Product details

Arm CPU 2 Arm Cortex-A15 Arm (max) (MHz) 1500 Coprocessors 2 Dual Arm Cortex-M4 CPU 32-bit Graphics acceleration 1 2D, 2 3D Display type 1 HDMI, 3 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100/1000, 2-Port 1Gb switch PCIe 2 PCIe Gen 2 Hardware accelerators 1 Image Subsystem Processor, 1 Image Video Accelerator, 2 Viterbi Decoder, Audio Tracking Features Multimedia Operating system Android, Linux, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection Rating Automotive Operating temperature range (°C) -40 to 125
Arm CPU 2 Arm Cortex-A15 Arm (max) (MHz) 1500 Coprocessors 2 Dual Arm Cortex-M4 CPU 32-bit Graphics acceleration 1 2D, 2 3D Display type 1 HDMI, 3 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100/1000, 2-Port 1Gb switch PCIe 2 PCIe Gen 2 Hardware accelerators 1 Image Subsystem Processor, 1 Image Video Accelerator, 2 Viterbi Decoder, Audio Tracking Features Multimedia Operating system Android, Linux, RTOS Security Cryptography, Debug security, Device identity, Isolation firewalls, Secure boot, Secure storage & programming, Software IP protection Rating Automotive Operating temperature range (°C) -40 to 125
FCCSP (ABZ) 760 529 mm² 23 x 23
  • Architecture Designed for Infotainment Applications
  • Video, Image, and Graphics Processing Support
    • Full-HD Video (1920 × 1080p, 60 fps)
    • Multiple Video Input and Video Output
    • 2D and 3D Graphics
  • Dual Arm® Cortex®-A15 Microprocessor Subsystem
  • Up to Two C66x Floating-Point VLIW DSP
    • Fully Object-Code Compatible with C67x and C64x+
    • Up to Thirty-Two 16 x 16-Bit Fixed-Point Multiplies per Cycle
  • Up to 2.5MB of On-Chip L3 RAM
  • Level 3 (L3) and Level 4 (L4) Interconnects
  • Two DDR2/DDR3/DDR3L Memory Interface (EMIF) Modules
    • Supports up to DDR2-800 and DDR3-1333
    • Up to 2GB Supported per EMIF
  • Dual ARM® Cortex®-M4 Image Processing Units (IPU)
  • Up to Two Embedded Vision Engines (EVEs)
  • Imaging Subsystem (ISS)
    • Image Signal Processor (ISP)
    • Wide Dynamic Range and Lens Distortion Correction (WDR and Mesh LDC)
    • One Camera Adaptation Layer (CAL_B)
  • IVA Subsystem
  • Display Subsystem
    • Display Controller with DMA Engine and up to Three Pipelines
    • HDMI™ Encoder: HDMI 1.4a and DVI 1.0 Compliant
  • Video Processing Engine (VPE)
  • 2D-Graphics Accelerator (BB2D) Subsystem
    • Vivante® GC320 Core
  • Dual-Core PowerVR® SGX544 3D GPU
  • Two Video Input Port (VIP) Modules
    • Support for up to Eight Multiplexed Input Ports
  • General-Purpose Memory Controller (GPMC)
  • Enhanced Direct Memory Access (EDMA) Controller
  • 2-Port Gigabit Ethernet (GMAC)
  • Sixteen 32-Bit General-Purpose Timers
  • 32-Bit MPU Watchdog Timer
  • Five Inter-Integrated Circuit (I2C) Ports
  • HDQ™/1-Wire® Interface
  • SATA Interface
  • Media Local Bus (MLB) Subsystem
  • Ten Configurable UART/IrDA/CIR Modules
  • Four Multichannel Serial Peripheral Interfaces (McSPI)
  • Quad SPI (QSPI)
  • Eight Multichannel Audio Serial Port (McASP) Modules
  • SuperSpeed USB 3.0 Dual-Role Device
  • Three High-Speed USB 2.0 Dual-Role Devices
  • Four MultiMedia Card/Secure Digital/Secure Digital Input Output Interfaces (MMC™/SD®/SDIO)
  • PCI Express® 3.0 Subsystems with Two 5-Gbps Lanes
    • One 2-Lane Gen2-Compliant Port
    • or Two 1-Lane Gen2-Compliant Ports
  • Up to Two Controller Area Network (DCAN) Modules
    • CAN 2.0B Protocol
  • Modular Controller Area Network (MCAN) Module
    • CAN 2.0B Protocol with Available FD (Flexible Data Rate) Functionality
  • Up to 247 General-Purpose I/O (GPIO) Pins
  • Real-Time Clock Subsystem (RTCSS)
  • Device Security Features
    • Hardware Crypto Accelerators and DMA
    • Firewalls
    • JTAG® Lock
    • Secure Keys
    • Secure ROM and Boot
    • Customer Programmable Keys and OTP Data
  • Power, Reset, and Clock Management
  • On-Chip Debug with CTools Technology
  • 28-nm CMOS Technology
  • 23 mm × 23 mm, 0.8-mm Pitch, 760-Pin BGA (ABZ)
  • Architecture Designed for Infotainment Applications
  • Video, Image, and Graphics Processing Support
    • Full-HD Video (1920 × 1080p, 60 fps)
    • Multiple Video Input and Video Output
    • 2D and 3D Graphics
  • Dual Arm® Cortex®-A15 Microprocessor Subsystem
  • Up to Two C66x Floating-Point VLIW DSP
    • Fully Object-Code Compatible with C67x and C64x+
    • Up to Thirty-Two 16 x 16-Bit Fixed-Point Multiplies per Cycle
  • Up to 2.5MB of On-Chip L3 RAM
  • Level 3 (L3) and Level 4 (L4) Interconnects
  • Two DDR2/DDR3/DDR3L Memory Interface (EMIF) Modules
    • Supports up to DDR2-800 and DDR3-1333
    • Up to 2GB Supported per EMIF
  • Dual ARM® Cortex®-M4 Image Processing Units (IPU)
  • Up to Two Embedded Vision Engines (EVEs)
  • Imaging Subsystem (ISS)
    • Image Signal Processor (ISP)
    • Wide Dynamic Range and Lens Distortion Correction (WDR and Mesh LDC)
    • One Camera Adaptation Layer (CAL_B)
  • IVA Subsystem
  • Display Subsystem
    • Display Controller with DMA Engine and up to Three Pipelines
    • HDMI™ Encoder: HDMI 1.4a and DVI 1.0 Compliant
  • Video Processing Engine (VPE)
  • 2D-Graphics Accelerator (BB2D) Subsystem
    • Vivante® GC320 Core
  • Dual-Core PowerVR® SGX544 3D GPU
  • Two Video Input Port (VIP) Modules
    • Support for up to Eight Multiplexed Input Ports
  • General-Purpose Memory Controller (GPMC)
  • Enhanced Direct Memory Access (EDMA) Controller
  • 2-Port Gigabit Ethernet (GMAC)
  • Sixteen 32-Bit General-Purpose Timers
  • 32-Bit MPU Watchdog Timer
  • Five Inter-Integrated Circuit (I2C) Ports
  • HDQ™/1-Wire® Interface
  • SATA Interface
  • Media Local Bus (MLB) Subsystem
  • Ten Configurable UART/IrDA/CIR Modules
  • Four Multichannel Serial Peripheral Interfaces (McSPI)
  • Quad SPI (QSPI)
  • Eight Multichannel Audio Serial Port (McASP) Modules
  • SuperSpeed USB 3.0 Dual-Role Device
  • Three High-Speed USB 2.0 Dual-Role Devices
  • Four MultiMedia Card/Secure Digital/Secure Digital Input Output Interfaces (MMC™/SD®/SDIO)
  • PCI Express® 3.0 Subsystems with Two 5-Gbps Lanes
    • One 2-Lane Gen2-Compliant Port
    • or Two 1-Lane Gen2-Compliant Ports
  • Up to Two Controller Area Network (DCAN) Modules
    • CAN 2.0B Protocol
  • Modular Controller Area Network (MCAN) Module
    • CAN 2.0B Protocol with Available FD (Flexible Data Rate) Functionality
  • Up to 247 General-Purpose I/O (GPIO) Pins
  • Real-Time Clock Subsystem (RTCSS)
  • Device Security Features
    • Hardware Crypto Accelerators and DMA
    • Firewalls
    • JTAG® Lock
    • Secure Keys
    • Secure ROM and Boot
    • Customer Programmable Keys and OTP Data
  • Power, Reset, and Clock Management
  • On-Chip Debug with CTools Technology
  • 28-nm CMOS Technology
  • 23 mm × 23 mm, 0.8-mm Pitch, 760-Pin BGA (ABZ)

