Product details

Number of receivers 4 Number of transmitters 3 ADC sampling rate (Max) (MSPS) 25 Arm CPU ARM-Cortex R4F 200MHz Interface type CAN, CAN-FD, I2C DSP C674x DSP 600MHz Hardware accelerators Radar hardware accelerator RAM 2048 Rating Automotive Operating temperature range (C) -40 to 125 Security Cryptographic acceleration, Device identity/keys, Secure boot, Secure software update, Software IP protection
Number of receivers 4 Number of transmitters 3 ADC sampling rate (Max) (MSPS) 25 Arm CPU ARM-Cortex R4F 200MHz Interface type CAN, CAN-FD, I2C DSP C674x DSP 600MHz Hardware accelerators Radar hardware accelerator RAM 2048 Rating Automotive Operating temperature range (C) -40 to 125 Security Cryptographic acceleration, Device identity/keys, Secure boot, Secure software update, Software IP protection
FCCSP (ABL) 161 108 mm² 10.4 x 10.4
  • FMCW transceiver
    • Integrated PLL, transmitter, receiver, Baseband, and A2D
    • 76- to 81-GHz coverage with 4 GHz available bandwidth
    • Four receive channels
    • Three transmit channels
    • Ultra-accurate chirp engine based on fractional-N PLL
    • TX power: 12 dBm
    • RX noise figure:
      • 14 dB (76 to 77 GHz)
      • 15 dB (77 to 81 GHz)
    • Phase noise at 1 MHz:
      • –95 dBc/Hz (76 to 77 GHz)
      • –93 dBc/Hz (77 to 81 GHz)
  • Built-in calibration and self-test (monitoring)
    • ARM® Cortex®-R4F-based radio control system
    • Built-in firmware (ROM)
    • Self-calibrating system across frequency and temperature
  • C674x DSP for FMCW signal processing
  • On-chip Memory: 2MB
  • Cortex-R4F microcontroller for object tracking and classification, AUTOSAR, and interface control
    • Supports autonomous mode (loading user application from QSPI flash memory)
  • Integrated peripherals
    • Internal memories With ECC
  • Host interface
    • CAN and CAN-FD
  • Other interfaces available to user application
    • Up to 6 ADC channels
    • Up to 2 SPI channels
    • Up to 2 UARTs
    • I2C
    • GPIOs
    • 2-lane LVDS interface for raw ADC data and debug instrumentation
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation is available to aid ISO 26262 functional safety system design
    • Hardware integrity up to ASIL B targeted
    • Safety-related certification
      • ISO 26262 certification by TUV Sud planned
  • AEC-Q100 qualified
  • AWR1843 advanced features
    • Embedded self-monitoring with no host processor involvement
    • Complex baseband architecture
    • Embedded interference detection capability
    • Programmable phase rotators in transmit path to enable beam forming
  • Power management
    • Built-in LDO network for enhanced PSRR
    • I/Os support dual voltage 3.3 V/1.8 V
  • Clock source
    • Supports external oscillator at 40 MHz
    • Supports externally driven clock (square/sine) at 40 MHz
    • Supports 40 MHz crystal connection with load capacitors
  • Easy hardware design
    • 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip chip BGA package for easy assembly and low-cost PCB design
    • Small solution size
  • Supports automotive temperature operating range
  • FMCW transceiver
    • Integrated PLL, transmitter, receiver, Baseband, and A2D
    • 76- to 81-GHz coverage with 4 GHz available bandwidth
    • Four receive channels
    • Three transmit channels
    • Ultra-accurate chirp engine based on fractional-N PLL
    • TX power: 12 dBm
    • RX noise figure:
      • 14 dB (76 to 77 GHz)
      • 15 dB (77 to 81 GHz)
    • Phase noise at 1 MHz:
      • –95 dBc/Hz (76 to 77 GHz)
      • –93 dBc/Hz (77 to 81 GHz)
  • Built-in calibration and self-test (monitoring)
    • ARM® Cortex®-R4F-based radio control system
    • Built-in firmware (ROM)
    • Self-calibrating system across frequency and temperature
  • C674x DSP for FMCW signal processing
  • On-chip Memory: 2MB
  • Cortex-R4F microcontroller for object tracking and classification, AUTOSAR, and interface control
    • Supports autonomous mode (loading user application from QSPI flash memory)
  • Integrated peripherals
    • Internal memories With ECC
  • Host interface
    • CAN and CAN-FD
  • Other interfaces available to user application
    • Up to 6 ADC channels
    • Up to 2 SPI channels
    • Up to 2 UARTs
    • I2C
    • GPIOs
    • 2-lane LVDS interface for raw ADC data and debug instrumentation
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation is available to aid ISO 26262 functional safety system design
    • Hardware integrity up to ASIL B targeted
    • Safety-related certification
      • ISO 26262 certification by TUV Sud planned
  • AEC-Q100 qualified
  • AWR1843 advanced features
    • Embedded self-monitoring with no host processor involvement
    • Complex baseband architecture
    • Embedded interference detection capability
    • Programmable phase rotators in transmit path to enable beam forming
  • Power management
    • Built-in LDO network for enhanced PSRR
    • I/Os support dual voltage 3.3 V/1.8 V
  • Clock source
    • Supports external oscillator at 40 MHz
    • Supports externally driven clock (square/sine) at 40 MHz
    • Supports 40 MHz crystal connection with load capacitors
  • Easy hardware design
    • 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip chip BGA package for easy assembly and low-cost PCB design
    • Small solution size
  • Supports automotive temperature operating range

The AWR1843 device is an integrated single-chip FMCW radar sensor capable of operation in the 76- to 81-GHz band. The device is built with TI’s low-power 45-nm RFCMOS process and enables unprecedented levels of integration in an extremely small form factor. The AWR1843 is an ideal solution for low-power, self-monitored, ultra-accurate radar systems in the automotive space.

The AWR1843 device is a self-contained FMCW radar sensor single-chip solution that simplifies the implementation of Automotive Radar sensors in the band of 76 to 81 GHz. It is built on TI’s low-power 45-nm RFCMOS process, which enables a monolithic implementation of a 3TX, 4RX system with built-in PLL and A2D converters. It integrates the DSP subsystem, which contains TI’s high-performance C674x DSP for the Radar Signal processing. The device includes a BIST processor subsystem, which is responsible for radio configuration, control, and calibration. Additionally the device includes a user programmable ARM R4F based for automotive interfacing. The Hardware Accelerator block (HWA) can perform radar processing and can help save MIPS on the DSP for higher level algorithms. Simple programming model changes can enable a wide variety of sensor implementation (Short, Mid, Long) with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the device is provided as a complete platform solution including TI reference designs, software drivers, sample configurations, API guides, and user documentation.

The AWR1843 device is an integrated single-chip FMCW radar sensor capable of operation in the 76- to 81-GHz band. The device is built with TI’s low-power 45-nm RFCMOS process and enables unprecedented levels of integration in an extremely small form factor. The AWR1843 is an ideal solution for low-power, self-monitored, ultra-accurate radar systems in the automotive space.

The AWR1843 device is a self-contained FMCW radar sensor single-chip solution that simplifies the implementation of Automotive Radar sensors in the band of 76 to 81 GHz. It is built on TI’s low-power 45-nm RFCMOS process, which enables a monolithic implementation of a 3TX, 4RX system with built-in PLL and A2D converters. It integrates the DSP subsystem, which contains TI’s high-performance C674x DSP for the Radar Signal processing. The device includes a BIST processor subsystem, which is responsible for radio configuration, control, and calibration. Additionally the device includes a user programmable ARM R4F based for automotive interfacing. The Hardware Accelerator block (HWA) can perform radar processing and can help save MIPS on the DSP for higher level algorithms. Simple programming model changes can enable a wide variety of sensor implementation (Short, Mid, Long) with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the device is provided as a complete platform solution including TI reference designs, software drivers, sample configurations, API guides, and user documentation.

Download

Similar products you might be interested in

open-in-new Compare products
Same functionality with different pin-out to the compared device.
NEW AWR1843AOP ACTIVE Single-chip 76-GHz to 81-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR1843AOP and AWR1843 are the same at the die level.

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 31
Type Title Date
* Data sheet AWR1843 Single-Chip 77- to 79-GHz FMCW Radar Sensor datasheet (Rev. B) 09 Apr 2020
* Errata AWR1843 Device Errata, Silicon Revision 1.0 (Rev. C) 31 Dec 2020
Application note IWR6x43 Flash Variants Supported by the mmWave Sensor (Rev. C) 18 Nov 2021
Certificate AWR1843AOPEVM EU Declaration of Conformity (DoC) (Rev. A) 25 Oct 2021
Application note Self-Calibration of mmWave Radar Devices (Rev. B) 29 Sep 2021
Application note mmWave Radar Radome Design Guide 17 Aug 2021
Application note mmWave Production Testing Overview 10 Apr 2021
Application note Cascade Coherency and Phase Shifter Calibration 28 Nov 2020
Application note Power Management Optimizations - Low Cost LC Filter Solution (Rev. A) 11 Nov 2020
User guide AWR1843BOOST and IWR1843BOOST Single-Chip mmWave Sensing Solution User's Guide (Rev. B) 19 May 2020
User guide AWR18xx/16xx/14xx/68xx Technical Reference Manual (Rev. E) 18 May 2020
Technical article 3 ways radar technology is changing the in-cabin sensing market 04 May 2020
Application note Programming Chirp Parameters in TI Radar Devices (Rev. A) 13 Feb 2020
Application note AWR1xx and AWR22xx Data Path Programmer’s Guide (Rev. A) 13 Feb 2020
Application note TPS65313-Q1 and TPS65653-Q1 LDO free power solution for AWR1642/AWR1843 27 Jan 2020
Application note Interference Management Using AWR/IWR Devices 03 Jan 2020
User guide AWR1843 Quick Start Guide 12 Aug 2019
Technical article Using TI mmWave technology for car interior sensing 25 Jul 2019
Application note How to select the right proximity sensor technology 19 Jul 2019
White paper Automated parking made possible with TI mmWave radar and ultrasonic sensors (Rev. A) 28 Jun 2019
Technical article How to meet European Commission ADAS requirements with TI DC/DC converters 09 May 2019
Technical article 77-GHz single-chip mmWave radar sensors enable autonomous parking 09 Jan 2019
Application note AWR1642/AWR1843 Application Startup Sequence (Rev. A) 29 Oct 2018
User guide Radar Hardware Accelerator User's Guide (Rev. B) 23 Oct 2018
Application note MIMO Radar (Rev. A) 26 Jul 2018
Application note Watchdog Timer for mmwave Radar Sensors (Rev. A) 08 Jun 2018
Application note Adding CAN-FD Tx and Rx to an Existing mmWave Project 12 Apr 2018
Application note XWR1xxx Power Management Optimizations - Low Cost LC Filter Solution 16 Oct 2017
White paper Moving from legacy 24GHz to state-of-the-art 77GHz radar 06 Oct 2017
White paper TI smart sensors enable automated driving 17 Apr 2017
White paper Using a complex-baseband architecture in FMCW radar systems 17 Apr 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AWR1843BOOST — AWR1843 single-chip 76-GHz to 81-GHz automotive radar sensor evaluation module

The AWR1843 BoosterPack™ plug-in module is an easy-to-use 77GHz mmWave sensor evaluation board for the single-chip AWR1843 device, with direct connectivity to the TI MCU LaunchPad™ development-kit ecosystem.

The BoosterPack™ contains everything required to start developing software for on-chip (...)

In stock
Limit: 3
Evaluation board

DCA1000EVM — Real-time data-capture adapter for radar sensing evaluation module

The DCA1000 evaluation module (EVM) provides real-time data capture and streaming for two- and four-lane low-voltage differential signaling (LVDS) traffic from TI AWR and IWR radar sensor EVMs. The data can be streamed out via 1-Gbps Ethernet in real time to a PC running the MMWAVE-STUDIO tool for (...)

Out of stock on TI.com
Debug probe

TMDSEMU110-U — XDS110 JTAG Debug Probe

The Texas Instruments XDS110 is a new class of debug probe (emulator) for TI embedded processors. The XDS110 replaces the XDS100 family while supporting a wider variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a single pod. Also, all XDS debug probes support Core and System Trace in all ARM (...)

Out of stock on TI.com
Debug probe

TMDSEMU200-U — XDS200 USB Debug Probe

The XDS200 is a debug probe (emulator) used for debugging TI embedded devices.  The XDS200 features a balance of low cost with good performance as compared to the low cost XDS110 and the high performance XDS560v2.  It supports a wide variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a (...)

In stock
Limit: 3
Debug probe

TMDSEMU560V2STM-U — XDS560v2 System Trace USB Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Debug probe

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB & Ethernet Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Debug probe

TMDSEMUPROTRACE — XDS560v2 PRO TRACE Receiver & Debug Probe

The XDS560v2 PRO TRACE Receiver is the latest model of the XDS560v2 family of high-performance debug probes (emulators) for TI processors. The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).

(...)

In stock
Limit: 1
Software development kit (SDK)

MMWAVE-SDK — mmWave software development kit (SDK)

The mmWave software development kit (SDK) is a collection of software packages to enable application evaluation and development on TI mmWave sensors. This tool includes the MMWAVE-SDK and companion packages to support your design needs.

The MMWAVE-SDK is a unified software platform for the TI mmWave (...)

IDE, configuration, compiler or debugger

CCSTUDIO — Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio؜™ software is an integrated development environment (IDE) that supports TI's microcontroller (MCU) and embedded processor portfolios. Code Composer Studio software comprises a suite of tools used to develop and debug embedded applications. The software includes an (...)
IDE, configuration, compiler or debugger

MMWAVE-STUDIO — mmWave studio

mmWave studio (MMWAVE-STUDIO) is a collection of tools that enhance the evaluation of TI mmWave sensors. These easy-to-use tools provide the capability to evaluate and prototype chirp designs and experiment with the out-of-the-box demo. The tools are hosted directly on TI.com and enable interaction (...)
IDE, configuration, compiler or debugger

SAFETI_CQKIT — Safety compiler qualification kit

The Safety Compiler Qualification Kit was developed to assist customers in qualifying their use of the TI ARM, C6000, C7000 or C2000/CLA C/C++ Compiler to functional safety standards such as IEC 61508 and ISO 26262.

The Safety Compiler Qualification Kit:

  • is free of charge for TI customers
  • does (...)
IDE, configuration, compiler or debugger

SYSCONFIG — System configuration tool

To help simplify configuration challenges and accelerate software development, we created SysConfig, an intuitive and comprehensive collection of graphical utilities for configuring pins, peripherals, radios, subsystems, and other components.  SysConfig helps you manage, expose and resolve (...)
Software programming tool

UNIFLASH — UniFlash stand-alone flash tool for microcontrollers, Sitara™; processors and SimpleLink™

Supported devices: CC13xx, CC25xx, CC26xx, CC3x20, CC3x30, CC3x35, Tiva, C2000, MSP43x, Hercules, PGA9xx, IWR12xx, IWR14xx, IWR16xx, IWR18xx , IWR68xx, AWR12xx, AWR14xx, AWR16xx, AWR18xx.  Command line only: AM335x, AM437x, AM571x, AM572x, AM574x, AM65XX, K2G

CCS Uniflash is a standalone tool used (...)

Simulation model

AWR1843 BSDL Model

SPRM739.ZIP (1 KB) - BSDL Model
Simulation model

AWR1843 IBIS Model

SPRM740.ZIP (2353 KB) - IBIS Model
Design tool

MMWAVE-3P-SEARCH — mmWave radar sensors third-party search tool

TI has partnered with companies to offer a wide range of solutions using TI mmWave radar sensors and related services. These companies can accelerate your path to production using mmWave radar. Download this search tool to quickly browse our third-party solutions and find the right third-party to (...)
Assembly drawing

xWR1843BOOST Hardware Design Checklist

SPRACL2.ZIP (1127 KB)
Reference designs

TIDEP-01025 — mmWave diagnostic and monitoring reference design

This reference design showcases the inbuilt autonomous monitoring functionality in mmWave radar sensors that enhances system efficiency by minimizing the processing load on the host. The design uses a safety diagnostic library (SDL) to run diagnostic tests on programmable digital cores, peripherals (...)
Reference designs

TIDEP-01021 — Beamsteering for corner radar reference design

This reference design provides a foundation for blind-spot detection (BSD), cross-traffic alert (CTA), lane-change assist (LCA), and traffic-jam assist (TJA) applications using the AWR1843BOOST evaluation module (EVM). This design allows the estimation (in the azimuthal and elevation plane), (...)
Reference designs

TIDEP-01011 — Automated parking system reference design using 77-GHz mmWave sensor

This reference design demonstrates the use of AWR1843, a 77-GHz single-chip mmWave sensor with integrated DSP, MCU, and hardware accelerator as an automated parking sensor, which enables robust detection of objects around a car in challenging parking and environmental conditions. With a range (...)
Package Pins Download
FCCSP (ABL) 161 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos