SPRUJD3A July   2025  â€“ October 2025 F28E120SB , F28E120SC

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. C2000â„¢ Microcontrollers Software Support
    1. 1.1 Introduction
    2. 1.2 C2000Ware Structure
    3. 1.3 Documentation
    4. 1.4 Devices
    5. 1.5 Libraries
    6. 1.6 Code Composer Studioâ„¢ Integrated Development Environment (IDE)
    7. 1.7 SysConfig and PinMUX Tool
  4. C28x Processor
    1. 2.1 Introduction
    2. 2.2 C28X Related Collateral
    3. 2.3 Features
    4. 2.4 Floating-Point Unit (FPU)
  5. System Control and Interrupts
    1. 3.1  Introduction
      1. 3.1.1 SYSCTL Related Collateral
      2. 3.1.2 LOCK Protection on System Configuration Registers
      3. 3.1.3 EALLOW Protection
    2. 3.2  Power Management
    3. 3.3  Device Identification and Configuration Registers
    4. 3.4  Resets
      1. 3.4.1  Reset Sources
      2. 3.4.2  External Reset (XRS)
      3. 3.4.3  Power-On Reset (POR)
      4. 3.4.4  Brown-Out-Reset (BOR)
      5. 3.4.5  Watchdog Reset (WDRS)
      6. 3.4.6  NMI Watchdog Reset (NMIWDRS)
      7. 3.4.7  Debugger Reset (SYSRS)
      8. 3.4.8  DCSM Safe Code Copy Reset (SCCRESET)
      9. 3.4.9  Simulate External Reset (SIMRESET.XRS)
      10. 3.4.10 Simulate CPU Reset (SIMRESET_CPU1RS)
    5. 3.5  Peripheral Interrupts
      1. 3.5.1 Interrupt Concepts
      2. 3.5.2 Interrupt Architecture
        1. 3.5.2.1 Peripheral Stage
        2. 3.5.2.2 PIE Stage
        3. 3.5.2.3 CPU Stage
      3. 3.5.3 Interrupt Entry Sequence
      4. 3.5.4 Configuring and Using Interrupts
        1. 3.5.4.1 Enabling Interrupts
        2. 3.5.4.2 Handling Interrupts
        3. 3.5.4.3 Disabling Interrupts
        4. 3.5.4.4 Nesting Interrupts
        5. 3.5.4.5 Vector Address Validity Check
      5. 3.5.5 PIE Channel Mapping
      6. 3.5.6 PIE Interrupt Priority
        1. 3.5.6.1 Channel Priority
        2. 3.5.6.2 Group Priority
      7. 3.5.7 System Error
      8. 3.5.8 Vector Tables
    6. 3.6  Exceptions and Non-Maskable Interrupts
      1. 3.6.1 Configuring and Using NMIs
      2. 3.6.2 Emulation Considerations
      3. 3.6.3 NMI Sources
        1. 3.6.3.1 Missing Clock Detection Logic
        2. 3.6.3.2 Flash Uncorrectable ECC Error
        3. 3.6.3.3 Software-Forced Error
      4. 3.6.4 Illegal Instruction Trap (ITRAP)
      5. 3.6.5 ERRORSTS Pin
    7. 3.7  Clocking
      1. 3.7.1  Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (SYSOSC)
        2. 3.7.1.2 Backup Wide-Range Oscillator (WROSC)
        3. 3.7.1.3 External Oscillator (XTAL)
      2. 3.7.2  Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.7.3  Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4  XCLKOUT
      5. 3.7.5  Clock Connectivity
      6. 3.7.6  Clock Source and PLL Setup
      7. 3.7.7  Using an External Crystal or Resonator
      8. 3.7.8  Using an External Oscillator
      9. 3.7.9  Choosing PLL Settings
      10. 3.7.10 System Clock Setup
      11. 3.7.11 SYS PLL Bypass
      12. 3.7.12 Clock (OSCCLK) Failure Detection
        1. 3.7.12.1 Missing Clock Detection
    8. 3.8  32-Bit CPU Timers 0/1/2
    9. 3.9  Watchdog Timer
      1. 3.9.1 Servicing the Watchdog Timer
      2. 3.9.2 Minimum Window Check
      3. 3.9.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.9.4 Watchdog Operation in Low Power-Modes
      5. 3.9.5 Emulation Considerations
    10. 3.10 Low-Power Modes
      1. 3.10.1 Clock-Gating Low-Power Modes
      2. 3.10.2 IDLE
      3. 3.10.3 STANDBY
      4. 3.10.4 HALT
    11. 3.11 Memory Controller Module
      1. 3.11.1 Dedicated RAM (Mx RAM)
      2. 3.11.2 Global Shared RAM (GSx RAM)
      3. 3.11.3 Access Arbitration
      4. 3.11.4 Memory Error Detection, Correction, and Error Handling
        1. 3.11.4.1 Error Detection and Correction
        2. 3.11.4.2 Error Handling
      5. 3.11.5 Application Test Hooks for Error Detection and Correction
      6. 3.11.6 RAM Initialization
    12. 3.12 JTAG
      1. 3.12.1 JTAG Noise and TAP_STATUS
    13. 3.13 System Control Register Configuration Restrictions
    14. 3.14 Software
      1. 3.14.1 SYSCTL Examples
        1. 3.14.1.1 Missing clock detection (MCD)
        2. 3.14.1.2 XCLKOUT (External Clock Output) Configuration
    15. 3.15 SYSCTRL Registers
      1. 3.15.1  SYSCTRL Base Address Table
      2. 3.15.2  CPUTIMER_REGS Registers
      3. 3.15.3  PIE_CTRL_REGS Registers
      4. 3.15.4  WD_REGS Registers
      5. 3.15.5  NMI_INTRUPT_REGS Registers
      6. 3.15.6  XINT_REGS Registers
      7. 3.15.7  SYNC_SOC_REGS Registers
      8. 3.15.8  DMA_CLA_SRC_SEL_REGS Registers
      9. 3.15.9  DEV_CFG_REGS Registers
      10. 3.15.10 CLK_CFG_REGS Registers
      11. 3.15.11 CPU_SYS_REGS Registers
      12. 3.15.12 SYS_STATUS_REGS Registers
      13. 3.15.13 MEM_CFG_REGS Registers
      14. 3.15.14 MEMORY_ERROR_REGS Registers
      15. 3.15.15 ROM_WAIT_STATE_REGS Registers
      16. 3.15.16 TEST_ERROR_REGS Registers
      17. 3.15.17 UID_REGS Registers
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
      1. 4.3.1 Default Boot Modes
      2. 4.3.2 Custom Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Boot Flow
      2. 4.5.2 Emulation Boot Flow
      3. 4.5.3 Standalone Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 GPREG2 Usage and Configuration
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Secure Flash Boot
        1. 4.7.4.1 Secure Flash CPU1 Linker File Example
      5. 4.7.5  Memory Maps
        1. 4.7.5.1 Boot ROM Memory Maps
        2. 4.7.5.2 Reserved RAM Memory Maps
      6. 4.7.6  ROM Tables
      7. 4.7.7  Boot Modes and Loaders
        1. 4.7.7.1 Boot Modes
          1. 4.7.7.1.1 Flash Boot
          2. 4.7.7.1.2 RAM Boot
          3. 4.7.7.1.3 Wait Boot
        2. 4.7.7.2 Bootloaders
          1. 4.7.7.2.1 SCI Boot Mode
          2. 4.7.7.2.2 SPI Boot Mode
          3. 4.7.7.2.3 I2C Boot Mode
          4. 4.7.7.2.4 Parallel Boot Mode
      8. 4.7.8  GPIO Assignments
      9. 4.7.9  Secure ROM Function APIs
      10. 4.7.10 Clock Initializations
      11. 4.7.11 Boot Status Information
        1. 4.7.11.1 Booting Status
      12. 4.7.12 ROM Version
    8. 4.8 Application Notes for Using the Bootloaders
      1. 4.8.1 Bootloader Data Stream Structure
        1. 4.8.1.1 Data Stream Structure 8-bit
      2. 4.8.2 The C2000 Hex Utility
        1. 4.8.2.1 HEX2000.exe Command Syntax
    9. 4.9 Software
      1. 4.9.1 BOOT Examples
  7. Dual Code Security Module (DCSM)
    1. 5.1 Introduction
      1. 5.1.1 DCSM Related Collateral
    2. 5.2 Functional Description
      1. 5.2.1 CSM Passwords
      2. 5.2.2 Emulation Code Security Logic (ECSL)
      3. 5.2.3 CPU Secure Logic
      4. 5.2.4 Execute-Only Protection
      5. 5.2.5 Password Lock
      6. 5.2.6 JTAGLOCK
      7. 5.2.7 Link Pointer and Zone Select
      8. 5.2.8 C Code Example to Get Zone Select Block Addr for Zone1
    3. 5.3 Flash and OTP Erase/Program
    4. 5.4 Secure Copy Code
    5. 5.5 SecureCRC
    6. 5.6 CSM Impact on Other On-Chip Resources
      1. 5.6.1 RAMOPEN
    7. 5.7 Incorporating Code Security in User Applications
      1. 5.7.1 Environments That Require Security Unlocking
      2. 5.7.2 CSM Password Match Flow
      3. 5.7.3 C Code Example to Unsecure C28x Zone1
      4. 5.7.4 C Code Example to Resecure C28x Zone1
      5. 5.7.5 Environments That Require ECSL Unlocking
      6. 5.7.6 ECSL Password Match Flow
      7. 5.7.7 ECSL Disable Considerations for any Zone
        1. 5.7.7.1 C Code Example to Disable ECSL for C28x Zone1
      8. 5.7.8 Device Unique ID
    8. 5.8 Software
      1. 5.8.1 DCSM Examples
        1. 5.8.1.1 Empty DCSM Tool Example
    9. 5.9 DCSM Registers
      1. 5.9.1 DCSM Base Address Table
      2. 5.9.2 DCSM_Z1_REGS Registers
      3. 5.9.3 DCSM_Z2_REGS Registers
      4. 5.9.4 DCSM_COMMON_REGS Registers
      5. 5.9.5 DCSM_Z1_OTP Registers
      6. 5.9.6 DCSM_Z2_OTP Registers
  8. Flash Module
    1. 6.1  Introduction to Flash and OTP Memory
      1. 6.1.1 FLASH Related Collateral
      2. 6.1.2 Features
      3. 6.1.3 Flash Tools
      4. 6.1.4 Default Flash Configuration
    2. 6.2  Flash Bank, OTP, and Pump
    3. 6.3  Flash Wrapper
    4. 6.4  Flash and OTP Memory Performance
    5. 6.5  Flash Read Interface
      1. 6.5.1 C28x-Flash Read Interface
        1. 6.5.1.1 Standard Read Mode
        2. 6.5.1.2 Prefetch Mode
        3. 6.5.1.3 Data Cache
        4. 6.5.1.4 Flash Read Operation
    6. 6.6  Flash Erase and Program
      1. 6.6.1 Erase
      2. 6.6.2 Program
      3. 6.6.3 Verify
    7. 6.7  Error Correction Code (ECC) Protection
      1. 6.7.1 Single-Bit Data Error
      2. 6.7.2 Uncorrectable Error
      3. 6.7.3 ECC Logic Self Test
    8. 6.8  Reserved Locations Within Flash and OTP
    9. 6.9  Migrating an Application from RAM to Flash
    10. 6.10 Procedure to Change the Flash Control Registers
    11. 6.11 Software
      1. 6.11.1 FLASH Examples
        1. 6.11.1.1 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
    12. 6.12 FLASH Registers
      1. 6.12.1 FLASH Base Address Table
      2. 6.12.2 FLASH_CTRL_REGS Registers
      3. 6.12.3 FLASH_ECC_REGS Registers
  9. Dual-Clock Comparator (DCC)
    1. 7.1 Introduction
      1. 7.1.1 Features
      2. 7.1.2 Block Diagram
    2. 7.2 Module Operation
      1. 7.2.1 Configuring DCC Counters
      2. 7.2.2 Single-Shot Measurement Mode
      3. 7.2.3 Continuous Monitoring Mode
      4. 7.2.4 Error Conditions
    3. 7.3 Interrupts
    4. 7.4 Software
      1. 7.4.1 DCC Examples
        1. 7.4.1.1 DCC Single shot Clock verification
        2. 7.4.1.2 DCC Single shot Clock measurement
        3. 7.4.1.3 DCC Continuous clock monitoring
        4. 7.4.1.4 DCC Continuous clock monitoring
        5. 7.4.1.5 DCC Detection of clock failure
    5. 7.5 DCC Registers
      1. 7.5.1 DCC Base Address Table
      2. 7.5.2 DCC_REGS Registers
  10. General-Purpose Input/Output (GPIO)
    1. 8.1  Introduction
      1. 8.1.1 GPIO Related Collateral
    2. 8.2  Configuration Overview
    3. 8.3  Digital Inputs on ADC Pins (AIOs)
    4. 8.4  Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 8.5  Digital General-Purpose I/O Control
    6. 8.6  Input Qualification
      1. 8.6.1 No Synchronization (Asynchronous Input)
      2. 8.6.2 Synchronization to SYSCLKOUT Only
      3. 8.6.3 Qualification Using a Sampling Window
    7. 8.7  GPIO and Peripheral Muxing
      1. 8.7.1 GPIO Muxing
      2. 8.7.2 Peripheral Muxing
    8. 8.8  Internal Pullup Configuration Requirements
    9. 8.9  Open-Drain Configuration Requirements
    10. 8.10 Software
      1. 8.10.1 GPIO Examples
        1. 8.10.1.1 Device GPIO Setup
        2. 8.10.1.2 Device GPIO Toggle
        3. 8.10.1.3 Device GPIO Interrupt
        4. 8.10.1.4 External Interrupt (XINT)
      2. 8.10.2 LED Examples
    11. 8.11 GPIO Registers
      1. 8.11.1 GPIO Base Address Table
      2. 8.11.2 GPIO_CTRL_REGS Registers
      3. 8.11.3 GPIO_DATA_REGS Registers
      4. 8.11.4 GPIO_DATA_READ_REGS Registers
  11. Crossbar (X-BAR)
    1. 9.1 Input X-BAR
    2. 9.2 MCPWM and GPIO Output X-BAR
      1. 9.2.1 MCPWM X-BAR
        1. 9.2.1.1 MCPWM X-BAR Architecture
      2. 9.2.2 GPIO Output X-BAR
        1. 9.2.2.1 GPIO Output X-BAR Architecture
      3. 9.2.3 X-BAR Flags
    3. 9.3 XBAR Registers
      1. 9.3.1 XBAR Base Address Table
      2. 9.3.2 INPUT_XBAR_REGS Registers
      3. 9.3.3 XBAR_REGS Registers
      4. 9.3.4 PWM_XBAR_REGS Registers
      5. 9.3.5 OUTPUT_XBAR_REGS Registers
  12. 10Direct Memory Access (DMA)
    1. 10.1 Introduction
      1. 10.1.1 Features
      2. 10.1.2 Block Diagram
    2. 10.2 Architecture
      1. 10.2.1 Peripheral Interrupt Event Trigger Sources
      2. 10.2.2 DMA Bus
    3. 10.3 Address Pointer and Transfer Control
    4. 10.4 Pipeline Timing and Throughput
    5. 10.5 Channel Priority
      1. 10.5.1 Round-Robin Mode
      2. 10.5.2 Channel 1 High-Priority Mode
    6. 10.6 Overrun Detection Feature
    7. 10.7 Software
      1. 10.7.1 DMA Examples
        1. 10.7.1.1 DMA GSRAM Transfer (dma_ex1_gsram_transfer)
        2. 10.7.1.2 DMA GSRAM Transfer (dma_ex2_gsram_transfer)
    8. 10.8 DMA Registers
      1. 10.8.1 DMA Base Address Table
      2. 10.8.2 DMA_REGS Registers
      3. 10.8.3 DMA_CH_REGS Registers
  13. 11Analog Subsystem
    1. 11.1 Introduction
      1. 11.1.1 Features
      2. 11.1.2 Block Diagram
    2. 11.2 Digital Inputs on ADC Pins (AIOs)
    3. 11.3 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    4. 11.4 Analog Pins and Internal Connections
    5. 11.5 ASBSYS Registers
      1. 11.5.1 ASBSYS Base Address Table
      2. 11.5.2 ANALOG_SUBSYS_REGS Registers
  14. 12Analog-to-Digital Converter (ADC)
    1. 12.1  Introduction
      1. 12.1.1 Features
      2. 12.1.2 ADC Related Collateral
      3. 12.1.3 Block Diagram
    2. 12.2  ADC Configurability
      1. 12.2.1 ADC Clock Configuration
      2. 12.2.2 Resolution
      3. 12.2.3 Voltage Reference
        1. 12.2.3.1 External Reference Mode
        2. 12.2.3.2 Internal Reference Mode
        3. 12.2.3.3 Selecting Reference Mode
      4. 12.2.4 Signal Mode
        1. 12.2.4.1 Expected Conversion Results
        2. 12.2.4.2 Interpreting Conversion Results
    3. 12.3  SOC Principle of Operation
      1. 12.3.1 SOC Configuration
      2. 12.3.2 Trigger Operation
        1. 12.3.2.1 Trigger Repeaters
          1. 12.3.2.1.1 Oversampling Mode
          2. 12.3.2.1.2 Re-trigger Spread
          3. 12.3.2.1.3 Trigger Repeater Configuration
            1. 12.3.2.1.3.1 Register Shadow Updates
          4. 12.3.2.1.4 Re-Trigger Logic
          5. 12.3.2.1.5 Multi-Path Triggering Behavior
      3. 12.3.3 ADC Acquisition (Sample and Hold) Window
      4. 12.3.4 Sample Capacitor Reset
      5. 12.3.5 ADC Input Models
      6. 12.3.6 Channel Selection
    4. 12.4  SOC Configuration Examples
      1. 12.4.1 Single Conversion from MCPWM Trigger
      2. 12.4.2 Multiple Conversions from CPU Timer Trigger
      3. 12.4.3 Software Triggering of SOCs
    5. 12.5  ADC Conversion Priority
    6. 12.6  EOC and Interrupt Operation
      1. 12.6.1 Interrupt Overflow
      2. 12.6.2 Continue to Interrupt Mode
      3. 12.6.3 Early Interrupt Configuration Mode
    7. 12.7  Post-Processing Blocks
      1. 12.7.1 PPB Offset Correction
      2. 12.7.2 PPB Error Calculation
      3. 12.7.3 PPB Limit Detection and Zero-Crossing Detection
    8. 12.8  Opens/Shorts Detection Circuit (OSDETECT)
      1. 12.8.1 Open Short Detection Implementation
      2. 12.8.2 Detecting an Open Input Pin
      3. 12.8.3 Detecting a Shorted Input Pin
    9. 12.9  Power-Up Sequence
    10. 12.10 ADC Calibration
      1. 12.10.1 ADC Zero Offset Calibration
    11. 12.11 ADC Timings
      1. 12.11.1 ADC Timing Diagrams
      2. 12.11.2 Post-Processing Block Timings
    12. 12.12 Additional Information
      1. 12.12.1 Choosing an Acquisition Window Duration
      2. 12.12.2 Result Register Mapping
      3. 12.12.3 Internal Temperature Sensor
      4. 12.12.4 Designing an External Reference Circuit
      5. 12.12.5 ADC-DAC Loopback Testing
      6. 12.12.6 Internal Test Mode
    13. 12.13 Software
      1. 12.13.1 ADC Examples
        1. 12.13.1.1 ADC Software Triggering
        2. 12.13.1.2 ADC MCPWM Triggering