DRA74xP and DRA75xP (Jacinto 6 Plus) automotive applications processors are built to meet the intense processing needs of the modern digital cockpit automobile experiences.

The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 Plus devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set.

Programmability is provided by dual-core Arm Cortex-A15 RISC CPUs with Neon™ extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The Arm allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software.

Additionally, TI provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code.

Cryptographic acceleration is available in all devices. All other supported security features, including support for secure boot, debug security and support for trusted execution environment are available on High-Security (HS) devices. For more information about HS devices, contact your TI representative.

The DRA74xP and DRA75xP Jacinto 6 Plus processor family is qualified according to the AEC-Q100 standard.

DRA74xP and DRA75xP (Jacinto 6 Plus) automotive applications processors are built to meet the intense processing needs of the modern digital cockpit automobile experiences.

The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 Plus devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set.

Programmability is provided by dual-core Arm Cortex-A15 RISC CPUs with Neon extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The Arm allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software.

Additionally, TI provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code.

Cryptographic acceleration is available in all devices. All other supported security features, including support for secure boot, debug security and support for trusted execution environment are available on High-Security (HS) devices. For more information about HS devices, contact your TI representative.

The DRA74xP and DRA75xP Jacinto 6 Plus processor family is qualified according to the AEC-Q100 standard.

DRA74xP and DRA75xP (Jacinto 6 Plus) automotive applications processors are built to meet the intense processing needs of the modern digital cockpit automobile experiences.

The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 Plus devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set.

Programmability is provided by dual-core Arm Cortex-A15 RISC CPUs with Neon™ extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The Arm allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software.

Additionally, TI provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code.

Cryptographic acceleration is available in all devices. All other supported security features, including support for secure boot, debug security and support for trusted execution environment are available on High-Security (HS) devices. For more information about HS devices, contact your TI representative.

The DRA74xP and DRA75xP Jacinto 6 Plus processor family is qualified according to the AEC-Q100 standard.

DRA74xP and DRA75xP (Jacinto 6 Plus) automotive applications processors are built to meet the intense processing needs of the modern digital cockpit automobile experiences.

The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 Plus devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set.

Programmability is provided by dual-core Arm Cortex-A15 RISC CPUs with Neon extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The Arm allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software.

Additionally, TI provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code.

Cryptographic acceleration is available in all devices. All other supported security features, including support for secure boot, debug security and support for trusted execution environment are available on High-Security (HS) devices. For more information about HS devices, contact your TI representative.

The DRA74xP and DRA75xP Jacinto 6 Plus processor family is qualified according to the AEC-Q100 standard.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 42
Type Title Date
* Data sheet DRA75xP, DRA74xP Infotainment Applications Processor Silicon Revision 1.0 datasheet (Rev. F) PDF | HTML 10 Dec 2018
* Errata DRA7xx Silicon Errata (Rev. B) PDF | HTML 02 Mar 2017
* User guide DRA77xP, DRA76xP, DRA75xP, DRA74xP Technical Reference Manual (Rev. D) PDF | HTML 25 May 2024
Application note Integrating virtual DRM between VISION SDK and PSDK on Jacinto6 SOC PDF | HTML 05 May 2021
More literature Building your application with security in mind (Rev. E) 28 Oct 2020
Application note IVA-HD Sharing Between VISION-SDK and PSDKLA on Jacinto6 SoC PDF | HTML 24 Aug 2020
Application note AM57x, DRA7x, and TDA2x EMIF Tools (Rev. E) 06 Jan 2020
Application note Integrating New Cameras With Video Input Port on DRA7xx SoCs PDF | HTML 11 Jun 2019
Application note Achieving Early CAN Response on DRA7xx Devices 28 Nov 2018
Application note DRA74x_75x/DRA72x Performance (Rev. A) 31 Oct 2018
Application note Audio Post Processing Engine on Jacinto™ DRA7x Family of Devices 14 Sep 2018
Application note The Implementation of YUV422 Output for SRV 02 Aug 2018
Application note MMC DLL Tuning (Rev. B) 31 Jul 2018
Application note Integrating AUTOSAR on TI SoC: Fundamentals 18 Jun 2018
Application note ECC/EDC on TDAxx (Rev. B) 13 Jun 2018
Application note Tools and Techniques to Root Case Failures in Video Capture Subsystem 12 Jun 2018
User guide TPS659039-Q1 User’s Guide to Power DRA74x, DRA75x, TDA2x, and AM572x (Rev. C) 07 May 2018
Application note Sharing VPE Between VISIONSDK and PSDKLA 04 May 2018
User guide LP87565C-Q1 and TPS65917-Q1 User’s Guide to Power DRA7xxP and TDA2Pxx (Rev. A) 20 Apr 2018
Application note Android Boot Optimization on DRA7xx Devices (Rev. A) 13 Feb 2018
Application note Flashing Utility - mflash 09 Jan 2018
Application note Using Peripheral Boot and DFU for Rapid Development on Jacinto 6 Devices (Rev. A) 30 Nov 2017
Application note Optimizing DRA7xx and TDA2xx Processors for use with Video Display SERDES (Rev. B) 07 Nov 2017
Application note A Guide to Debugging With CCS on the DRA75x, DRA74x, TDA2x and TDA3x Family of D (Rev. B) 03 Nov 2017
Application note Optimization of GPU-Based Surround View on TI’s TDA2x SoC 12 Sep 2017
Application note Using DSS Write-Back Pipeline for RGB-to-YUV Conversion on DRA7xx Devices 14 Aug 2017
Application note Software Guidelines to EMIF/DDR3 Configuration on DRA7xx Devices 12 Jul 2017
White paper Revolutionize the automotive cockpit 02 Jun 2017
Application note Linux Boot Time Optimizations on DRA7xx Devices 31 Mar 2017
Application note Interfacing DRA75x and DRA74x Audio to Analog Codecs (Rev. A) 17 Feb 2017
Application note Early Splash Screen on DRA7x Devices 31 Jan 2017
Application note Quality of Service (QoS) Knobs for DRA74x, DRA75x & TDA2x Family of Devices (Rev. A) 15 Dec 2016
Application note Gstreamer Migration Guidelines 26 Apr 2016
User guide Jacinto6 Android Video Decoder Software Design Specification User's Guide 21 Apr 2016
User guide Jacinto6 Android Video Encoder Software Design Specification User's Guide 21 Apr 2016
Application note Flashing Binaries to DRA7xx Factory Boards Using DFU 14 Apr 2016
Application note Tools and Techniques for Audio Debugging 13 Apr 2016
Application note Debugging Tools and Techniques With IPC3.x 30 Mar 2016
Application note Modifying Memory Usage for IPUMM Applications Loaded IPC 3.x for DRA75x, DRA74x (Rev. A) 15 Jan 2016
White paper Informational ADAS as Software Upgrade to Today’s Infotainment Systems 14 Oct 2014
Application note Guide to fix Perf Issues Using QoS Knobs for DRA74x, DRA75x, TDA2x & TD3x Device 13 Aug 2014
White paper Today’s high-end infotainment soon becoming mainstream 02 Jun 2014

Design & development

Power-supply solutions

Find available power-supply solutions for the DRA75P. TI offers power-supply solutions for TI and non-TI systems on a chip (SoCs), processors, microcontrollers, sensors, and field-programmable gate arrays (FPGAs).

Evaluation board

J6PEVM577P — DRA7xP Evaluation Module

The DRA77xP/DRA76xP-ACD is an evaluation platform designed to allow scalability and re-use across DRA77xP and DRA76xP JacintoTM Infotainment System-on-Chips (SoCs), it is based on Jacinto DRA77xP SoC that incorporates a heterogeneous, scalable architecture that includes a mix of two ARM Cortex-A15 (...)

User guide: PDF
Software development kit (SDK)

PROCESSOR-SDK-ANDROID-AUTOMOTIVE-DRA7X

Processor SDK Linux Automotive

Processor SDK Linux Automotive is the foundational software development platform for TI's Jacinto™ DRAx family of Infotainment SoCs. The software framework allows users to develop feature-rich Infotainment solutions such as reconfigurable digital instrument (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA710 600 MHz Arm Cortex-A15 SoC processor with graphics for infotainment & cluster DRA712 600 MHz Arm Cortex-A15 SoC processor with graphics & dual Arm Cortex-M4 for infotainment & cluster DRA714 600 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA716 800 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA718 1 GHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA722 800 MHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA724 1 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA725 1.2 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA726 1.5 GHz Arm Cortex-A15 with Graphics & DSP for Infotainment & Cluster DRA74P Multi-core SoC processors with ISP and pin-compatible with DRA74x SoC processors DRA75P Multi-core SoC processors with ISP and pin-compatible with DRA75x SoCs for infotainment applications DRA76P High performance multi-core SoC processors with ISP for digital cockpit applications DRA77P High performance multi-core SoCs with extended peripherals and ISP for digital cockpit applications DRA790 300 MHz Arm Cortex-A15 SoC processor w/ 500 MHz C66x DSP for audio amplifier DRA791 300 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA793 500 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA797 800 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier
Digital signal processors (DSPs)
DRA780 SoC processor w/ 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA781 SoC processor w/ 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA782 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA783 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA785 SoC processor w/ 2x 1000 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA786 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA787 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA788 SoC processor w/ 2x 1000 MHz C66x DSP and 1x EVE and 2 dual Arm Cortex-M4 for audio amplifier
Download options
Software development kit (SDK)

PROCESSOR-SDK-LINUX-AUTOMOTIVE-DRA7X PROCESSOR-SDK-LINUX-AUTOMOTIVE-DRA7X

Processor SDK Linux Automotive

Processor SDK Linux Automotive is the foundational software development platform for TI's Jacinto™ DRAx family of Infotainment SoCs. The software framework allows users to develop feature-rich Infotainment solutions such as reconfigurable digital instrument (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA710 600 MHz Arm Cortex-A15 SoC processor with graphics for infotainment & cluster DRA712 600 MHz Arm Cortex-A15 SoC processor with graphics & dual Arm Cortex-M4 for infotainment & cluster DRA714 600 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA716 800 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA718 1 GHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA722 800 MHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA724 1 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA725 1.2 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA726 1.5 GHz Arm Cortex-A15 with Graphics & DSP for Infotainment & Cluster DRA746 Dual 1.5 GHz Arm Cortex-A15 SoC processor with graphics & DSP for automotive infotainment & cluster DRA74P Multi-core SoC processors with ISP and pin-compatible with DRA74x SoC processors DRA756 Dual 1.5 GHz A15, dual EVE, dual DSP, extended peripherals SoC processor for infotainment DRA75P Multi-core SoC processors with ISP and pin-compatible with DRA75x SoCs for infotainment applications DRA76P High performance multi-core SoC processors with ISP for digital cockpit applications DRA77P High performance multi-core SoCs with extended peripherals and ISP for digital cockpit applications DRA790 300 MHz Arm Cortex-A15 SoC processor w/ 500 MHz C66x DSP for audio amplifier DRA791 300 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA793 500 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA797 800 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier
Digital signal processors (DSPs)
DRA780 SoC processor w/ 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA781 SoC processor w/ 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA782 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA783 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA785 SoC processor w/ 2x 1000 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA786 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA787 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA788 SoC processor w/ 2x 1000 MHz C66x DSP and 1x EVE and 2 dual Arm Cortex-M4 for audio amplifier
Download options
Software development kit (SDK)

PROCESSOR-SDK-RTOS-AUTOMOTIVE-DRA7X

Processor SDK Linux Automotive

Processor SDK Linux Automotive is the foundational software development platform for TI's Jacinto™ DRAx family of Infotainment SoCs. The software framework allows users to develop feature-rich Infotainment solutions such as reconfigurable digital instrument (...)

Supported products & hardware

Supported products & hardware

Products
Arm-based processors
DRA710 600 MHz Arm Cortex-A15 SoC processor with graphics for infotainment & cluster DRA712 600 MHz Arm Cortex-A15 SoC processor with graphics & dual Arm Cortex-M4 for infotainment & cluster DRA714 600 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA716 800 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA718 1 GHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA722 800 MHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA724 1 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA725 1.2 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA726 1.5 GHz Arm Cortex-A15 with Graphics & DSP for Infotainment & Cluster DRA74P Multi-core SoC processors with ISP and pin-compatible with DRA74x SoC processors DRA75P Multi-core SoC processors with ISP and pin-compatible with DRA75x SoCs for infotainment applications DRA76P High performance multi-core SoC processors with ISP for digital cockpit applications DRA77P High performance multi-core SoCs with extended peripherals and ISP for digital cockpit applications DRA790 300 MHz Arm Cortex-A15 SoC processor w/ 500 MHz C66x DSP for audio amplifier DRA791 300 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA793 500 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA797 800 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier
Digital signal processors (DSPs)
DRA780 SoC processor w/ 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA781 SoC processor w/ 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA782 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA783 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA785 SoC processor w/ 2x 1000 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA786 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA787 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA788 SoC processor w/ 2x 1000 MHz C66x DSP and 1x EVE and 2 dual Arm Cortex-M4 for audio amplifier
Download options
IDE, configuration, compiler or debugger

CCSTUDIO Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It comprises a suite of tools used to develop and debug embedded applications.  Code Composer Studio is available for download across Windows®, Linux® and macOS® desktops. It can also (...)

Supported products & hardware

Supported products & hardware

This design resource supports most products in these categories.

Check the product details page to verify support.

Launch Download options
IDE, configuration, compiler or debugger

SYSCONFIG Standalone desktop version of SysConfig

SysConfig is a configuration tool designed to simplify hardware and software configuration challenges to accelerate software development.

SysConfig is available as part of the Code Composer Studio™ integrated development environment as well as a standalone application. Additionally SysConfig (...)

Supported products & hardware

Supported products & hardware

Products
Automotive mmWave radar sensors
AWR1443 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating MCU and hardware accelerator AWR1642 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP and MCU AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR1843AOP Single-chip 76-GHz to 81-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR2544 76-81GHz FMCW satellite Radar-on-Chip sensor AWR2944 Automotive, second-generation 76-GHz to 81-GHz high-performance SoC for corner and long-range radar AWR6843 Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843AOP Single-chip 60-GHz to 64-GHz automotive radar sensor integrating antenna on package, DSP and MCU
Digital signal processors (DSPs)
DM505 SoC for vision analytics 15mm package DRA780 SoC processor w/ 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA781 SoC processor w/ 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA782 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA783 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA785 SoC processor w/ 2x 1000 MHz C66x DSP and 2 dual Arm Cortex-M4 for audio amplifier DRA786 SoC processor w/ 2x 500 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA787 SoC processor w/ 2x 750 MHz C66x DSP and 2 dual Arm Cortex-M4 & EVE for audio amplifier DRA788 SoC processor w/ 2x 1000 MHz C66x DSP and 1x EVE and 2 dual Arm Cortex-M4 for audio amplifier TDA3LA Low power SoC w/ vision acceleration for ADAS applications TDA3LX Low power SoC w/ processing, imaging & vision acceleration for ADAS applications TDA3MA Low power SoC w/ full-featured processing & vision acceleration for ADAS applications TDA3MD Low power SoC w/ full-featured processing for ADAS applications TDA3MV Low power SoC w/ full-featured processing, imaging & vision acceleration for ADAS applications
C2000 real-time microcontrollers
TMS320F280021 C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 32-KB flash TMS320F280021-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 32-KB flash TMS320F280023 C2000™ 32-bit MCU with 100-MHz, FPU, TMU, 64-kb flash TMS320F280023-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 64-KB flash TMS320F280023C C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 64-KB flash, CLB TMS320F280025 C2000™ 32-bit MCU with 100-MHz, FPU, TMU, 128-kb flash TMS320F280025-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 128-KB flash TMS320F280025C C2000™ 32-bit MCU with 100-MHz, FPU, TMU, 128-kb flash, CLB TMS320F280025C-Q1 Automotive C2000™ 32-bit MCU with 100 MHz, FPU, TMU, 128-KB flash, CLB TMS320F28P650DH C2000 32-bit MCU, 600 MIPS, 2xC28x + 1xCLA CPU, FPU64, 768kB flash, 16-b ADC TMS320F28P650DK C2000™ 32-bit MCU, 2x C28x+CLA CPU, Lock Step, 1.28-MB flash, 16-b ADC, HRPWM, EtherCAT, CAN-FD, AES TMS320F28P650SH C2000 32-bit MCU, 400 MIPS, 1xC28x + 1xCLA CPU, FPU64, 768kB flash, 16-b ADC TMS320F28P650SK C2000 32-bit MCU, 400 MIPS, 1xC28x + 1xCLA CPU, FPU64, 1.28-MB flash, 16-b ADC, Ethercat TMS320F28P659DH-Q1 Automotive C2000 32-bit MCU, 600 MIPS, 2xC28x + 1xCLA + Lockstep, FPU64, 768kB flash, 16-b ADC TMS320F28P659DK-Q1 C2000™ 32-bit MCU, 2x C28x+CLA CPU, Lock Step, 1.28-MB flash, 16-b ADC, HRPWM, CAN-FD, AES TMS320F28P659SH-Q1 Automotive C2000 32-bit MCU, 400 MIPS, 1xC28x + 1xCLA , FPU64, 768kB flash, 16-b ADC
Wi-Fi products
CC3200 SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 2 TLS/SSL and 256kB RAM CC3200MOD SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® and Internet-of-Things wireless module CC3220MOD SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi CERTIFIED™ wireless module CC3220MODA SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi CERTIFIED™ wireless module with antenna CC3220R SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 6 TLS/SSL and 256kB RAM CC3220S SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with secure boot and 256kB RAM CC3220SF SimpleLink™ 32-bit Arm Cortex-M4 Wi-Fi® wireless MCU with 1MB Flash and 256kB RAM CC3230S SimpleLink™ Arm Cortex-M4 Wi-Fi® MCU with 256kB RAM, coexistence, WPA3, 16 TLS sockets, secure boot CC3230SF SimpleLink™ Arm Cortex-M4 Wi-Fi® MCU 256kB RAM+1MB XIP flash, coex, WPA3, 16 TLS sockets,secure boot CC3235MODAS SimpleLink™ Wi-Fi CERTIFIED™ dual-band wireless antenna module solution CC3235MODASF SimpleLink™ Wi-Fi CERTIFIED™ dual-band wireless antenna module solution with 1MB XIP Flash CC3235MODS SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi CERTIFIED™ wireless module with 256kB RAM CC3235MODSF SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi CERTIFIED™ wireless module with 1MB Flash CC3235S SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi® wireless MCU with 256kB RAM CC3235SF SimpleLink™ 32-bit Arm Cortex-M4 dual-band Wi-Fi® wireless MCU with 1MB Flash
Arm-based processors
AM3351 Sitara processor: Arm Cortex-A8, 1Gb Ethernet, display AM3352 Sitara processor: Arm Cortex-A8, 1Gb Ethernet, display, CAN AM3354 Sitara processor: Arm Cortex-A8, 3D graphics, CAN AM3356 Sitara processor: Arm Cortex-A8, PRU-ICSS, CAN AM3357 Sitara processor: Arm Cortex-A8, EtherCAT, PRU-ICSS, CAN AM3358 Sitara processor: Arm Cortex-A8, 3D graphics, PRU-ICSS, CAN AM3358-EP Sitara processor: Arm Cortex-A8, 3D, PRU-ICSS, HiRel, CAN AM3359 Sitara processor: Arm Cortex-A8, EtherCAT, 3D, PRU-ICSS, CAN AM4372 Sitara processor: Arm Cortex-A9 AM4376 Sitara processor: Arm Cortex-A9, PRU-ICSS AM4377 Sitara processor: Arm Cortex-A9, PRU-ICSS, EtherCAT AM4378 Sitara processor: Arm Cortex-A9, PRU-ICSS, 3D graphics AM4379 Sitara processor: Arm Cortex-A9, PRU-ICSS, EtherCAT, 3D graphics AM5706 Sitara processor: cost optimized Arm Cortex-A15 & DSP and secure boot AM5708 Sitara processor: cost optimized Arm Cortex-A15 & DSP, multimedia and secure boot AM5716 Sitara processor: Arm Cortex-A15 & DSP AM5718 Sitara processor: Arm Cortex-A15 & DSP, multimedia AM5718-HIREL AM5718-HIREL Sitara™ Processors Silicon Revision 2.0 AM5726 Sitara processor: dual Arm Cortex-A15 & dual DSP AM5728 Sitara processor: dual Arm Cortex-A15 & dual DSP, multimedia AM5746 Sitara processor: dual arm Cortex-A15 & dual DSP, ECC on DDR and secure boot AM5748 Sitara processor: dual arm Cortex-A15 & dual DSP, multimedia, ECC on DDR and secure boot AM620-Q1 Automotive Compute SoC with embedded safety for Driver Monitoring, networking and V2X systems AM623 Internet of Things (IoT) and gateway SoC with Arm® Cortex®-A53-based object and gesture recognition AM625 Human-machine-interaction SoC with Arm® Cortex®-A53-based edge AI and full-HD dual display AM625-Q1 Automotive display SoC with embedded safety for digital clusters AM625SIP General purpose system in package with Arm® Cortex®-A53 and integrated LPDDR4 AM62A3 1 TOPS vision SoC with RGB-IR ISP for 1-2 cameras, low-power, video surveillance, retail automation AM62A3-Q1 Automotive 1 TOPS vision SoC with RGB-IR ISP for 1-2 cameras, driver monitoring, dashcams AM62A7 2 TOPS vision SoC with RGB-IR ISP for 1-2 cameras, low-power systems, machine vision, robotics AM62A7-Q1 2 TOPS vision SoC with RGB-IR ISP for 1-2 cameras, driver monitoring, front cameras AM62P Arm®Cortex®-A53 SoC with triple display, 3D graphics, 4K video codec for HMI AM62P-Q1 Automotive display SoC with advanced 3D graphics, 4K video codec and embedded safety AM6411 Single-core 64-bit Arm® Cortex®-A53, single-core Cortex-R5F, PCIe, USB 3.0 and security AM6412 Dual-core 64-bit Arm® Cortex®-A53, single-core Cortex-R5F, PCIe, USB 3.0 and security AM6421 Single-core 64-bit Arm® Cortex®-A53, dual-core Cortex-R5F, PCIe, USB 3.0 and security AM6422 Dual-core 64-bit Arm® Cortex®-A53, dual-core Cortex-R5F, PCIe, USB 3.0 and security AM6441 Single-core 64-bit Arm® Cortex®-A53, quad-core Cortex-R5F, PCIe, USB 3.0 and security AM6442 Dual-core 64-bit Arm® Cortex®-A53, quad-core Cortex-R5F, PCIe, USB 3.0 and security AM6526 Dual Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6528 Sitara processor: dual Arm Cortex-A53 & dual Arm Cortex-R5F, Gigabit PRU-ICSS, 3D graphics AM6546 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS AM6548 Quad Arm® Cortex®-A53 and dual Arm Cortex-R5F Sitara™ processor with gigabit PRU-ICSS, 3D graphics AM68 General Purpose SoC with dual core 64-bit Arm Cortex-A72, graphics, 1-port PCIe Gen3, USB3.0 AM68A 8 TOPS vision SoC for 1-8 cameras, machine vision, smart traffic, retail automation AM69 General purpose octal core 64-bit Arm Cortex-A72 with graphics, PCIe Gen 3, Ethernet, USB 3.0 AM69A 32 TOPS vision SoC for 1-12 cameras, autonomous mobile robots, machine vision, mobile DVR, AI-BOX AMIC110 Sitara processor: Arm Cortex-A8, 10+ Ethernet protocols AMIC120 Sitara processor; Arm Cortex-A9; 10+ Ethernet protocols, encoder protocols DRA710 600 MHz Arm Cortex-A15 SoC processor with graphics for infotainment & cluster DRA712 600 MHz Arm Cortex-A15 SoC processor with graphics & dual Arm Cortex-M4 for infotainment & cluster DRA714 600 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA716 800 MHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA718 1 GHz Arm Cortex-A15 SoC processor with graphics & DSP for infotainment & cluster DRA722 800 MHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA724 1 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA725 1.2 GHz Arm Cortex-A15 SoC processor with graphics and DSP for automotive infotainment & cluster DRA726 1.5 GHz Arm Cortex-A15 with Graphics & DSP for Infotainment & Cluster DRA750 Dual 1.0 GHz A15, dual DSP, extended peripherals SoC processor for infotainment DRA756 Dual 1.5 GHz A15, dual EVE, dual DSP, extended peripherals SoC processor for infotainment DRA75P Multi-core SoC processors with ISP and pin-compatible with DRA75x SoCs for infotainment applications DRA77P High performance multi-core SoCs with extended peripherals and ISP for digital cockpit applications DRA790 300 MHz Arm Cortex-A15 SoC processor w/ 500 MHz C66x DSP for audio amplifier DRA791 300 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA793 500 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA797 800 MHz Arm Cortex-A15 SoC processor w/ 750 MHz C66x DSP for audio amplifier DRA821U Dual Arm Cortex-A72, quad Cortex-R5F, 4-port Ethernet switch, and a PCIe controller DRA821U-Q1 Automotive gateway SoC with dual Arm® Cortex®-A72, quad Cortex-R5F, four-port Ethernet switch, PCIe DRA829J Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet switch, and 4-port PCIe switch DRA829J-Q1 Dual Arm Cortex-A72, quad Cortex-R5F, multi-core DSP, 8-port Ethernet and 4-port PCIe switches DRA829V Dual Arm® Cortex®-A72, quad Cortex®-R5F, 8-port Ethernet and 4-port PCIe switches DRA829V-Q1 Dual Arm® Cortex-A72, quad Cortex-R5F, 8-port Ethernet and 4-port PCIe switches TDA2E SoC processors with graphics and video acceleration for ADAS applications (23mm package) TDA2EG-17 SoC processors with graphics and video acceleration for ADAS applications (17mm package) TDA2HF SoC processor w/ full-featured video & vision acceleration for ADAS applications TDA2HG SoC processor w/ graphics, video & vision acceleration for ADAS applications TDA2HV SoC processor w/ video & vision acceleration for ADAS applications TDA2LF SoC processor for ADAS applications TDA2P-ABZ TDA2 pin-compatible SoC family with graphic, imaging, video, vision acceleration options for ADAS TDA2P-ACD High performance SoC family w/ options for graphics, imaging, video and vision acceleration for ADAS TDA2SA SoC processor w/ highly-featured video & vision acceleration for ADAS applications TDA2SG SoC processor w/ highly-featured graphics, video & vision acceleration for ADAS applications TDA2SX SoC processor w/ full-featured graphics, video & vision acceleration for ADAS applications TDA4VE-Q1 Automotive system-on-a-chip for autoparking and driver assist with AI, vision pre-processing and GPU TDA4VEN-Q1 Automotive ADAS SoC with AI, graphics, and display for entry performance park assist applications TDA4VL-Q1 Automotive system-on-a-chip with AI, graphics for surround view, and park-assist applications TDA4VM Dual Arm® Cortex®-A72 SoC and C7x DSP with deep-learning, vision and multimedia accelerators TDA4VM-Q1 Automotive system-on-a-chip for L2, L3 and near-field analytic systems using deep learning
Industrial mmWave radar sensors
IWR1443 Single-chip 76-GHz to 81-GHz mmWave sensor integrating MCU and hardware accelerator IWR1642 Single-chip 76-GHz to 81-GHz mmWave sensor integrating DSP and MCU
Arm Cortex-M4 MCUs
MSP432E401Y SimpleLink™ 32-bit Arm Cortex-M4F MCU with ethernet, CAN, 1MB Flash and 256kB RAM MSP432E411Y SimpleLink™ 32-bit Arm Cortex-M4F MCU with ethernet, CAN, TFT LCD, 1MB Flash and 256kB RAM< TM4C1230C3PM High performance 32-bit ARM® Cortex®-M4F based MCU TM4C1230D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, 64-pin LQFP TM4C1230E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1230H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, 64-pin LQFP TM4C1231C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 12-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, 100-pin LQFP TM4C1231E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, 100-pin LQFP TM4C1231H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 144-pin LQFP TM4C1231H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 64-pin LQFP TM4C1231H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, 100-pin LQFP TM4C1232C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1232H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB-D, 64-pin LQFP TM4C1233C3PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 32-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 12-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1233E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1233H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 144-pin LQFP TM4C1233H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 64-pin LQFP TM4C1233H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB-D, 100-pin LQFP TM4C1236D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1236E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, USB, 64-pin LQFP TM4C1236H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, USB, 64-pin LQFP TM4C1237D5PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237D5PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 64-kb Flash, 24-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237E6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 24-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237E6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C1237H6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 144-pin LQFP TM4C1237H6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 64-pin LQFP TM4C1237H6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, CAN, RTC, USB, 100-pin LQFP TM4C123AE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, 64-pin LQFP TM4C123AH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, 64-pin LQFP TM4C123BE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, 64-pin LQFP TM4C123BE6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, 100-pin LQFP TM4C123BH6NMR 32-bit Arm® Cortex®-M4F-based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB< TM4C123BH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 144-pin LQFP TM4C123BH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 64-pin LQFP TM4C123BH6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 100-pin LQFP TM4C123BH6ZRB 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, 157-pin BGA TM4C123FE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123FH6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, USB, 64-pin LQFP TM4C123GE6PM 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 64-pin LQFP TM4C123GE6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 128-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 100-pin LQFP TM4C123GH6NMR 32-bit Arm® Cortex®-M4F-based MCU with 80-MHz, 256-kb flash, 32-kb RAM, 2x CAN, RTC, USB TM4C123GH6PGE 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 144-pin LQFP TM4C123GH6PM 32-bit Arm Cortex-M4F based MCU with 80 -MHz, 256 -KB Flash, 32 -KB RAM, 2 CAN, RTC, USB, 64-Pin TM4C123GH6PZ 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 100-pin LQFP TM4C123GH6ZRB 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 157-pin BGA TM4C123GH6ZXR 32-bit Arm Cortex-M4F based MCU with 80-MHz, 256-kb Flash, 32-kb RAM, 2x CAN, RTC, USB, 168-pin BGA TM4C1290NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1290NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB TM4C1292NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII TM4C1292NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII TM4C1294KCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1294NCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHZ, 1-MB flash, 256-KB RAM, USB, ENET MAC+PHY TM4C1294NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY TM4C1297NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, LCD TM4C1299KCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD TM4C1299NCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD TM4C129CNCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, AES TM4C129CNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, AES TM4C129DNCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129DNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+MII, AES TM4C129EKCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129ENCPDT 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129ENCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, AES TM4C129LNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD, AES TM4C129XKCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 512-kb Flash, 256-kb RAM, USB, ENET MAC+PHY, LCD, AES TM4C129XNCZAD 32-bit Arm Cortex-M4F based MCU with 120-MHz, 1-MB Flash, 256-KB RAM, USB, ENET MAC+PHY, LCD, AES
Arm Cortex-M0+ MCUs
MSPM0C1103 24MHz Arm® Cortex®-M0+ MCU with 8KB flash, 1KB SRAM, 12-bit ADC MSPM0C1104 24MHz Arm® Cortex®-M0+ MCU with 16KB flash, 1KB SRAM, 12-bit ADC MSPM0G1105 80MHz Arm® Cortex®-M0+ MCU with 32KB flash 16KB SRAM 2×12bit 4Msps ADC, op-amp MSPM0G1106 80MHz Arm® Cortex®-M0+ MCU with 364KB flash 32KB SRAM 2x12-bit 4Msps ADC, op-amp MSPM0G1107 80MHz Arm® Cortex®-M0+ MCU with 128KB flash 32KB SRAM 2x12-bit 4Msps ADC, op-amp MSPM0G1505 80MHz Arm® Cortex®-M0+ MCU with 32KB flash 16KB SRAM 2x4Msps ADC, 12-bit DAC, 3xCOMP, 2xOPA, MATHACL MSPM0G1506 80MHz Arm® Cortex®-M0+ MCU with 64KB flash 32KB SRAM 2x4Msps ADC, 12-bit DAC, 3xCOMP, 2xOPA, MATHACL MSPM0G1507 80MHz Arm® Cortex®-M0+ MCU with 128KB flash 32KB SRAM 2x4Msps ADC, 12-bit DAC, 3xCOMP, 2xOPA, MATHAC MSPM0G3105 80MHz Arm® Cortex®-M0+ MCU with 32KB flash 16KB SRAM 2x12-bit 4Msps ADC, op-amp, CAN-FD MSPM0G3105-Q1 Automotive 80MHz Arm® Cortex®-M0+ MCU with 32KB flash 16KB SRAM 2×12bit 4Msps ADC, op-amp, CAN-FD MSPM0G3106 80MHz Arm® Cortex®-M0+ MCU with 64KB flash 32KB SRAM 2x12-bit 4Msps ADC, op-amp, CAN-FD MSPM0G3106-Q1 Automotive 80MHz Arm® Cortex®-M0+ MCU with 64KB flash 32KB SRAM 2×12bit 4Msps ADC, op-amp, CAN-FD MSPM0G3107 80MHz Arm® Cortex®-M0+ MCU with 128KB flash 32KB SRAM 2x12-bit 4Msps ADC, op-amp, CAN-FD MSPM0G3107-Q1 Automotive 80MHz Arm® Cortex®-M0+ MCU with 128KB flash 32KB SRAM 2×12bit 4Msps ADC, op-amp, CAN-FD MSPM0G3505 80MHz Arm® Cortex®-M0+ MCU with 32KB flash 16KB SRAM 2x4Msps ADC, DAC, 3xCOMP, 2xOPA, CAN-FD, MAT MSPM0G3505-Q1 Automotive 80MHz Arm® Cortex®-M0+ MCU with 32KB flash 16KB SRAM ADC, DAC, COMP, OPA, CAN-FD, MATHACL MSPM0G3506 80MHz Arm® Cortex®-M0+ MCU with 64KB flash 32KB SRAM 2x4Msps ADC, DAC, 3xCOMP, 2xOPA, CAN-FD, MATHAC MSPM0G3506-Q1 Automotive 80MHz Arm® Cortex®-M0+ MCU with 64KB flash 32KB SRAM ADC, DAC, COMP, OPA, CAN-FD, MATHACL MSPM0G3507 80MHz Arm® Cortex®-M0+ MCU with 128KB flash 32KB SRAM 2x4Msps ADC, DAC, 3xCOMP, 2xOPA, CAN-FD, MATHA MSPM0G3507-Q1 Automotive 80MHz Arm® Cortex®-M0+ MCU with 128KB flash 32KB SRAM ADC, DAC, COMP, OPA, CAN-FD, MATHAC MSPM0L1105 32-MHz Arm® Cortex®-M0+ MCU with 32-KB flash, 4-KB SRAM, 12-bit ADC MSPM0L1106 32-MHz Arm® Cortex®-M0+ MCU with 64-KB flash, 4-KB SRAM, 12-bit ADC MSPM0L1228 32MHz Arm® Cortex®-M0+ MCU with 256KB dual-bank flash, 32KB SRAM, 12-bit ADC, COMP, VBAT, PSA-L1 MSPM0L1228-Q1 Automotive 32MHz Arm® Cortex®-M0+ MCU with 256KB dual-bank flash, 32KB SRAM, 12-bit ADC, COMP, VB MSPM0L1303 32-MHz Arm® Cortex®-M0+ MCU with 8-KB flash, 2-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1304 32-MHz Arm® Cortex®-M0+ MCU with 16-KB flash, 2-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1304-Q1 Automotive 32-Mhz Arm® Cortex®-M0+ with 16-KB flash, 2-KB RAM, 12-bit ADC,OPA, LIN MSPM0L1305 32-MHz Arm® Cortex®-M0+ MCU with 32-KB flash, 4-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1305-Q1 Automotive 32-Mhz Arm® Cortex®-M0+ with 32-KB flash, 4-KB RAM, 12-bit ADC, OPA, LIN MSPM0L1306 32-MHz Arm® Cortex®-M0+ MCU with 64-KB flash, 4-KB SRAM, 12-bit ADC, comparator, OPA MSPM0L1306-Q1 Automotive 32-Mhz Arm® Cortex®-M0+ with 64-KB flash, 4-KB RAM, 12-bit ADC, OPA,LIN MSPM0L1343 32-MHz Arm® Cortex®-M0+ MCU with 8-KB flash, 2-KB SRAM, 12-bit ADC, comparator, TIA MSPM0L1344 32-MHz Arm® Cortex®-M0+ MCU with 16-KB flash, 2-KB SRAM, 12-bit ADC, comparator, TIA MSPM0L1345 32-MHz Arm® Cortex®-M0+ MCU with 32-KB flash, 4-KB SRAM, 12-bit ADC, comparator, TIA MSPM0L1346 32-MHz Arm® Cortex®-M0+ MCU with 64-KB flash, 4-KB SRAM, 12-bit ADC, comparator, TIA MSPM0L2228 32MHz Arm® Cortex®-M0+ MCU with 256KB dual-bank flash, 32KB SRAM, 12bit ADC, COMP, LCD, VBAT, PSA MSPM0L2228-Q1 Automotive 32MHz Arm® Cortex®-M0+ MCU with 256KB dual-bank flash, 32KB SRAM, ADC, COMP, LCD, VBAT
Arm Cortex-R MCUs
AM2431 Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2432 Dual-core Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2434 Quad-core Arm® Cortex®-R5F-based MCU with industrial communications and security up to 800 MHz AM2631 Single-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2631-Q1 Automotive single-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2632 Dual-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2632-Q1 Automotive dual-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2634 Quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM2634-Q1 Automotive quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and security AM263P4 Quad-core Arm® Cortex®-R5F MCU up to 400 MHz with real-time control and expandable memory AM263P4-Q1 Automotive quad-core Arm® Cortex®-R5F MCU up to 400MHz with real-time control and expandable memory
Sub-1 GHz wireless MCUs
CC1310 SimpleLink™ 32-bit Arm Cortex-M3 Sub-1 GHz wireless MCU with 128kB Flash CC1311P3 SimpleLink™ Arm® Cortex®-M4 Sub-1GHz wireless MCU with 352KB flash and integrated +20dBm power amp CC1311R3 SimpleLink™ Arm® Cortex®-M4 Sub-1 GHz wireless MCU with 352-kB flash CC1312PSIP Sub-1 GHz system-in-package (SIP) module with integrated power amplifier CC1312R SimpleLink™ 32-bit Arm Cortex-M4F Sub-1 GHz wireless MCU with 352kB Flash CC1312R7 SimpleLink™ Arm® Cortex®-M4F multiprotocol Sub-1 GHz wireless MCU with 704-kB Flash CC1314R10 SimpleLink™ Arm® Cortex®-M33 Sub-1 GHz wireless MCU with 1-MB flash and up to 296 kB of SRAM CC1350 SimpleLink™ 32-bit Arm Cortex-M3 multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU with 128kB Flash CC1352P SimpleLink™ Arm Cortex-M4F multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU integrated power amplifier CC1352P7 SimpleLink™ Arm® Cortex®-M4F multiprotocol sub-1 GHz and 2.4-GHz wireless MCU integrated power amp CC1352R SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol Sub-1 GHz & 2.4 GHz wireless MCU with 352kB Flash CC1354P10 SimpleLink™ Arm® Cortex®-M33 multiband wireless MCU with 1MB flash, 296KB SRAM, integrated power amp CC1354R10 SimpleLink™ Arm® Cortex®-M33 multiband wireless MCU with 1-MB flash and up to 296-KB SRAM
Automotive wireless connectivity products
CC2640R2F-Q1 SimpleLink™ automotive qualified 32-bit Arm Cortex-M3 Bluetooth® Low Energy wireless MCU
Low-power 2.4-GHz products
CC2340R2 SimpleLink™ 32-bit Arm® Cortex®-M0+ Bluetooth® Low Energy wireless MCU with 256kB Flash CC2640R2F SimpleLink™ 32-bit Arm® Cortex®-M3 Bluetooth® 5.1 Low Energy wireless MCU with 128-kB flash CC2640R2L SimpleLink™ Bluetooth® 5.1 Low Energy wireless MCU CC2652P SimpleLink™ Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with integrated power amplifier CC2652P7 SimpleLink™ Arm® Cortex®-M4F multiprotocol 2.4-GHz wireless MCU, 704-kB Flash, integrated power amp CC2652PSIP SimpleLink™ multiprotocol 2.4-GHz wireless system-in-package module with integrated power amplifier CC2652R SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with 352kB Flash CC2652R7 SimpleLink™ Arm® Cortex®-M4F multiprotocol 2.4-GHz wireless MCU with 704-kB Flash CC2652RB SimpleLink™ 32-bit Arm Cortex-M4F multiprotocol 2.4 GHz wireless MCU with crystal-less BAW resonator CC2652RSIP SimpleLink™ multiprotocol 2.4-GHz wireless system-in-package module with 352-KB memory CC2674P10 SimpleLink™ Arm® Cortex®-M33 multiprotocol 2.4-GHz wireless MCU with 1-MB flash and power amplifier CC2674R10 SimpleLink™ Arm® Cortex®-M33 multiprotocol 2.4-GHz wireless MCU with 1-MB flash
Launch Download options
Operating system (OS)

GHS-3P-INTEGRITY-RTOS — Green Hills INTEGRITY RTOS

The INTEGRITY RTOS from Green Hills Software is the safe and secure foundation for running critical applications and guest operating systems on TI processors using Arm® Cortex-A cores. Its certified separation kernel runs software within protected partitions with certified (...)
Simulation model

DRA7xxP and TDA2Px BSDL Files

SPRM750.ZIP (34 KB) - BSDL Model
Simulation model

DRA7xxP and TDA2Px IBIS Files

SPRM748.ZIP (36622 KB) - IBIS Model
Simulation model

DRA7xxP and TDA2Px Thermal Model

SPRM749.ZIP (2 KB) - Thermal Model
Calculation tool

CLOCKTREETOOL — Clock Tree Tool for Sitara, Automotive, Vision Analytics, & Digital Signal Processors


The Clock Tree Tool (CTT) for ARM Processors & Digital Signal Processors is an interactive configuration software tool that provides information about device clock tree architecture. This tool allows visualization of the device clock tree. It can also be used to determine the exact register (...)
User guide: PDF
Package Pins CAD symbols, footprints & 3D models
FCCSP (ABZ) 760 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos