 4.945V

5V

Design Description

This isolated single-supply bidirectional current sensing circuit can accurately measure load currents from –50 A to 50 A. The linear range of the input is from –50 mV to 50 mV with a differential output swing of –2.05 V to 2.05 V and an output common-mode voltage (VCM) of 1.44 V. The gain of the isolated amplifier circuit is fixed at 41 V/V. A secondary amplifier stage, using TLV9002, converts the differential output voltage to a single-ended output voltage of 55 mV to 4.945 V. The entire signal chain operates on a single 5.0 V rail.

This circuit is applicable to many high-voltage industrial applications such as Solar Inverters, Motor Drives and Protection Relays. The equations and explanation of component selection in this design can be customized based on the needs and system specification of the end equipment.

Design Notes

  1. The AMC3302 was selected due to its accuracy, input voltage range, and the single low-side power requirements of the device.
  2. The TLV9002 was selected for its low cost, low offset, small size, and dual channel.
  3. Select a low impedance, low-noise source for AVDD which supplies the TLV9002 and AMC3302 as well as provides the common-mode voltage for the single-ended output.
  4. For highest accuracy, use a precision shunt resistor with low temperature coefficient.
  5. Select the current shunt for expected peak input current levels.
  6. For continuous operation, do not run the shunt resistors at more than two-thirds the rated current under normal conditions as per IEEE standards. Further reducing the shunt resistance or increasing the rated wattage may be necessary for applications with stringent power-dissipation requirements.
  7. Use the proper resistor divider values to set the common-mode voltage appropriately.
  8. Select the proper values for the gain setting resistors on channel 2 of the TLV9002 so that the single-ended output has an appropriate output swing.

Design Steps

  1. Determine the transfer equation given the input current range and the fixed gain of the isolation amplifier.
    V O U T = I i n × R s h u n t × 41
  2. Determine the maximum shunt resistor value.
    R s h u n t = V i n M a x I i n M a x = 50   m V 50   A = 1   m Ω
  3. Determine the minimum shunt resistor power dissipation.
    P o w e r   R s h u n t = I i n M a x 2 × R s h u n t = 2500   A × 0.001   Ω = 2.5   W
  4. To interface with a 5 V ADC, the AMC3302 and TLV9002 can both operate at 5 V so a single-supply can be used.
  5. Channel 1 of the TLV9002 is used to set the 2.5 V common-mode voltage of the single-ended output of channel 2. With a 5 V supply, a simple resistor divider can be used to divide 5 V down to 2.5 V. Using 1 kΩ for R4, R3 can be calculated using the following equation.
    R 3 = V D D × R 4 V C M - R 4 = 5   V × 1000   Ω 2.5   V - 1000   Ω = 1000   Ω
  6. The TLV9002 is a rail-to-rail operational amplifier. However, the output of the TLV9002 can swing a maximum of 55 mV from its supply rails. Because of this, the single-ended output should swing from 55 mV to 4.945 V (4.89 Vpk-pk).
  7. The VOUTP and VOUTN outputs of the AMC3302 are 2.05 Vpk-pk, 180 degrees out of phase, and have a common-mode voltage of 1.44 V. Therefore, the differential output is ±2.05 V or 4.1 Vpk-pk. To stay within the output limitations of the TLV9002, the output of the AMC3302 needs to be amplified by a factor of 4.89 / 4.1. When R6 = R7 and R5 = R8, the following transfer function can be used to calculate R5 and R8.
    V O U T = V O U T P - V O U T N × R 5,8 R 6,7 + V C M
  8. Using the previously calculated output swing of the TLV9002 and choosing R6 and R7 to be 10 kΩ, R5 and R8 can be calculated to be 11.93 kΩ using the following equation. To account for standard resistor values, use 11.8 kΩ resistors instead.
    4.945 = 2.465   V - 415   m V × R 5,8 10   k Ω + 2.5

DC Transfer Characteristics

The following plots show the simulated DC characteristics of the single-ended output of the TLV9002 amplifier and the AMC3302 differential output. Both plots show that the outputs are linear at ±50 A.

Closed-Loop AC Simulation Results

The following AC sweep shows the AC transfer characteristics of the single-ended output. Since the AMC3302 has a gain of 41 V/V and a gain of 1.2 V/V is applied with the differential to single-ended conversion, the gain of 33.83 dB shown in the following is expected.

Transient Simulation Results

The following transient simulation shows the output signals of both the AMC3302 and TLV9002 from –50 A to 50 A. The differential output of the AMC3302 is ±2.05 Vpk-pk as expected and the single-ended output is 4.89 Vpk-pk and swings from 55 mV to 4.945 V.

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

Texas Instruments, Interfacing a Differential-Output (Isolated) Amp to a Single-Ended Input ADC application brief.

Design Featured Isolation Amplifier

AMC3302
Working voltage 1200 VRMS
Gain 41 V/V
Bandwidth 340 kHz TYP
Linear input voltage range ±50 mV
AMC3302

Design Differential to Single-Ended Amplifier

TLV9002
VCC 1.8 V to 5.5 V
VinCM, Vout Rail-to-Rail
Vos 400 µV
Iq 60 µA
UGBW 1 MHz
SR 2 V/µs
TLV9002

Design Alternate Isolation Amplifier

AMC3301
Working voltage 1200 VRMS
Gain 8.2 V/V
Bandwidth 334 kHz TYP
Linear input voltage range ±250 mV
AMC3301

Design Alternate Differential to Single-Ended Amplifier

TLV6002
VCC 1.8 V to 5.5 V
VinCM, Vout Rail-to-Rail
Vos 750 µV
Iq 75 µA
UGBW 1 MHz
SR 0.5 V/µs
TLV6002