        3. 12.13.1.3 ADC Temperature Sensor Conversion
        4. 12.13.1.4 ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma)
        5. 12.13.1.5 ADC PPB Offset (adc_ppb_offset)
        6. 12.13.1.6 ADC PPB Limits (adc_ppb_limits)
        7. 12.13.1.7 ADC SOC Oversampling
        8. 12.13.1.8 ADC Trigger Repeater Oversampling
    14. 12.14 ADC Registers
      1. 12.14.1 ADC Base Address Table
      2. 12.14.2 ADC_LITE_RESULT_REGS Registers
      3. 12.14.3 ADC_LITE_REGS Registers
  15. 13Comparator Subsystem (CMPSS)
    1. 13.1 Introduction
      1. 13.1.1 Features
      2. 13.1.2 CMPSS Related Collateral
      3. 13.1.3 Block Diagram
    2. 13.2 Comparator
    3. 13.3 Reference DAC
    4. 13.4 Digital Filter
      1. 13.4.1 Filter Initialization Sequence
    5. 13.5 Using the CMPSS
      1. 13.5.1 LATCHCLR, and MCPWMSYNCPER Signals
      2. 13.5.2 Synchronizer, Digital Filter, and Latch Delays
      3. 13.5.3 Calibrating the CMPSS
      4. 13.5.4 Enabling and Disabling the CMPSS Clock
    6. 13.6 CMPSS DAC Output
    7. 13.7 Software
      1. 13.7.1 CMPSS Examples
      2. 13.7.2 CMPSS_LITE Examples
        1. 13.7.2.1 CMPSSLITE Asynchronous Trip
    8. 13.8 CMPSS Registers
      1. 13.8.1 CMPSS Base Address Table
      2. 13.8.2 CMPSS_LITE_REGS Registers
  16. 14Programmable Gain Amplifier (PGA)
    1. 14.1  Programmable Gain Amplifier (PGA) Overview
      1. 14.1.1 Features
      2. 14.1.2 Block Diagram
    2. 14.2  Linear Output Range
    3. 14.3  Gain Values
    4. 14.4  Modes of Operation
      1. 14.4.1 Buffer Mode
      2. 14.4.2 Standalone Mode
      3. 14.4.3 Non-inverting Mode
      4. 14.4.4 Subtractor Mode
    5. 14.5  External Filtering
      1. 14.5.1 Low-Pass Filter Using Internal Filter Resistor and External Capacitor
      2. 14.5.2 Single Pole Low-Pass Filter Using Internal Gain Resistor and External Capacitor
    6. 14.6  Error Calibration
      1. 14.6.1 Offset Error
      2. 14.6.2 Gain Error
    7. 14.7  Chopping Feature
    8. 14.8  Enabling and Disabling the PGA Clock
    9. 14.9  Lock Register
    10. 14.10 Analog Front-End Integration
      1. 14.10.1 Analog-to-Digital Converter (ADC)
        1. 14.10.1.1 Unfiltered Acquisition Window
        2. 14.10.1.2 Filtered Acquisition Window
      2. 14.10.2 Comparator Subsystem (CMPSS)
      3. 14.10.3 Alternate Functions
    11. 14.11 Examples
      1. 14.11.1 Non-Inverting Amplifier Using Non-Inverting Mode
      2. 14.11.2 Buffer Mode
      3. 14.11.3 Low-Side Current Sensing
      4. 14.11.4 Bidirectional Current Sensing
    12. 14.12 Software
      1. 14.12.1 PGA Examples
        1. 14.12.1.1 PGA CMPSSDAC-ADC External Loopback Example
    13. 14.13 PGA Registers
      1. 14.13.1 PGA Base Address Table
      2. 14.13.2 PGA_REGS Registers
  17. 15Multi-Channel Pulse Width Modulator (MCPWM)
    1. 15.1  Introduction
      1. 15.1.1 PWM Related Collateral
      2. 15.1.2 Submodule Overview
    2. 15.2  Configuring Device Pins
    3. 15.3  MCPWM Modules Overview
    4. 15.4  Time-Base (TB) Submodule
      1. 15.4.1 Purpose of the Time-Base Submodule
      2. 15.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 15.4.3 Calculating PWM Period and Frequency
        1. 15.4.3.1 Time-Base Period Shadow Register
        2. 15.4.3.2 Time-Base Clock Synchronization
        3. 15.4.3.3 Time-Base Counter Synchronization
        4. 15.4.3.4 MCPWM SYNC Selection
      4. 15.4.4 Phase Locking the Time-Base Clocks of Multiple MCPWM Modules
      5. 15.4.5 Time-Base Counter Modes and Timing Waveforms
      6. 15.4.6 Global Load
        1. 15.4.6.1 One-Shot Load Mode
    5. 15.5  Counter-Compare (CC) Submodule
      1. 15.5.1 Purpose of the Counter-Compare Submodule
      2. 15.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 15.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 15.5.4 Count Mode Timing Waveforms
    6. 15.6  Action-Qualifier (AQ) Submodule
      1. 15.6.1 Purpose of the Action-Qualifier Submodule
      2. 15.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 15.6.3 Action-Qualifier Event Priority
      4. 15.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 15.6.5 Configuration Requirements for Common Waveforms
    7. 15.7  Dead-Band Generator (DB) Submodule
      1. 15.7.1 Purpose of the Dead-Band Submodule
      2. 15.7.2 Dead-Band Submodule Additional Operating Modes
      3. 15.7.3 Operational Highlights for the Dead-Band Submodule
    8. 15.8  Trip-Zone (TZ) Submodule
      1. 15.8.1 Purpose of the Trip-Zone Submodule
      2. 15.8.2 Operational Highlights for the Trip-Zone Submodule
        1. 15.8.2.1 Trip-Zone Configurations
      3. 15.8.3 Generating Trip Event Interrupts
    9. 15.9  Event-Trigger (ET) Submodule
      1. 15.9.1 Operational Overview of the MCPWM Event-Trigger Submodule
    10. 15.10 PWM Crossbar (X-BAR)
    11. 15.11 Software
      1. 15.11.1 MCPWM Examples
        1. 15.11.1.1 MCPWM Basic PWM Generation and Updates
        2. 15.11.1.2 MCPWM Basic PWM Generation and Updates
        3. 15.11.1.3 MCPWM Basic PWM generation With DeadBand
        4. 15.11.1.4 MCPWM Basic PWM Generation and Updates without Sysconfig
        5. 15.11.1.5 MCPWM PWM Tripzone Feature Showcase
        6. 15.11.1.6 MCPWM Global Load Feature Showcase
        7. 15.11.1.7 MCPWM DMA Configuration for Dynamic PWM Control
    12. 15.12 MCPWM Registers
      1. 15.12.1 MCPWM Base Address Table
      2. 15.12.2 MCPWM_6CH_REGS Registers
      3. 15.12.3 MCPWM_2CH_REGS Registers
  18. 16Enhanced Capture (eCAP)
    1. 16.1 Introduction
      1. 16.1.1 Features
      2. 16.1.2 ECAP Related Collateral
    2. 16.2 Description
    3. 16.3 Configuring Device Pins for the eCAP
    4. 16.4 Capture and APWM Operating Mode
    5. 16.5 Capture Mode Description
      1. 16.5.1 Event Prescaler
      2. 16.5.2 Edge Polarity Select and Qualifier
      3. 16.5.3 Continuous/One-Shot Control
      4. 16.5.4 32-Bit Counter and Phase Control
      5. 16.5.5 CAP1-CAP4 Registers
      6. 16.5.6 eCAP Synchronization
        1. 16.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 16.5.7 Interrupt Control
      8. 16.5.8 Shadow Load and Lockout Control
      9. 16.5.9 APWM Mode Operation
    6. 16.6 Application of the eCAP Module
      1. 16.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 16.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 16.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 16.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 16.7 Application of the APWM Mode
      1. 16.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 16.8 Software
      1. 16.8.1 ECAP Examples
        1. 16.8.1.1 eCAP APWM Example
        2. 16.8.1.2 eCAP Capture PWM Example
    9. 16.9 ECAP Registers
      1. 16.9.1 ECAP Base Address Table
      2. 16.9.2 ECAP_REGS Registers
  19. 17Enhanced Quadrature Encoder Pulse (eQEP)
    1. 17.1  Introduction
      1. 17.1.1 EQEP Related Collateral
    2. 17.2  Configuring Device Pins
    3. 17.3  Description
      1. 17.3.1 EQEP Inputs
      2. 17.3.2 Functional Description
      3. 17.3.3 eQEP Memory Map
    4. 17.4  Quadrature Decoder Unit (QDU)
      1. 17.4.1 Position Counter Input Modes
        1. 17.4.1.1 Quadrature Count Mode
        2. 17.4.1.2 Direction-Count Mode
        3. 17.4.1.3 Up-Count Mode
        4. 17.4.1.4 Down-Count Mode
      2. 17.4.2 eQEP Input Polarity Selection
      3. 17.4.3 Position-Compare Sync Output
    5. 17.5  Position Counter and Control Unit (PCCU)
      1. 17.5.1 Position Counter Operating Modes
        1. 17.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM] = 00)
        2. 17.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM] = 01)
        3. 17.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 17.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 17.5.2 Position Counter Latch
        1. 17.5.2.1 Index Event Latch
        2. 17.5.2.2 Strobe Event Latch
      3. 17.5.3 Position Counter Initialization
      4. 17.5.4 eQEP Position-compare Unit
    6. 17.6  eQEP Edge Capture Unit
    7. 17.7  eQEP Watchdog
    8. 17.8  eQEP Unit Timer Base
    9. 17.9  QMA Module
      1. 17.9.1 Modes of Operation
        1. 17.9.1.1 QMA Mode-1 (QMACTRL[MODE] = 1)
        2. 17.9.1.2 QMA Mode-2 (QMACTRL[MODE] = 2)
      2. 17.9.2 Interrupt and Error Generation
    10. 17.10 eQEP Interrupt Structure
    11. 17.11 Software
      1. 17.11.1 EQEP Examples
        1. 17.11.1.1 Frequency Measurement Using eQEP
        2. 17.11.1.2 Position and Speed Measurement Using eQEP
        3. 17.11.1.3 Frequency Measurement Using eQEP via unit timeout interrupt
        4. 17.11.1.4 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 17.12 EQEP Registers
      1. 17.12.1 EQEP Base Address Table
      2. 17.12.2 EQEP_REGS Registers
  20. 18Universal Asynchronous Receiver/Transmitter (UART)
    1. 18.1 Introduction
      1. 18.1.1 Features
      2. 18.1.2 Block Diagram
    2. 18.2 Functional Description
      1. 18.2.1 Transmit and Receive Logic
      2. 18.2.2 Baud-Rate Generation
      3. 18.2.3 Data Transmission
      4. 18.2.4 Serial IR (SIR)
      5. 18.2.5 9-Bit UART Mode
      6. 18.2.6 FIFO Operation
      7. 18.2.7 Interrupts
      8. 18.2.8 Loopback Operation
      9. 18.2.9 DMA Operation
        1. 18.2.9.1 Receiving Data Using UART with DMA
        2. 18.2.9.2 Transmitting Data Using UART with DMA
    3. 18.3 Initialization and Configuration
    4. 18.4 Software
      1. 18.4.1 UART Examples
        1. 18.4.1.1 UART Echoback
        2. 18.4.1.2 UART Loopback
        3. 18.4.1.3 UART Loopback with interrupt
        4. 18.4.1.4 UART Digital Loopback with DMA
    5. 18.5 UART Registers
      1. 18.5.1 UART Base Address Table
      2. 18.5.2 UART_REGS Registers
      3. 18.5.3 UART_REGS_WRITE Registers
  21. 19Serial Peripheral Interface (SPI)
    1. 19.1 Introduction
      1. 19.1.1 Features
      2. 19.1.2 Block Diagram
    2. 19.2 System-Level Integration
      1. 19.2.1 SPI Module Signals
      2. 19.2.2 Configuring Device Pins
        1. 19.2.2.1 GPIOs Required for High-Speed Mode
      3. 19.2.3 SPI Interrupts
      4. 19.2.4 DMA Support
    3. 19.3 SPI Operation
      1. 19.3.1  Introduction to Operation
      2. 19.3.2  Controller Mode
      3. 19.3.3  Peripheral Mode
      4. 19.3.4  Data Format
        1. 19.3.4.1 Transmission of Bit from SPIRXBUF
      5. 19.3.5  Baud Rate Selection
        1. 19.3.5.1 Baud Rate Determination
        2. 19.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 19.3.6  SPI Clocking Schemes
      7. 19.3.7  SPI FIFO Description
      8. 19.3.8  SPI DMA Transfers
        1. 19.3.8.1 Transmitting Data Using SPI with DMA
        2. 19.3.8.2 Receiving Data Using SPI with DMA
      9. 19.3.9  SPI High-Speed Mode
      10. 19.3.10 SPI 3-Wire Mode Description
    4. 19.4 Programming Procedure
      1. 19.4.1 Initialization Upon Reset
      2. 19.4.2 Configuring the SPI
      3. 19.4.3 Configuring the SPI for High-Speed Mode
      4. 19.4.4 Data Transfer Example
      5. 19.4.5 SPI 3-Wire Mode Code Examples
        1. 19.4.5.1 3-Wire Controller Mode Transmit
        2.       679
          1. 19.4.5.2.1 3-Wire Controller Mode Receive
        3.       681
          1. 19.4.5.2.1 3-Wire Peripheral Mode Transmit
        4.       683
          1. 19.4.5.2.1 3-Wire Peripheral Mode Receive
      6. 19.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 19.5 Software
      1. 19.5.1 SPI Examples
        1. 19.5.1.1 SPI Digital Loopback
        2. 19.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 19.5.1.3 SPI Digital Loopback with DMA
        4. 19.5.1.4 SPI EEPROM
        5. 19.5.1.5 SPI DMA EEPROM
    6. 19.6 SPI Registers
      1. 19.6.1 SPI Base Address Table
      2. 19.6.2 SPI_REGS Registers
  22. 20Inter-Integrated Circuit Module (I2C)
    1. 20.1 Introduction
      1. 20.1.1 I2C Related Collateral
      2. 20.1.2 Features
      3. 20.1.3 Features Not Supported
      4. 20.1.4 Functional Overview
      5. 20.1.5 Clock Generation
      6. 20.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 20.1.6.1 Formula for the Controller Clock Period
    2. 20.2 Configuring Device Pins
    3. 20.3 I2C Module Operational Details
      1. 20.3.1  Input and Output Voltage Levels
      2. 20.3.2  Selecting Pullup Resistors
      3. 20.3.3  Data Validity
      4. 20.3.4  Operating Modes
      5. 20.3.5  I2C Module START and STOP Conditions
      6. 20.3.6  Non-repeat Mode versus Repeat Mode
      7. 20.3.7  Serial Data Formats
        1. 20.3.7.1 7-Bit Addressing Format
        2. 20.3.7.2 10-Bit Addressing Format
        3. 20.3.7.3 Free Data Format
        4. 20.3.7.4 Using a Repeated START Condition
      8. 20.3.8  Clock Synchronization
      9. 20.3.9  Clock Stretching
      10. 20.3.10 Arbitration
      11. 20.3.11 Digital Loopback Mode
      12. 20.3.12 NACK Bit Generation
    4. 20.4 Interrupt Requests Generated by the I2C Module
      1. 20.4.1 Basic I2C Interrupt Requests
      2. 20.4.2 I2C FIFO Interrupts
    5. 20.5 Resetting or Disabling the I2C Module
    6. 20.6 Software
      1. 20.6.1 I2C Registers to Driverlib Functions
      2. 20.6.2 I2C Examples
        1. 20.6.2.1 C28x-I2C Library source file for FIFO interrupts
        2. 20.6.2.2 C28x-I2C Library source file for FIFO using polling
        3. 20.6.2.3 I2C Digital Loopback with FIFO Interrupts
        4. 20.6.2.4 I2C EEPROM
        5. 20.6.2.5 I2C EEPROM
        6. 20.6.2.6 I2C EEPROM
    7. 20.7 I2C Registers
      1. 20.7.1 I2C Base Address Table
      2. 20.7.2 I2C_REGS Registers
  23. 21Serial Communications Interface (SCI)
    1. 21.1  Introduction
      1. 21.1.1 Features
      2. 21.1.2 SCI Related Collateral
      3. 21.1.3 Block Diagram
    2. 21.2  Architecture
    3. 21.3  SCI Module Signal Summary
    4. 21.4  Configuring Device Pins
    5. 21.5  Multiprocessor and Asynchronous Communication Modes
    6. 21.6  SCI Programmable Data Format
    7. 21.7  SCI Multiprocessor Communication
      1. 21.7.1 Recognizing the Address Byte
      2. 21.7.2 Controlling the SCI TX and RX Features
      3. 21.7.3 Receipt Sequence
    8. 21.8  Idle-Line Multiprocessor Mode
      1. 21.8.1 Idle-Line Mode Steps
      2. 21.8.2 Block Start Signal
      3. 21.8.3 Wake-Up Temporary (WUT) Flag
        1. 21.8.3.1 Sending a Block Start Signal
      4. 21.8.4 Receiver Operation
    9. 21.9  Address-Bit Multiprocessor Mode
      1. 21.9.1 Sending an Address
    10. 21.10 SCI Communication Format
      1. 21.10.1 Receiver Signals in Communication Modes
      2. 21.10.2 Transmitter Signals in Communication Modes
    11. 21.11 SCI Port Interrupts
      1. 21.11.1 Break Detect
    12. 21.12 SCI Baud Rate Calculations
    13. 21.13 SCI Enhanced Features
      1. 21.13.1 SCI FIFO Description
      2. 21.13.2 SCI Auto-Baud
      3. 21.13.3 Autobaud-Detect Sequence
    14. 21.14 Software
      1. 21.14.1 SCI Examples
        1. 21.14.1.1 Tune Baud Rate via UART Example
        2. 21.14.1.2 SCI FIFO Digital Loop Back
        3. 21.14.1.3 SCI Digital Loop Back with Interrupts
        4. 21.14.1.4 SCI Echoback
        5. 21.14.1.5 stdout redirect example
    15. 21.15 SCI Registers
      1. 21.15.1 SCI Base Address Table
      2. 21.15.2 SCI_REGS Registers
  24. 22Revision History

DMA_CH_REGS Registers

Table 10-10 lists the memory-mapped registers for the DMA_CH_REGS registers. All register offset addresses not listed in Table 10-10 should be considered as reserved locations and the register contents should not be modified.

Table 10-10 DMA_CH_REGS Registers
OffsetAcronymRegister NameWrite Protection
0hMODEMode RegisterEALLOW
1hCONTROLControl RegisterEALLOW
2hBURST_SIZEBurst Size RegisterEALLOW
3hBURST_COUNTBurst Count RegisterEALLOW
4hSRC_BURST_STEPSource Burst Step RegisterEALLOW
5hDST_BURST_STEPDestination Burst Step RegisterEALLOW
6hTRANSFER_SIZETransfer Size RegisterEALLOW
7hTRANSFER_COUNTTransfer Count RegisterEALLOW
8hSRC_TRANSFER_STEPSource Transfer Step RegisterEALLOW
9hDST_TRANSFER_STEPDestination Transfer Step RegisterEALLOW
AhSRC_WRAP_SIZESource Wrap Size RegisterEALLOW
BhSRC_WRAP_COUNTSource Wrap Count RegisterEALLOW
ChSRC_WRAP_STEPSource Wrap Step RegisterEALLOW
DhDST_WRAP_SIZEDestination Wrap Size RegisterEALLOW
EhDST_WRAP_COUNTDestination Wrap Count RegisterEALLOW
FhDST_WRAP_STEPDestination Wrap Step RegisterEALLOW
10hSRC_BEG_ADDR_SHADOWSource Begin Address Shadow RegisterEALLOW
12hSRC_ADDR_SHADOWSource Address Shadow RegisterEALLOW
14hSRC_BEG_ADDR_ACTIVESource Begin Address Active RegisterEALLOW
16hSRC_ADDR_ACTIVESource Address Active RegisterEALLOW
18hDST_BEG_ADDR_SHADOWDestination Begin Address Shadow RegisterEALLOW
1AhDST_ADDR_SHADOWDestination Address Shadow RegisterEALLOW
1ChDST_BEG_ADDR_ACTIVEDestination Begin Address Active RegisterEALLOW
1EhDST_ADDR_ACTIVEDestination Address Active RegisterEALLOW

Complex bit access types are encoded to fit into small table cells. Table 10-11 shows the codes that are used for access types in this section.

Table 10-11 DMA_CH_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1SW
1S
Write
1 to set
Reset or Default Value
-nValue after reset or the default value

10.8.3.1 MODE Register (Offset = 0h) [Reset = 0000h]

MODE is shown in Figure 10-12 and described in Table 10-12.

Return to the Summary Table.

Mode Register

Figure 10-12 MODE Register
15141312111098
CHINTEDATASIZERESERVEDRESERVEDCONTINUOUSONESHOTCHINTMODEPERINTE
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
OVRINTERESERVEDPERINTSEL
R/W-0hR-0hR/W-0h
Table 10-12 MODE Register Field Descriptions
BitFieldTypeResetDescription
15CHINTER/W0hChannel Interrupt Enable Bit

This bit enables the DMA channel's CPU interrupt.

Reset type: SYSRSn


0h (R/W) = Interrupt disabled
1h (R/W) = Interrupt enabled
14DATASIZER/W0hData Size Mode Bit

This bit determines whether the DMA channel transfers 16 bits or 32 bits of data per read/write operation. Regardless of this setting, all data lengths and offsets in other DMA registers refer to 16- bit words. The pointer step increments must be configured to accomodate 32-bit words.

Reset type: SYSRSn


0h (R/W) = 16-bit data transfer size
1h (R/W) = 32-bit data transfer size
13RESERVEDR/W0hReserved
12RESERVEDR/W0hReserved
11CONTINUOUSR/W0hContinuous Mode Bit

If this bit is set to 1, then the channel re-initializes when TRANSFER_COUNT is zero and waits for the next event trigger. Otherwise, the DMA stops and clears the RUNSTS bit.

Reset type: SYSRSn

10ONESHOTR/W0hOne Shot Mode

If this bit is set to 1, each peripheral event trigger causes the channel to perform an entire transfer. Otherwise, the channel only performs one burst per trigger.

Reset type: SYSRSn

9CHINTMODER/W0hChannel Interrupt Generation Mode

This bit specifies when the DMA channel generates a CPU interrupt for a transfer.

Reset type: SYSRSn


0h (R/W) = Generate interrupt at beginning of new transfer
1h (R/W) = Generate interrupt at end of transfer.
8PERINTER/W0hPeripheral Event Trigger Enable

This bit enables peripheral event triggers on the DMA channel.

Reset type: SYSRSn


0h (R/W) = Peripheral event trigger disabled. Neither the selected peripheral nor software can start a DMA burst.
1h (R/W) = Peripheral event trigger enabled.
7OVRINTER/W0hOverflow Interrupt Enable

The bit determines whether the DMA module generates a CPU interrupt when it detects an overflow event.

Reset type: SYSRSn


0h (R/W) = Overflow interrupt disabled
1h (R/W) = Overflow interrupt enabled
6-5RESERVEDR0hReserved
4-0PERINTSELR/W0hPeripheral Event Trigger Source Select

These are legacy bits and should be set to the channel number. The actual source selection is done via the DMACHSRCSELn registers, which are part of the DMA_CLA_SRC_SEL_REGS group.

Reset type: SYSRSn

10.8.3.2 CONTROL Register (Offset = 1h) [Reset = 0000h]

CONTROL is shown in Figure 10-13 and described in Table 10-13.

Return to the Summary Table.

Control Register

Figure 10-13 CONTROL Register
15141312111098
RESERVEDOVRFLGRUNSTSBURSTSTSTRANSFERSTSRESERVEDRESERVEDPERINTFLG
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
76543210
ERRCLRRESERVEDRESERVEDPERINTCLRPERINTFRCSOFTRESETHALTRUN
R-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
Table 10-13 CONTROL Register Field Descriptions
BitFieldTypeResetDescription
15RESERVEDR0hReserved
14OVRFLGR0hOverflow Flag

This bit indicates that a peripheral event trigger was received while PERINTFLG was already set. It can be cleared by writing to the ERRCLR bit.

Reset type: SYSRSn


0h (R/W) = No overflow detected
1h (R/W) = Overflow detected
13RUNSTSR0hRun Status Flag

This bit indicates that the DMA channel is ready to respond to peripheral event triggers. This bit is set when a 1 is written to the RUN bit. It is cleared when a transfer completes (TRANSFER_COUNT = 0) and continuous mode is disabled, or when the HARDRESET, SOFTRESET, or HALT bit is set.

Reset type: SYSRSn


0h (R/W) = The channel is disabled
1h (R/W) = The channel is enabled
12BURSTSTSR0hBurst Status Flag

This bit is set when a DMA burst begins. The BURST_COUNT is set to the BURST_SIZE. This bit is cleared when BURST_COUNT reaches zero, or when the HARDRESET or SOFTRESET bit is set.

Reset type: SYSRSn


0h (R/W) = No burst activity
1h (R/W) = The DMA is currently servicing or suspending a burst transfer from this channel
11TRANSFERSTSR0hTransfer Status Flag

This bit is set when a DMA transfer begins. The address registers are copied to the shadow set and the TRANSFER_COUNT is set to the TRANSFER_SIZE. This bit is cleared when TRANSFER_COUNT reaches zero, or when the HARDRESET or SOFTRESET bit is set.

Reset type: SYSRSn


0h (R/W) = No transfer activity
1h (R/W) = The channel is currently in the middle of a transfer regardless of whether a burst of data is actively being transferred or not
10RESERVEDR0hReserved
9RESERVEDR0hReserved
8PERINTFLGR0hPeripheral Event Trigger Flag

This bit indicates whether a peripheral event trigger has arrived. This bit is automatically cleared when the first burst transfer begins.

Reset type: SYSRSn


0h (R/W) = Waiting for event trigger
1h (R/W) = Event trigger pending
7ERRCLRR-0/W1S0hClear Error

Writing a 1 to this bit will clear the OVRFLG bit. This is normally done when initializing the DMA module or if an overflow condition is detected. If an overflow event occurs at the same time this bit is set, the overrun has priority and the OVRFLG bit is set.

Reset type: SYSRSn

6RESERVEDR-0/W1S0hReserved
5RESERVEDR-0/W1S0hReserved
4PERINTCLRR-0/W1S0hClear Peripheral Event Trigger

Writing a 1 to this bit clears PERINTFLG, which cancels a pending event trigger. This is normally done when initializing the DMA module. If an event trigger arrives at the same time this bit is set, the trigger has priority and PERINTFLG is set.

Reset type: SYSRSn

3PERINTFRCR-0/W1S0hForce Peripheral Event Trigger

If the PERINTE bit of the MODE register is set, writing a 1 to this bit sets PERINTFLG, which triggers a DMA burst. This bit can be used to start a DMA transfer in software.

Reset type: SYSRSn

2SOFTRESETR-0/W1S0hChannel Soft Reset

Writing a 1 to this bit places the channel into its default state after the current read/write access has completed:

RUNSTS = 0
TRANSFERSTS = 0
BURSTSTS = 0
BURST_COUNT = 0
TRANSFER_COUNT = 0
SRC_WRAP_COUNT = 0
DST_WRAP_COUNT = 0

When writing to this bit, there is a one cycle delay before it takes effect. Hence, a one-cycle delay (such as a NOP instruction) is required in software before attempting to access any other DMA register.

Reset type: SYSRSn

1HALTR-0/W1S0hHalt Channel

Writing a 1 to this bit halts the DMA channel in its current state after any ongoing read/write access has completed.

Reset type: SYSRSn

0RUNR-0/W1S0hRun Channel

Writing a 1 to this bit enables the DMA channel and sets the RUNSTS bit to 1. This bit is also used to resume after a channel halt.

The RUN bit is typically used to start the DMA channel after configuration. The channel will then wait for the first peripheral event trigger (PERINTFLG == 1) to start a burst.

Reset type: SYSRSn

10.8.3.3 BURST_SIZE Register (Offset = 2h) [Reset = 0000h]

BURST_SIZE is shown in Figure 10-14 and described in Table 10-14.

Return to the Summary Table.

Burst Size Register

Figure 10-14 BURST_SIZE Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDBURSTSIZE
R-0hR/W-0h
Table 10-14 BURST_SIZE Register Field Descriptions
BitFieldTypeResetDescription
15-5RESERVEDR0hReserved
4-0BURSTSIZER/W0hThese bits specify the burst size in 16-bit words. The actual size is equal to BURSTSIZE + 1.

Reset type: SYSRSn

10.8.3.4 BURST_COUNT Register (Offset = 3h) [Reset = 0000h]

BURST_COUNT is shown in Figure 10-15 and described in Table 10-15.

Return to the Summary Table.

Burst Count Register

Figure 10-15 BURST_COUNT Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDBURSTCOUNT
R-0hR-0h
Table 10-15 BURST_COUNT Register Field Descriptions
BitFieldTypeResetDescription
15-5RESERVEDR0hReserved
4-0BURSTCOUNTR0hThese bits indicate the number of words left in the current burst.

Reset type: SYSRSn


0h (R/W) = 0 word left in a burst
1h (R/W) = 1 word left in a burst
2h (R/W) = 2 word left in a burst
3h (R/W) = 3 word left in a burst
4h (R/W) = 4 word left in a burst
5h (R/W) = 5 word left in a burst
6h (R/W) = 6 word left in a burst
7h (R/W) = 7 word left in a burst
8h (R/W) = 8 word left in a burst
9h (R/W) = 9 word left in a burst
Ah (R/W) = 10 word left in a burst
Bh (R/W) = 11 word left in a burst
Ch (R/W) = 12 word left in a burst
Dh (R/W) = 13 word left in a burst
Eh (R/W) = 14 word left in a burst
Fh (R/W) = 15 word left in a burst
10h (R/W) = 16 word left in a burst
11h (R/W) = 17 word left in a burst
12h (R/W) = 18 word left in a burst
13h (R/W) = 19 word left in a burst
14h (R/W) = 20 word left in a burst
15h (R/W) = 21 word left in a burst
16h (R/W) = 22 word left in a burst
17h (R/W) = 23 word left in a burst
18h (R/W) = 24 word left in a burst
19h (R/W) = 25 word left in a burst
1Ah (R/W) = 26 word left in a burst
1Bh (R/W) = 27 word left in a burst
1Ch (R/W) = 28 word left in a burst
1Dh (R/W) = 29 word left in a burst
1Eh (R/W) = 30 word left in a burst
1Fh (R/W) = 31 word left in a burst

10.8.3.5 SRC_BURST_STEP Register (Offset = 4h) [Reset = 0000h]

SRC_BURST_STEP is shown in Figure 10-16 and described in Table 10-16.

Return to the Summary Table.

Source Burst Step Register

Figure 10-16 SRC_BURST_STEP Register
15141312111098
SRCBURSTSTEP
R/W-0h
76543210
SRCBURSTSTEP
R/W-0h
Table 10-16 SRC_BURST_STEP Register Field Descriptions
BitFieldTypeResetDescription
15-0SRCBURSTSTEPR/W0hThese bits specify the change in the source address after each word in a burst. The size must be a 16-bit two's complement value between -4096 and 4095 (inclusive). This value is added to the source address after each read/write operation in a burst.

Reset type: SYSRSn


0h (R/W) = No address change
1h (R/W) = Add 1 to the address
2h (R/W) = Add 2 to the address
FFEh (R/W) = Add 4094 to the address
FFFh (R/W) = Add 4095 to the address
F000h (R/W) = Subtract 4096 from the address
F001h (R/W) = Subtract 4095 from the address
FFFEh (R/W) = Subtract 2 from the address
FFFFh (R/W) = Subtract 1 from the address

10.8.3.6 DST_BURST_STEP Register (Offset = 5h) [Reset = 0000h]

DST_BURST_STEP is shown in Figure 10-17 and described in Table 10-17.

Return to the Summary Table.

Destination Burst Step Register

Figure 10-17 DST_BURST_STEP Register
15141312111098
DSTBURSTSTEP
R/W-0h
76543210
DSTBURSTSTEP
R/W-0h
Table 10-17 DST_BURST_STEP Register Field Descriptions
BitFieldTypeResetDescription
15-0DSTBURSTSTEPR/W0hThese bits specify the change in the destination address after each word in a burst. The size must be a 16-bit two's complement value between -4096 and 4095 (inclusive). This value is added to the destination address after each read/write operation in a burst.

Reset type: SYSRSn


0h (R/W) = No address change
1h (R/W) = Add 1 to the address
2h (R/W) = Add 2 to the address
FFEh (R/W) = Add 4094 to the address
FFFh (R/W) = Add 4095 to the address
F000h (R/W) = Subtract 4096 from the address
F001h (R/W) = Subtract 4095 from the address
FFFEh (R/W) = Subtract 2 from the address
FFFFh (R/W) = Subtract 1 from the address

10.8.3.7 TRANSFER_SIZE Register (Offset = 6h) [Reset = 0000h]

TRANSFER_SIZE is shown in Figure 10-18 and described in Table 10-18.

Return to the Summary Table.

Transfer Size Register

Figure 10-18 TRANSFER_SIZE Register
15141312111098
RESERVEDTRANSFERSIZE
R-0hR/W-0h
76543210
TRANSFERSIZE
R/W-0h
Table 10-18 TRANSFER_SIZE Register Field Descriptions
BitFieldTypeResetDescription
15-9RESERVEDR0hReserved
8-0TRANSFERSIZER/W0hThese bits specify the transfer size in bursts. The actual size is equal to TRANSFERSIZE + 1.

Reset type: SYSRSn

10.8.3.8 TRANSFER_COUNT Register (Offset = 7h) [Reset = 0000h]

TRANSFER_COUNT is shown in Figure 10-19 and described in Table 10-19.

Return to the Summary Table.

Transfer Count Register

Figure 10-19 TRANSFER_COUNT Register
15141312111098
RESERVEDTRANSFERCOUNT
R-0hR-0h
76543210
TRANSFERCOUNT
R-0h
Table 10-19 TRANSFER_COUNT Register Field Descriptions
BitFieldTypeResetDescription
15-9RESERVEDR0hReserved
8-0TRANSFERCOUNTR0hThese bits indicate the number of bursts left in the current transfer.

Reset type: SYSRSn

10.8.3.9 SRC_TRANSFER_STEP Register (Offset = 8h) [Reset = 0000h]

SRC_TRANSFER_STEP is shown in Figure 10-20 and described in Table 10-20.

Return to the Summary Table.

Source Transfer Step Register

Figure 10-20 SRC_TRANSFER_STEP Register
15141312111098
SRCTRANSFERSTEP
R/W-0h
76543210
SRCTRANSFERSTEP
R/W-0h
Table 10-20 SRC_TRANSFER_STEP Register Field Descriptions
BitFieldTypeResetDescription
15-0SRCTRANSFERSTEPR/W0hThese bits specify the change in the source address after a burst completes. The size must be a 16-bit two's complement value between -4096 and 4095 (inclusive). This value is added to the source address after each burst completes.

Reset type: SYSRSn


0h (R/W) = No address change
1h (R/W) = Add 1 to the address
2h (R/W) = Add 2 to the address
FFEh (R/W) = Add 4094 to the address
FFFh (R/W) = Add 4095 to the address
F000h (R/W) = Subtract 4096 from the address
F001h (R/W) = Subtract 4095 from the address
FFFEh (R/W) = Subtract 2 from the address
FFFFh (R/W) = Subtract 1 from the address

10.8.3.10 DST_TRANSFER_STEP Register (Offset = 9h) [Reset = 0000h]

DST_TRANSFER_STEP is shown in Figure 10-21 and described in Table 10-21.

Return to the Summary Table.

Destination Transfer Step Register

Figure 10-21 DST_TRANSFER_STEP Register
15141312111098
DSTTRANSFERSTEP
R/W-0h
76543210
DSTTRANSFERSTEP
R/W-0h
Table 10-21 DST_TRANSFER_STEP Register Field Descriptions
BitFieldTypeResetDescription
15-0DSTTRANSFERSTEPR/W0hThese bits specify the change in the destination address after a burst completes. The size must be a 16-bit two's complement value between -4096 and 4095 (inclusive). This value is added to the destination address after each burst completes.

Reset type: SYSRSn


0h (R/W) = No address change
1h (R/W) = Add 1 to the address
2h (R/W) = Add 2 to the address
FFEh (R/W) = Add 4094 to the address
FFFh (R/W) = Add 4095 to the address
F000h (R/W) = Subtract 4096 from the address
F001h (R/W) = Subtract 4095 from the address
FFFEh (R/W) = Subtract 2 from the address
FFFFh (R/W) = Subtract 1 from the address

10.8.3.11 SRC_WRAP_SIZE Register (Offset = Ah) [Reset = 00FFh]

SRC_WRAP_SIZE is shown in Figure 10-22 and described in Table 10-22.

Return to the Summary Table.

Source Wrap Size Register

Figure 10-22 SRC_WRAP_SIZE Register
15141312111098
RESERVEDWRAPSIZE
R-0hR/W-FFh
76543210
WRAPSIZE
R/W-FFh
Table 10-22 SRC_WRAP_SIZE Register Field Descriptions
BitFieldTypeResetDescription
15-9RESERVEDR0hReserved
8-0WRAPSIZER/WFFhThese bits specify the number of bursts to transfer before the source address wraps around to the beginning address. The actual number is equal to WRAPSIZE + 1. To disable the wrapping function, set WRAPSIZE to a value larger than TRANSFERSIZE.

Reset type: SYSRSn

10.8.3.12 SRC_WRAP_COUNT Register (Offset = Bh) [Reset = 0000h]

SRC_WRAP_COUNT is shown in Figure 10-23 and described in Table 10-23.

Return to the Summary Table.

Source Wrap Count Register

Figure 10-23 SRC_WRAP_COUNT Register
15141312111098
RESERVEDWRAPSIZE
R-0hR-0h
76543210
WRAPSIZE
R-0h
Table 10-23 SRC_WRAP_COUNT Register Field Descriptions
BitFieldTypeResetDescription
15-9RESERVEDR0hReserved
8-0WRAPSIZER0hThese bits indicate the number of bursts left before wrapping the source address.

Reset type: SYSRSn

10.8.3.13 SRC_WRAP_STEP Register (Offset = Ch) [Reset = 0000h]

SRC_WRAP_STEP is shown in Figure 10-24 and described in Table 10-24.

Return to the Summary Table.

Source Wrap Step Register

Figure 10-24 SRC_WRAP_STEP Register
15141312111098
WRAPSTEP
R/W-0h
76543210
WRAPSTEP
R/W-0h
Table 10-24 SRC_WRAP_STEP Register Field Descriptions
BitFieldTypeResetDescription
15-0WRAPSTEPR/W0hThese bits specify the change in the source beginning address when the wrap counter reaches zero. The size must be a 16-bit two's complement value between -4096 and 4095 (inclusive). This value is added to the source address when wrapping occurs.

Reset type: SYSRSn


0h (R/W) = No address change
1h (R/W) = Add 1 to the address
2h (R/W) = Add 2 to the address
FFEh (R/W) = Add 4094 to the address
FFFh (R/W) = Add 4095 to the address
F000h (R/W) = Subtract 4096 from the address
F001h (R/W) = Subtract 4095 from the address
FFFEh (R/W) = Subtract 2 from the address
FFFFh (R/W) = Subtract 1 from the address

10.8.3.14 DST_WRAP_SIZE Register (Offset = Dh) [Reset = 00FFh]

DST_WRAP_SIZE is shown in Figure 10-25 and described in Table 10-25.

Return to the Summary Table.

Destination Wrap Size Register

Figure 10-25 DST_WRAP_SIZE Register
15141312111098
RESERVEDWRAPSIZE
R-0hR/W-FFh
76543210
WRAPSIZE
R/W-FFh
Table 10-25 DST_WRAP_SIZE Register Field Descriptions
BitFieldTypeResetDescription
15-9RESERVEDR0hReserved
8-0WRAPSIZER/WFFhThese bits specify the number of bursts to transfer before the destination address wraps around to the beginning address. The actual number is equal to WRAPSIZE + 1. To disable the wrapping function, set WRAPSIZE to a value larger than TRANSFERSIZE.

Reset type: SYSRSn

10.8.3.15 DST_WRAP_COUNT Register (Offset = Eh) [Reset = 0000h]

DST_WRAP_COUNT is shown in Figure 10-26 and described in Table 10-26.

Return to the Summary Table.

Destination Wrap Count Register

Figure 10-26 DST_WRAP_COUNT Register
15141312111098
RESERVEDWRAPSIZE
R-0hR-0h
76543210
WRAPSIZE
R-0h
Table 10-26 DST_WRAP_COUNT Register Field Descriptions
BitFieldTypeResetDescription
15-9RESERVEDR0hReserved
8-0WRAPSIZER0hThese bits indicate the number of bursts left before wrapping the destination address.

Reset type: SYSRSn

10.8.3.16 DST_WRAP_STEP Register (Offset = Fh) [Reset = 0000h]

DST_WRAP_STEP is shown in Figure 10-27 and described in Table 10-27.

Return to the Summary Table.

Destination Wrap Step Register

Figure 10-27 DST_WRAP_STEP Register
15141312111098
WRAPSTEP
R/W-0h
76543210
WRAPSTEP
R/W-0h
Table 10-27 DST_WRAP_STEP Register Field Descriptions
BitFieldTypeResetDescription
15-0WRAPSTEPR/W0hThese bits specify the change in the destination beginning address when the wrap counter reaches zero. The size must be a 16-bit two's complement value between -4096 and 4095 (inclusive). This value is added to the destination address when wrapping occurs.

Reset type: SYSRSn


0h (R/W) = No address change
1h (R/W) = Add 1 to the address
2h (R/W) = Add 2 to the address
FFEh (R/W) = Add 4094 to the address
FFFh (R/W) = Add 4095 to the address
F000h (R/W) = Subtract 4096 from the address
F001h (R/W) = Subtract 4095 from the address
FFFEh (R/W) = Subtract 2 from the address
FFFFh (R/W) = Subtract 1 from the address

10.8.3.17 SRC_BEG_ADDR_SHADOW Register (Offset = 10h) [Reset = 00000000h]

SRC_BEG_ADDR_SHADOW is shown in Figure 10-28 and described in Table 10-28.

Return to the Summary Table.

Source Begin Address Shadow Register

Figure 10-28 SRC_BEG_ADDR_SHADOW Register
313029282726252423222120191817161514131211109876543210
BEGADDR
R/W-0h
Table 10-28 SRC_BEG_ADDR_SHADOW Register Field Descriptions
BitFieldTypeResetDescription
31-0BEGADDRR/W0hShadow Source Beginning Address

At the start of a transfer, the value in this register is loaded into the SRC_BEG_ADDR_ACTIVE register and used as the beginning value for the source address. This register can be safely updated during a transfer.

Reset type: SYSRSn

10.8.3.18 SRC_ADDR_SHADOW Register (Offset = 12h) [Reset = 00000000h]

SRC_ADDR_SHADOW is shown in Figure 10-29 and described in Table 10-29.

Return to the Summary Table.

Source Address Shadow Register

Figure 10-29 SRC_ADDR_SHADOW Register
313029282726252423222120191817161514131211109876543210
ADDR
R/W-0h
Table 10-29 SRC_ADDR_SHADOW Register Field Descriptions
BitFieldTypeResetDescription
31-0ADDRR/W0hShadow Source Address

At the start of a transfer, the value in this register is loaded into the SRC_ADDR_ACTIVE register and used as the value of the source address. This register can be safely updated during a transfer.

Reset type: SYSRSn

10.8.3.19 SRC_BEG_ADDR_ACTIVE Register (Offset = 14h) [Reset = 00000000h]

SRC_BEG_ADDR_ACTIVE is shown in Figure 10-30 and described in Table 10-30.

Return to the Summary Table.

Source Begin Address Active Register

Figure 10-30 SRC_BEG_ADDR_ACTIVE Register
313029282726252423222120191817161514131211109876543210
BEGADDR
R-0h
Table 10-30 SRC_BEG_ADDR_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-0BEGADDRR0hActive Source Beginning Address

If a transfer is ongoing, this register holds the current beginning value for the source address. This address may be updated after wrapping.

When a transfer starts, this register is loaded with the shadow address from the SRC_BEG_ADDR_SHADOW register.

Reset type: SYSRSn

10.8.3.20 SRC_ADDR_ACTIVE Register (Offset = 16h) [Reset = 00000000h]

SRC_ADDR_ACTIVE is shown in Figure 10-31 and described in Table 10-31.

Return to the Summary Table.

Source Address Active Register

Figure 10-31 SRC_ADDR_ACTIVE Register
313029282726252423222120191817161514131211109876543210
ADDR
R-0h
Table 10-31 SRC_ADDR_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-0ADDRR0hActive Source Address

If a transfer is ongoing, this register holds the current value of the source address. This address may change after a write, a burst, or wrapping.

Reset type: SYSRSn

10.8.3.21 DST_BEG_ADDR_SHADOW Register (Offset = 18h) [Reset = 00000000h]

DST_BEG_ADDR_SHADOW is shown in Figure 10-32 and described in Table 10-32.

Return to the Summary Table.

Destination Begin Address Shadow Register

Figure 10-32 DST_BEG_ADDR_SHADOW Register
313029282726252423222120191817161514131211109876543210
BEGADDR
R/W-0h
Table 10-32 DST_BEG_ADDR_SHADOW Register Field Descriptions
BitFieldTypeResetDescription
31-0BEGADDRR/W0hShadow Destination Beginning Address

At the start of a transfer, the value in this register is loaded into the DST_BEG_ADDR_ACTIVE register and used as the beginning value for the destination address. This register can be safely updated during a transfer.

Reset type: SYSRSn

10.8.3.22 DST_ADDR_SHADOW Register (Offset = 1Ah) [Reset = 00000000h]

DST_ADDR_SHADOW is shown in Figure 10-33 and described in Table 10-33.

Return to the Summary Table.

Destination Address Shadow Register

Figure 10-33 DST_ADDR_SHADOW Register
313029282726252423222120191817161514131211109876543210
ADDR
R/W-0h
Table 10-33 DST_ADDR_SHADOW Register Field Descriptions
BitFieldTypeResetDescription
31-0ADDRR/W0hShadow Destination Address

At the start of a transfer, the value in this register is loaded into the DST_ADDR_ACTIVE register and used as the value of the destination address. This register can be safely updated during a transfer.

Reset type: SYSRSn

10.8.3.23 DST_BEG_ADDR_ACTIVE Register (Offset = 1Ch) [Reset = 00000000h]

DST_BEG_ADDR_ACTIVE is shown in Figure 10-34 and described in Table 10-34.

Return to the Summary Table.

Destination Begin Address Active Register

Figure 10-34 DST_BEG_ADDR_ACTIVE Register
313029282726252423222120191817161514131211109876543210
BEGADDR
R-0h
Table 10-34 DST_BEG_ADDR_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-0BEGADDRR0hActive Destination Beginning Address

If a transfer is ongoing, this register holds the current destination value for the source address. This address may be updated after wrapping.

When a transfer starts, this register is loaded with the shadow address from the DST_BEG_ADDR_SHADOW register.

Reset type: SYSRSn

10.8.3.24 DST_ADDR_ACTIVE Register (Offset = 1Eh) [Reset = 00000000h]

DST_ADDR_ACTIVE is shown in Figure 10-35 and described in Table 10-35.

Return to the Summary Table.

Destination Address Active Register

Figure 10-35 DST_ADDR_ACTIVE Register
313029282726252423222120191817161514131211109876543210
ADDR
R-0h
Table 10-35 DST_ADDR_ACTIVE Register Field Descriptions
BitFieldTypeResetDescription
31-0ADDRR0hActive Destination Address

If a transfer is ongoing, this register holds the current value of the destination address. This address may change after a write, a burst, or wrapping.

Reset type: SYSRSn