AWR1642

ACTIVE

Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU

Top

Product details

Parameters

Number of Rx 4 Number of Tx 2 ADC sampling rate (Max) (MSPS) 12.5 Arm CPU ARM-Cortex R4F 200MHz Interface type CAN, CAN-FD, I2C, QSPI, SPI, UART DSP C674x DSP 600MHz Hardware accelerators RAM 1536 Rating Automotive Operating temperature range (C) -40 to 125 TI functional safety category Functional Safety-Compliant open-in-new Find other Automotive mmWave radar sensors

Package | Pins | Size

FC/CSP (ABL) 161 108 mm² 10.4 x 10.4 open-in-new Find other Automotive mmWave radar sensors

Features

  • FMCW transceiver
    • Integrated PLL, transmitter, receiver, Baseband, and A2D
    • 76- to 81-GHz coverage with 4 GHz available bandwidth
    • Four receive channels
    • Two transmit channels
    • Ultra-accurate chirp (timing) engine based on fractional-N PLL
    • TX power: 12 dBm
    • RX noise figure:
      • 14 dB (76 to 77 GHz)
      • 15 dB (77 to 81 GHz)
    • Phase noise at 1 MHz:
      • –95 dBc/Hz (76 to 77 GHz)
      • –93 dBc/Hz (77 to 81 GHz)
  • Built-in calibration and self-test (monitoring)
    • ARM® Cortex®-R4F-based radio control system
    • Built-in firmware (ROM)
    • Self-calibrating system across frequency and temperature
  • C674x DSP for FMCW signal processing
  • On-chip memory: 1.5MB
  • Cortex-R4F microcontroller for object tracking and classification, AUTOSAR, and interface control
    • Supports autonomous mode (loading user application from QSPI flash memory)
  • Integrated peripherals
    • Internal memories with ECC
  • Host interface
    • CAN and CAN-FD
  • Other interfaces available to user application
    • Up to 6 ADC channels
    • Up to 2 SPI channels
    • Up to 2 UARTs
    • I2C
    • GPIOs
    • 2-lane LVDS interface for raw ADC data and debug instrumentation
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation is available to aid ISO 26262 functional safety system design
    • Hardware integrity up to ASIL B targeted
    • Safety-related certification
      • ISO 26262 certification by TUV Sud planned
  • AEC-Q100 qualified
  • AWR1642 advanced features
    • Embedded self-monitoring with no host processor involvement
    • Complex baseband architecture
    • Embedded interference detection capability
  • Power management
    • Built-in LDO network for enhanced PSRR
    • I/Os support dual voltage 3.3 V/1.8 V
  • Clock source
    • Supports External Oscillator at 40 MHz
    • Supports externally driven clock (square/sine) at 40 MHz
    • Supports 40 MHz crystal connection with load capacitors
  • Easy hardware design
    • 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip chip BGA package for easy assembly and low-cost PCB design
    • Small solution size
  • Supports automotive temperature operating range

All trademarks are the property of their respective owners.

open-in-new Find other Automotive mmWave radar sensors

Description

The AWR1642 device is an integrated single-chip FMCW radar sensor capable of operation in the 76- to 81-GHz band. The device is built with TI’s low-power 45-nm RFCMOS process and enables unprecedented levels of integration in an extremely small form factor. The AWR1642 is an ideal solution for low-power, self-monitored, ultra-accurate radar systems in the automotive space.

The AWR1642 device is a self-contained FMCW radar sensor single-chip solution that simplifies the implementation of Automotive Radar sensors in the band of 76 to 81 GHz. It is built on TI’s low-power 45-nm RFCMOS process, which enables a monolithic implementation of a 2TX, 4RX system with built-in PLL and A2D converters. It integrates the DSP subsystem, which contains TI’s high-performance C674x DSP for the Radar Signal processing. The device includes an ARM R4F-based processor subsystem, which is responsible for radio configuration, control, and calibration. Simple programming model changes can enable a wide variety of sensor implementation (Short, Mid, Long) with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the device is provided as a complete platform solution including TI reference designs, software drivers, sample configurations, API guides, and user documentation.

open-in-new Find other Automotive mmWave radar sensors
Download

Award-winning sensors available now

AWR1642 is part of the TI award-winning mmWave sensor portfolio. Acknowledgements include:

  • CES 2018 Innovation Award Honoree in three categories
  • Electronic Products 2017 Product of the Year in the Sensing Category
  • 2017 Annual Creativity in Electronics (ACE) Award for Sensor of the Year
  • Elektronik 2018 Reader’s Choice Product of the Year in Active Components Category

Technical documentation

= Featured
No results found. Please clear your search and try again. View all 38
Type Title Date
* Data sheet AWR1642 Single-Chip 77- and 79-GHz FMCW Radar sensor datasheet (Rev. B) Aug. 01, 2019
* Errata AWR1642 Device Errata (Rev. A) Apr. 27, 2018
User guides AWR1642 Evaluation Module Single-Chip mmWave Sensing Solution User's Guide (Rev. C) May 19, 2020
User guides AWR18xx/16xx/14xx Technical Reference Manual (Rev. E) May 18, 2020
Application notes Programming Chirp Parameters in TI Radar Devices (Rev. A) Feb. 13, 2020
Application notes AWR1xx and AWR22xx Data Path Programmer’s Guide (Rev. A) Feb. 13, 2020
Application notes IWR6x43 Flash Variants Supported by the mmWave Sensor (Rev. B) Jan. 29, 2020
Application notes Interference Management Using AWR/IWR Devices Jan. 03, 2020
Technical articles Driving industrial innovation with small-size sensors Sep. 12, 2019
Technical articles Using TI mmWave technology for car interior sensing Jul. 25, 2019
Technical articles Imaging radar: one sensor to rule them all Jul. 09, 2019
Technical articles Occupancy detection with mmWave sensors in a moving car Nov. 06, 2018
Application notes AWR1642/AWR1843 Application Startup Sequence (Rev. A) Oct. 29, 2018
Application notes mmwave Radar Device ADC Raw Data Capture (Rev. B) Oct. 23, 2018
Application notes MIMO Radar (Rev. A) Jul. 26, 2018
Application notes Watchdog Timer for mmwave Radar Sensors (Rev. A) Jun. 08, 2018
White papers mmWave radar: Enabling greater intelligent autonomy at the edge Jun. 06, 2018
Application notes Adding CAN Tx and Rx to an Existing mmWave Project May 31, 2018
Application notes CAN Node on AWR1642 May 15, 2018
Application notes TI mmWave Radar sensor RF PCB Design, Manufacturing and Validation Guide May 07, 2018
Application notes Adding CAN-FD Tx and Rx to an Existing mmWave Project Apr. 12, 2018
Application notes Self-Calibration of mmWave Radar Devices Apr. 02, 2018
User guides AWR1642 Obstacle Detection Sensor (AWR1642BOOST-ODS) User's Guide Mar. 22, 2018
Application notes CMOS MMIC Ready for Road – A Technology Overview Feb. 28, 2018
White papers Reliability advantages of TI flip-chip BGA packaging Jan. 25, 2018
White papers 77GHz single chip radar sensor enables automotive body and chassis applications Dec. 12, 2017
Application notes XWR1xxx Power Management Optimizations - Low Cost LC Filter Solution Oct. 16, 2017
White papers Moving from legacy 24GHz to state-of-the-art 77GHz radar Oct. 06, 2017
Application notes Adding Flash Read and Write to an Existing mmWave Project Sep. 25, 2017
White papers Cities grow smarter through innovative semiconductor technologies Jul. 07, 2017
More literature TI Resource Explorer (TIREX) mmWave Training Series May 15, 2017
Application notes System Performance Measurement With the mmWave Sensor May 10, 2017
Application notes AWR1642 Bootloader Flow May 09, 2017
Application notes Introduction to the DSP Subsystem in the AWR16xx May 09, 2017
White papers AWR1642: 77GHz Radar-on-Chip for Short-Range Radar Applications Apr. 17, 2017
White papers TI smart sensors enable automated driving Apr. 17, 2017
White papers The fundamentals of millimeter wave Apr. 17, 2017
White papers Using a complex-baseband architecture in FMCW radar systems Apr. 17, 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARDS Download
document-generic User guide
$299.00
Description

Step 1: Buy this EVM (AWR1642BOOST)
Step 2: Download mmWave SDK
Step 3: Take the mmWave sensor device trainings
Step 4: Evaluate performance for short-range radar, vital-sign monitoring and vehicle-occupant detection applications

AWR1642BOOST is an easy-to-use evaluation board for the (...)

Features
  • Onboard antenna enables field testing
  • XDS110-based JTAG with serial-port interface for flash programming
  • UART-to-USB interface for control, configuration, and data visualization
  • TI LaunchPad™ development-kit interface to seamlessly connect to TI MCUs
  • CAN connector enables direct interface to car units
EVALUATION BOARDS Download
document-generic User guide
$299.00
Description

Step 1: Buy this EVM (AWR1642BOOST-ODS)
Step 2: Download the mmWave SDK
Step 3: Take the mmWave sensor device trainings
Step 4: Evaluate performance for obstacle-detection applications

AWR1642BOOST-ODS is an easy-to-use evaluation board for the AWR1642 single-chip mmWave sensor with integrated (...)

Features
  • Single-chip solution with DSP integration and 1.5 MB of on-chip RAM
  • Range: up to 15 m
  • Resolution: 4 cm
  • FOV
    • Azimuth: ±70 degrees
    • Elevation: ±40 degrees
EVALUATION BOARDS Download
document-generic User guide
$499.00
Description

The DCA1000 evaluation module (EVM) provides real-time data capture and streaming for two- and four-lane low-voltage differential signaling (LVDS) traffic from TI radar-sensor BoosterPack™ EVMs. The data can be streamed out via 1-Gbps Ethernet in real time. The data (...)

Features
  • Supports lab and mobile collection scenarios
  • Captures LVDS data from AWR/IWR radar sensors
  • Streams output in real time through 1-Gbps Ethernet
  • Controlled via onboard switches or GUI/library
GUIS FOR EVALUATION MODULES (EVM) Download
mmWave studio
MMWAVE-STUDIO
document-generic User guide
Description

mmWave Studio is designed to characterize and evaluate TI mmWave sensors. mmWave sensors are configured and controlled from mmWave Studio by sending commands to the devices over SPI. Analog-to-digital converter (ADC) data is captured using the DCA1000EVM board, processed in MATLAB®, and results (...)

Features
  • mmWave Studio
    • Post-processing of ADC data and visualization of processed data
    • Board control (SOP change, reset control)
    • RS-232 connection and firmware download
    • Configures mmWave sensors using radar API commands
    • Interface to DCA1000EVM for raw ADC data capture
  • mmWave Sensing Estimator
    • Enables calculation of (...)

Software development

SOFTWARE DEVELOPMENT KITS (SDK) Download
mmWave software development kit (SDK)
MMWAVE-SDK The mmWave software development kit (SDK) is a unified software platform for the TI mmWave Sensing Portfolio, providing easy setup and fast out-of-the-box access to evaluation and development. All releases of the mmWave SDK scale between the full TI mmWave Sensing Portfolio, enabling seamless reuse (...)
Features
  • Building blocks
    • Full driver availability
    • Layered approach to programming analog front end (AFE)
    • Catalog of mmWave algorithms optimized for C674x DSPs
  • Demonstrations and examples
    • TI RTOS-based demos
    • Out-of-box demo with easy configurability via TI cloud-based GUI
    • Representation of "point cloud" and (...)
PROGRAMMING TOOLS Download
UniFlash stand-alone flash tool for microcontrollers, Sitara™; processors and SimpleLink™
UNIFLASH Supported devices: CC13xx, CC25xx, CC26xx, CC3220, CC3120, CC3235, CC3135, Tiva, C2000, MSP43x, Hercules, PGA9xx, IWR12xx, IWR14xx, IWR16xx, IWR18xx , IWR68xx, AWR12xx, AWR14xx, AWR16xx, AWR18xx.  Command line only: AM335x, AM437x, AM571x, AM572x, AM574x, AM65XX, K2G

CCS Uniflash is a standalone tool (...)

Design tools & simulation

SIMULATION MODELS Download
SWRM032.ZIP (745 KB) - IBIS Model
SIMULATION MODELS Download
SWRM037.ZIP (1 KB) - BSDL Model
CALCULATION TOOLS Download
Pin mux tool
PINMUXTOOL The PinMux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs. Results are output as C header/code files that can be imported into software development kits (SDKs) or (...)
SCHEMATICS Download
SWRR154.ZIP (377 KB)

Reference designs

REFERENCE DESIGNS Download
Short-range radar (SRR) reference design
TIDEP-0092 The TIDEP-0092 reference design provides a foundation for short-range radar (SRR) applications using the AWR1642 evaluation module (EVM). This design allows the estimation and tracking of the position (in the azimuthal plane) and velocity of objects in its field of view up to 80 m,  travelling (...)
document-generic Schematic document-generic User guide
REFERENCE DESIGNS Download
Automotive RFCMOS 77GHz radar module reference design with object data output over dual CAN FD
TIDA-020004 — This reference design is a solution for a 76 to 81 GHz radar sensor module. The power supplies on board convert the automotive battery input to the required rails for the radar AFE, processors and CAN FD transceiver. All of these functions are included in a small form factor PCB suitable for front (...)
document-generic Schematic document-generic User guide
REFERENCE DESIGNS Download
Automotive 77-GHz radar module reference design with object data output
TIDA-01570 — The TIDA-01570 reference design is a complete solution for a 76 to 81 GHz radar sensor module. The power supplies on board convert the automotive battery input to the required rails for the radar AFE, processors and CAN-FD transceiver. After processing, object data is provided over the (...)
document-generic Schematic document-generic User guide
REFERENCE DESIGNS Download
Automotive mmWave radar gesture control reference design
TIDA-020011 — This reference design utilizes mmWave Radar and a full automotive power design to provide a sleek, simple solution to capture hand gestures and improve the experience of the driver. The evolution of the automobile has led to the desire for simpler and easier interaction with the ever increasing (...)
document-generic Schematic document-generic User guide
REFERENCE DESIGNS Download
Obstacle detection reference design using 77-GHz mmWave sensor
TIDEP-0104 This reference design demonstrates the use of the AWR1642 single-chip mmWave sensor with integrated DSP as an obstacle-detection sensor for the car door and trunk, enabling applications like automatic car door openers and intelligent car doors that can accurately detect obstacles/objects in a (...)
document-generic Schematic document-generic User guide

CAD/CAE symbols

Package Pins Download
FC/CSP (ABL) 161 View options

Ordering & quality

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos

Related videos