Product details

Frequency 76 - 81 GHz Number of receivers 4 Number of transmitters 3 ADC sampling rate (MSPS) 37.5 TX power (dBm) 12 Arm CPU ARM R4F @ 200MHz Co-processor(s) Radar Hardware Accelerator RAM (KB) 576 Interface type CAN, CSI-2, I2C, LVDS, QSPI, SPI, UART Operating temperature range (C) -40 to 105
Frequency 76 - 81 GHz Number of receivers 4 Number of transmitters 3 ADC sampling rate (MSPS) 37.5 TX power (dBm) 12 Arm CPU ARM R4F @ 200MHz Co-processor(s) Radar Hardware Accelerator RAM (KB) 576 Interface type CAN, CSI-2, I2C, LVDS, QSPI, SPI, UART Operating temperature range (C) -40 to 105
FC/CSP (ABL) 161 108 mm² 10.4 x 10.4
  • FMCW Transceiver
    • Integrated PLL, Transmitter, Receiver, Baseband, and A2D
    • 76- to 81-GHz Coverage With 4-GHz Continuous Bandwidth
    • Four Receive Channels
    • Three Transmit Channels (Two Can be Used Simultaneously)
    • Ultra-Accurate Chirp Engine Based on Fractional-N PLL
    • TX Power: 12 dBm
    • RX Noise Figure:
      • 14 dB (76 to 77 GHz)
      • 15 dB (77 to 81 GHz)
    • Phase Noise at 1 MHz:
      • –95 dBc/Hz (76 to 77 GHz)
      • –93 dBc/Hz (77 to 81 GHz)
  • Built-in Calibration and Self-Test
    • ARM® Cortex®-R4F-Based Radio Control System
    • Built-in Firmware (ROM)
    • Self-calibrating System Across Frequency and Temperature
  • On-Chip Programmable Core for Embedded User Application
    • Integrated Cortex®-R4F Microcontroller Clocked at 200 MHz
    • On-Chip Bootloader Supports Autonomous Mode (Loading User Application From QSPI Flash Memory)
    • Integrated Peripherals
      • Internal Memories With ECC
      • Radar Hardware Accelerator (FFT, Log-magnitude Computations, and others)
      • Integrated Timers (Watch Dog and up to Four 32-Bit or Two 64-Bit Timers)
      • I2C (Master and Slave Modes Supported)
      • Two SPI Ports
      • CAN Port
      • Up to Six General-Purpose ADC Ports
  • High-Speed Data Interface to Support Distributed Applications
  • Host Interface
    • Control Interface With External Processor Over SPI
    • Data Interface With External Processor Over MIPI D-PHY and CSI2 V1.1
    • Interrupts for Fault Reporting
  • IWR1443 Advanced Features
    • Embedded Self-monitoring With No Host Processor Involvement
    • Complex Baseband Architecture
    • Embedded Interference Detection Capability
  • Power Management
    • Built-in LDO Network for Enhanced PSRR
    • I/Os Support Dual Voltage 3.3 V/1.8 V
  • Clock Source
    • Supports External Oscillator at 40 MHz
    • Supports Externally Driven Clock (Square/Sine) at 40 MHz
  • Easy Hardware Design
    • 0.65-mm Pitch, 161-Pin 10.4 mm × 10.4 mm Flip Chip BGA Package for Easy Assembly and Low-Cost PCB Design
    • Small Solution Size
  • Operating Conditions
    • Junction Temp Range: –40°C to 105°C
  • FMCW Transceiver
    • Integrated PLL, Transmitter, Receiver, Baseband, and A2D
    • 76- to 81-GHz Coverage With 4-GHz Continuous Bandwidth
    • Four Receive Channels
    • Three Transmit Channels (Two Can be Used Simultaneously)
    • Ultra-Accurate Chirp Engine Based on Fractional-N PLL
    • TX Power: 12 dBm
    • RX Noise Figure:
      • 14 dB (76 to 77 GHz)
      • 15 dB (77 to 81 GHz)
    • Phase Noise at 1 MHz:
      • –95 dBc/Hz (76 to 77 GHz)
      • –93 dBc/Hz (77 to 81 GHz)
  • Built-in Calibration and Self-Test
    • ARM® Cortex®-R4F-Based Radio Control System
    • Built-in Firmware (ROM)
    • Self-calibrating System Across Frequency and Temperature
  • On-Chip Programmable Core for Embedded User Application
    • Integrated Cortex®-R4F Microcontroller Clocked at 200 MHz
    • On-Chip Bootloader Supports Autonomous Mode (Loading User Application From QSPI Flash Memory)
    • Integrated Peripherals
      • Internal Memories With ECC
      • Radar Hardware Accelerator (FFT, Log-magnitude Computations, and others)
      • Integrated Timers (Watch Dog and up to Four 32-Bit or Two 64-Bit Timers)
      • I2C (Master and Slave Modes Supported)
      • Two SPI Ports
      • CAN Port
      • Up to Six General-Purpose ADC Ports
  • High-Speed Data Interface to Support Distributed Applications
  • Host Interface
    • Control Interface With External Processor Over SPI
    • Data Interface With External Processor Over MIPI D-PHY and CSI2 V1.1
    • Interrupts for Fault Reporting
  • IWR1443 Advanced Features
    • Embedded Self-monitoring With No Host Processor Involvement
    • Complex Baseband Architecture
    • Embedded Interference Detection Capability
  • Power Management
    • Built-in LDO Network for Enhanced PSRR
    • I/Os Support Dual Voltage 3.3 V/1.8 V
  • Clock Source
    • Supports External Oscillator at 40 MHz
    • Supports Externally Driven Clock (Square/Sine) at 40 MHz
  • Easy Hardware Design
    • 0.65-mm Pitch, 161-Pin 10.4 mm × 10.4 mm Flip Chip BGA Package for Easy Assembly and Low-Cost PCB Design
    • Small Solution Size
  • Operating Conditions
    • Junction Temp Range: –40°C to 105°C

The IWR1443 device is an integrated single-chip mmWave sensor based on FMCW radar technology capable of operation in the 76- to 81-GHz band with up to 4 GHz continuous chirp. The device is built with TI’s low-power 45-nm RFCMOS process, and this solution enables unprecedented levels of integration in an extremely small form factor. The IWR1443 is an ideal solution for low-power, self-monitored, ultra-accurate radar systems in the industrial applications such as building automation, factory automation, drones, material handling, traffic monitoring, and surveillance.

The IWR1443 device is a self-contained, single-chip solution that simplifies the implementation of mmWave sensors in the band of 76 to 81 GHz. The IWR1443 includes a monolithic implementation of a 3TX, 4RX system with built-in PLL and A2D converters. The device includes fully configurable hardware accelerator that supports complex FFT and CFAR detection. Additionally, the device includes two ARM R4F-based processor subsystems: one processor subsystem is for master control, and additional algorithms; a second processor subsystem is responsible for front-end configuration, control, and calibration. Simple programming model changes can enable a wide variety of sensor implementation with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the device is provided as a complete platform solution including reference hardware design, software drivers, sample configurations, API guide, training, and user documentation.

The IWR1443 device is an integrated single-chip mmWave sensor based on FMCW radar technology capable of operation in the 76- to 81-GHz band with up to 4 GHz continuous chirp. The device is built with TI’s low-power 45-nm RFCMOS process, and this solution enables unprecedented levels of integration in an extremely small form factor. The IWR1443 is an ideal solution for low-power, self-monitored, ultra-accurate radar systems in the industrial applications such as building automation, factory automation, drones, material handling, traffic monitoring, and surveillance.

The IWR1443 device is a self-contained, single-chip solution that simplifies the implementation of mmWave sensors in the band of 76 to 81 GHz. The IWR1443 includes a monolithic implementation of a 3TX, 4RX system with built-in PLL and A2D converters. The device includes fully configurable hardware accelerator that supports complex FFT and CFAR detection. Additionally, the device includes two ARM R4F-based processor subsystems: one processor subsystem is for master control, and additional algorithms; a second processor subsystem is responsible for front-end configuration, control, and calibration. Simple programming model changes can enable a wide variety of sensor implementation with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the device is provided as a complete platform solution including reference hardware design, software drivers, sample configurations, API guide, training, and user documentation.

Download

Award-winning sensors available now

IWR1443 is part of TI's award-winning mmWave sensor portfolio. Recent acknowledgements include:

  • CES 2018 Innovation Award Honoree in three categories
  • Electronic Products 2017 Product of the Year in the sensing category
  • 2017 Annual Creativity in Electronics (ACE) Award for Sensor of the Year
  • Elektronik 2018 Reader’s Choice Product of the Year in active components category

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 37
Type Title Date
* Data sheet IWR1443 Single-Chip 76- to 81-GHz mmWave Sensor datasheet (Rev. C) 15 Aug 2018
* Errata IWR1443 Device Errata, Silicon Revisions 1.0, 2.0, and 3.0 (Rev. C) 28 May 2021
Application note mmWave Radar Radome Design Guide 17 Aug 2021
Application note mmWave Radar Sensors: Object Versus Range (Rev. A) 10 May 2021
Application note mmWave Production Testing Overview 10 Apr 2021
Application note TI mmWave Radar Device Regulatory Compliance Overview (Rev. B) 06 Feb 2021
Application note Power Management Optimizations - Low Cost LC Filter Solution (Rev. A) 11 Nov 2020
White paper The fundamentals of millimeter wave radar sensors (Rev. A) 27 Aug 2020
White paper mmWave radar sensors in robotics applications (Rev. A) 22 Jun 2020
White paper Machine Learning Powers Autonomous Industrial Systems (Rev. A) 17 Jun 2020
User guide IWR14xx/16xx/18xx/68xx/64xx Industrial Radar Family Technical Reference Manual (Rev. E) 28 May 2020
User guide IWR1443 Evaluation Module (IWR1443BOOST) mmWave Sensing Solution User's Guide (Rev. D) 19 May 2020
E-book Ein Techniker-Leitfaden für Industrieroboter-Designs 25 Mar 2020
E-book E-book: An engineer’s guide to industrial robot designs 12 Feb 2020
Application note IWR6x43 Flash Variants Supported by the mmWave Sensor (Rev. B) 29 Jan 2020
Application note Interference Management Using AWR/IWR Devices 03 Jan 2020
White paper Bringing intelligent autonomy to fine motion detection (Rev. A) 20 Dec 2018
User guide Radar Hardware Accelerator User's Guide (Rev. B) 23 Oct 2018
Application note mmwave Radar Device ADC Raw Data Capture (Rev. B) 23 Oct 2018
Technical article Using mmWave sensors for intelligent safety guards in factory automation 23 Aug 2018
Application note MIMO Radar (Rev. A) 26 Jul 2018
Technical article Accelerating into the future: Detecting velocity to help mmWave sensors understand their environment 19 Jun 2018
Application note Watchdog Timer for mmwave Radar Sensors (Rev. A) 08 Jun 2018
White paper mmWave radar: Enabling greater intelligent autonomy at the edge 06 Jun 2018
White paper Robust traffic and intersection monitoring using millimeter wave sensors (Rev. B) 17 May 2018
Application note TI mmWave Radar sensor RF PCB Design, Manufacturing and Validation Guide 07 May 2018
Technical article Catch your breath: Which is a better occupancy detector – mmWave or PIR? 26 Mar 2018
User guide Radar Hardware Accelerator User's Guide - Part 2 (Rev. A) 13 Mar 2018
Technical article The picture of the distance: Detecting range to help mmWave sensors understand their environment 22 Feb 2018
Application note XWR1xxx Power Management Optimizations - Low Cost LC Filter Solution 16 Oct 2017
White paper Moving from legacy 24GHz to state-of-the-art 77GHz radar 06 Oct 2017
Application note Adding Flash Read and Write to an Existing mmWave Project 25 Sep 2017
White paper Cities grow smarter through innovative semiconductor technologies 07 Jul 2017
User guide Radar Hardware Accelerator User's Guide - Part 1 17 May 2017
More literature TI Resource Explorer (TIREX) mmWave Training Series 15 May 2017
White paper Fluid-level sensing using 77GHz millimeter wave 17 Apr 2017
White paper Drone safety and productivity enabled by mmWave sensors 07 Apr 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DCA1000EVM — Real-time data-capture adapter for radar sensing evaluation module

The DCA1000 evaluation module (EVM) provides real-time data capture and streaming for two- and four-lane low-voltage differential signaling (LVDS) traffic from TI AWR and IWR radar sensor EVMs. The data can be streamed out via 1-Gbps Ethernet in real time to a PC running the MMWAVE-STUDIO tool for (...)

In stock
Limit: 10
Evaluation board

IWR1443BOOST — IWR1443 single-chip 76-GHz to 81-GHz mmWave sensor evaluation module

The IWR1443 BoosterPack™ plug-in module is an easy-to-use 77GHz mmWave sensor evaluation board for the single-chip IWR1443 mmWave sensing device, with direct connectivity to the TI MCU LaunchPad™ development-kit ecosystem.

IWR1443BOOST contains everything required to start developing on a low-power (...)

In stock
Limit: 50
Debug probe

TMDSEMU110-U — XDS110 JTAG Debug Probe

The Texas Instruments XDS110 is a new class of debug probe (emulator) for TI embedded processors. The XDS110 replaces the XDS100 family while supporting a wider variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a single pod. Also, all XDS debug probes support Core and System Trace in all ARM and (...)

In stock
Limit: 3
Debug probe

TMDSEMU200-U — XDS200 USB Debug Probe

The XDS200 is a debug probe (emulator) used for debugging TI embedded devices.  The XDS200 features a balance of low cost with good performance as compared to the low cost XDS110 and the high performance XDS560v2.  It supports a wide variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a (...)

In stock
Limit: 3
Debug probe

TMDSEMU560V2STM-U — XDS560v2 System Trace USB Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Debug probe

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB & Ethernet Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Debug probe

TMDSEMUPROTRACE — XDS560v2 PRO TRACE Receiver & Debug Probe

The XDS560v2 PRO TRACE Receiver is the latest model of the XDS560v2 family of high-performance debug probes (emulators) for TI processors. The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).

The (...)

In stock
Limit: 1
Software development kit (SDK)

MMWAVE-SDK — mmWave software development kit (SDK)

The mmWave software development kit (SDK) is a collection of software packages to enable application evaluation and development on TI mmWave sensors. This tool includes the MMWAVE-SDK and companion packages to support your design needs.

The MMWAVE-SDK is a unified software platform for the TI mmWave (...)

IDE, configuration, compiler or debugger

CCSTUDIO — Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio؜™ software is an integrated development environment (IDE) that supports TI's microcontroller (MCU) and embedded processor portfolios. Code Composer Studio software comprises a suite of tools used to develop and debug embedded applications. The software includes an (...)
IDE, configuration, compiler or debugger

MMWAVE-STUDIO — mmWave studio

mmWave Studio is a collection of tools that enhance the evaluation of TI mmWave sensors. These easy-to-use tools provide capability to evaluate and prototype chirp designs and experiment with the out-of-the-box demo. The tools are hosted directly on TI.com and enable interaction with the mmWave (...)
IDE, configuration, compiler or debugger

SYSCONFIG — System configuration tool

To help simplify configuration challenges and accelerate software development, we created SysConfig, an intuitive and comprehensive collection of graphical utilities for configuring pins, peripherals, radios, subsystems, and other components.  SysConfig helps you manage, expose and resolve (...)
Software programming tool

UNIFLASH — UniFlash stand-alone flash tool for microcontrollers, Sitara™; processors and SimpleLink™

Supported devices: CC13xx, CC25xx, CC26xx, CC3x20, CC3x30, CC3x35, Tiva, C2000, MSP43x, Hercules, PGA9xx, IWR12xx, IWR14xx, IWR16xx, IWR18xx , IWR68xx, AWR12xx, AWR14xx, AWR16xx, AWR18xx.  Command line only: AM335x, AM437x, AM571x, AM572x, AM574x, AM65XX, K2G

CCS Uniflash is a standalone tool used to (...)

Simulation model

IWR1443 Power Estimation Spreadsheet

SWRM018.ZIP (84 KB) - Power Model
Simulation model

IWR1443 IBIS Model

SWRM029.ZIP (1245 KB) - IBIS Model
Simulation model

IWR1443 BSDL Model (Rev. A)

SWRM033A.ZIP (1 KB) - BSDL Model
Design tool

MMWAVE-3P-SEARCH — mmWave radar sensors third-party search tool

TI has partnered with companies to offer a wide range of solutions using TI mmWave radar sensors and related services. These companies can accelerate your path to production using mmWave radar. Download this search tool to quickly browse our third-party solutions and find the right third-party to (...)
Reference designs

TIDEP-01006 — Autonomous robot reference design using ROS on Sitara™ MPU & antenna-on-package mmWave sensors

This reference design showcases autonomous robotics with the Processor SDK Linux running on the Sitara AM57x processor, and the mmWave SDK running on the IWR6843 EVM. This design demonstrates the functionality of an embedded robotic system where point-cloud data from the mmWave radar sensing is (...)
Reference designs

TIDEP-0091 — Power optimization for 77GHz-level transmitter reference design

TIDEP-0091 highlights strategies for power optimization of IWR14xx 76- to 81-GHz mmWave sensors in tank level-probing applications, displacement sensors, 4- to 20-mA sensors and other low-power applications for detecting range with high accuracy in a minimal power envelope. In these (...)
Reference designs

TIDEP-01003 — Zone occupancy detection using mmWave sensor reference design

This reference design demonstrates how TI mmWave sensor technology can be used for zone occupancy detection to monitor areas of interest across a field of view (FOV) of ±60 degrees with a maximum range of at least 10 m. This reference design uses the IWR1443BOOST evaluation module (EVM) and (...)
Package Pins Download
FC/CSP (ABL) 161 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos