Product details

Protocols Proprietary Frequency bands (MHz) 315, 433, 779, 868, 915, 920 TX power (Max) (dBm) 13 RAM (KB) 4 CPU core MSP430 Peripherals 1 SPI, 1 UART, 1 timer, 12-bit ADC, I2C Sensitivity (best) (dBm) -117 GPIO 30 RX current (lowest) (mA) 15 Data rate (Max) (kbps) 500 Rating Catalog Operating temperature range (C) -40 to 85
Protocols Proprietary Frequency bands (MHz) 315, 433, 779, 868, 915, 920 TX power (Max) (dBm) 13 RAM (KB) 4 CPU core MSP430 Peripherals 1 SPI, 1 UART, 1 timer, 12-bit ADC, I2C Sensitivity (best) (dBm) -117 GPIO 30 RX current (lowest) (mA) 15 Data rate (Max) (kbps) 500 Rating Catalog Operating temperature range (C) -40 to 85
VQFN (RGZ) 48 49 mm² 7 x 7
  • True System-on-Chip (SoC) for Low-Power Wireless Communication Applications
  • Wide Supply Voltage Range:
    3.6 V Down to 1.8 V
  • Ultra-Low Power Consumption
    • CPU Active Mode (AM): 160 µA/MHz
    • Standby Mode (LPM3 RTC Mode): 2.0 µA
    • Off Mode (LPM4 RAM Retention): 1.0 µA
    • Radio in RX: 15 mA, 250 kbps, 915 MHz
  • MSP430™ System and Peripherals
    • 16-Bit RISC Architecture, Extended Memory, up to 20-MHz System Clock
    • Wake up From Standby Mode in Less Than 6 µs
    • Flexible Power-Management System With SVS and Brownout
    • Unified Clock System With FLL
    • 16-Bit Timer TA0, Timer_A With Five Capture/Compare Registers
    • 16-Bit Timer TA1, Timer_A With Three Capture/Compare Registers
    • Hardware Real-Time Clock (RTC)
    • Two Universal Serial Communication Interfaces (USCIs)
      • USCI_A0 Supports UART, IrDA, SPI
      • USCI_B0 Supports I2C, SPI
    • 12-Bit Analog-to-Digital Converter (ADC) With Internal Reference, Sample-and-Hold, and Autoscan Features (CC430F613x and CC430F513x Only)
    • Comparator
    • Integrated LCD Driver With Contrast Control for up to 96 Segments (Only CC430F61xx)
    • 128-Bit AES Security Encryption and Decryption Coprocessor
    • 32-Bit Hardware Multiplier
    • 3-Channel Internal DMA
    • Serial Onboard Programming, No External Programming Voltage Needed
    • Embedded Emulation Module (EEM)
  • High-Performance Sub-1 GHz RF Transceiver Core
    • Same as in CC1101
    • Wide Supply Voltage Range: 2 V to 3.6 V
    • Frequency Bands: 300 MHz to 348 MHz, 389 MHz to 464 MHz, and 779 MHz to 928 MHz
    • Programmable Data Rate From 0.6 kBaud to 500 kBaud
    • High Sensitivity (–117 dBm at 0.6 kBaud, –111 dBm at 1.2 kBaud, 315 MHz, 1% Packet Error Rate)
    • Excellent Receiver Selectivity and Blocking Performance
    • Programmable Output Power up to +12 dBm for All Supported Frequencies
    • 2-FSK, 2-GFSK, and MSK Supported, Also OOK and Flexible ASK Shaping
    • Flexible Support for Packet-Oriented Systems: On-Chip Support for Sync Word Detection, Address Check, Flexible Packet Length, and Automatic CRC Handling
    • Support for Automatic Clear Channel Assessment (CCA) Before Transmitting (for Listen-Before-Talk Systems)
    • Digital RSSI Output
    • Suited for Systems Targeting Compliance With EN 300 220 (Europe) and FCC CFR Part 15 (US)
    • Suited for Systems Targeting Compliance With Wireless M-Bus Standard EN 13757‑4:2005
    • Support for Asynchronous and Synchronous Serial Receive or Transmit Mode for Backward Compatibility With Existing Radio Communication Protocols
  • Device Comparison Summarizes the Available Family Members
  • True System-on-Chip (SoC) for Low-Power Wireless Communication Applications
  • Wide Supply Voltage Range:
    3.6 V Down to 1.8 V
  • Ultra-Low Power Consumption
    • CPU Active Mode (AM): 160 µA/MHz
    • Standby Mode (LPM3 RTC Mode): 2.0 µA
    • Off Mode (LPM4 RAM Retention): 1.0 µA
    • Radio in RX: 15 mA, 250 kbps, 915 MHz
  • MSP430™ System and Peripherals
    • 16-Bit RISC Architecture, Extended Memory, up to 20-MHz System Clock
    • Wake up From Standby Mode in Less Than 6 µs
    • Flexible Power-Management System With SVS and Brownout
    • Unified Clock System With FLL
    • 16-Bit Timer TA0, Timer_A With Five Capture/Compare Registers
    • 16-Bit Timer TA1, Timer_A With Three Capture/Compare Registers
    • Hardware Real-Time Clock (RTC)
    • Two Universal Serial Communication Interfaces (USCIs)
      • USCI_A0 Supports UART, IrDA, SPI
      • USCI_B0 Supports I2C, SPI
    • 12-Bit Analog-to-Digital Converter (ADC) With Internal Reference, Sample-and-Hold, and Autoscan Features (CC430F613x and CC430F513x Only)
    • Comparator
    • Integrated LCD Driver With Contrast Control for up to 96 Segments (Only CC430F61xx)
    • 128-Bit AES Security Encryption and Decryption Coprocessor
    • 32-Bit Hardware Multiplier
    • 3-Channel Internal DMA
    • Serial Onboard Programming, No External Programming Voltage Needed
    • Embedded Emulation Module (EEM)
  • High-Performance Sub-1 GHz RF Transceiver Core
    • Same as in CC1101
    • Wide Supply Voltage Range: 2 V to 3.6 V
    • Frequency Bands: 300 MHz to 348 MHz, 389 MHz to 464 MHz, and 779 MHz to 928 MHz
    • Programmable Data Rate From 0.6 kBaud to 500 kBaud
    • High Sensitivity (–117 dBm at 0.6 kBaud, –111 dBm at 1.2 kBaud, 315 MHz, 1% Packet Error Rate)
    • Excellent Receiver Selectivity and Blocking Performance
    • Programmable Output Power up to +12 dBm for All Supported Frequencies
    • 2-FSK, 2-GFSK, and MSK Supported, Also OOK and Flexible ASK Shaping
    • Flexible Support for Packet-Oriented Systems: On-Chip Support for Sync Word Detection, Address Check, Flexible Packet Length, and Automatic CRC Handling
    • Support for Automatic Clear Channel Assessment (CCA) Before Transmitting (for Listen-Before-Talk Systems)
    • Digital RSSI Output
    • Suited for Systems Targeting Compliance With EN 300 220 (Europe) and FCC CFR Part 15 (US)
    • Suited for Systems Targeting Compliance With Wireless M-Bus Standard EN 13757‑4:2005
    • Support for Asynchronous and Synchronous Serial Receive or Transmit Mode for Backward Compatibility With Existing Radio Communication Protocols
  • Device Comparison Summarizes the Available Family Members

The TI CC430 family of ultra-low-power system-on-chip (SoC) microcontrollers with integrated RF transceiver cores consists of several devices that feature different sets of peripherals targeted for a wide range of applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The devices feature the powerful MSP430 16‑bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.

The CC430 family provides a tight integration between the microcontroller core, its peripherals, software, and the RF transceiver, making these true SoC solutions easy to use as well as improving performance.

The CC430F61xx series are microcontroller SoC configurations that combine the excellent performance of the state-of-the-art CC1101 sub-1 GHz RF transceiver with the MSP430 CPUXV2, up to 32KB of in-system programmable flash memory, up to 4KB of RAM, two 16-bit timers, a high-performance 12-bit ADC with eight external inputs plus internal temperature and battery sensors on CC430F613x devices, a comparator, USCIs, a 128-bit AES security accelerator, a hardware multiplier, a DMA, an RTC module with alarm capabilities, an LCD driver, and up to 44 I/O pins.

The CC430F513x series are microcontroller SoC configurations that combine the excellent performance of the state-of-the-art CC1101 sub-1 GHz RF transceiver with the MSP430 CPUXV2, up to 32KB of in-system programmable flash memory, up to 4KB of RAM, two 16-bit timers, a high-performance 12-bit ADC with six external inputs plus internal temperature and battery sensors, a comparator, USCIs, a 128-bit AES security accelerator, a hardware multiplier, a DMA, an RTC module with alarm capabilities, and up to 30 I/O pins.

For complete module descriptions, see the CC430 Family User’s Guide.

The TI CC430 family of ultra-low-power system-on-chip (SoC) microcontrollers with integrated RF transceiver cores consists of several devices that feature different sets of peripherals targeted for a wide range of applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The devices feature the powerful MSP430 16‑bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.

The CC430 family provides a tight integration between the microcontroller core, its peripherals, software, and the RF transceiver, making these true SoC solutions easy to use as well as improving performance.

The CC430F61xx series are microcontroller SoC configurations that combine the excellent performance of the state-of-the-art CC1101 sub-1 GHz RF transceiver with the MSP430 CPUXV2, up to 32KB of in-system programmable flash memory, up to 4KB of RAM, two 16-bit timers, a high-performance 12-bit ADC with eight external inputs plus internal temperature and battery sensors on CC430F613x devices, a comparator, USCIs, a 128-bit AES security accelerator, a hardware multiplier, a DMA, an RTC module with alarm capabilities, an LCD driver, and up to 44 I/O pins.

The CC430F513x series are microcontroller SoC configurations that combine the excellent performance of the state-of-the-art CC1101 sub-1 GHz RF transceiver with the MSP430 CPUXV2, up to 32KB of in-system programmable flash memory, up to 4KB of RAM, two 16-bit timers, a high-performance 12-bit ADC with six external inputs plus internal temperature and battery sensors, a comparator, USCIs, a 128-bit AES security accelerator, a hardware multiplier, a DMA, an RTC module with alarm capabilities, and up to 30 I/O pins.

For complete module descriptions, see the CC430 Family User’s Guide.

Download

Similar products you might be interested in

open-in-new Compare products
Similar functionality to the compared device.
CC1310 ACTIVE SimpleLink™ 32-bit Arm Cortex-M3 Sub-1 GHz wireless MCU with 128kB Flash This product has up to 4x memory (up to 128-kB Flash) and less than half the current consumption in RX and TX modes (less than 6mA).

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 23
Type Title Date
* Data sheet CC430F613x, CC430F612x, CC430F513x MSP430™ SoC With RF Core datasheet (Rev. I) 17 Sep 2018
* Errata CC430F5137 Microcontroller Errata (Rev. AB) 17 Jun 2021
* User guide CC430 Family User's Guide (Rev. E) 19 Feb 2013
User guide SYS/BIOS (TI-RTOS Kernel) User's Guide (Rev. V) 01 Jun 2020
Application note DN507 -- FEC Decoding 21 Mar 2019
Application note CC11xx Sensitivity Versus Frequency Offset and Crystal Accuracy (Rev. D) 27 Sep 2018
Application note CRC Implementation (Rev. E) 27 Sep 2018
Technical article An out-of-the-box Internet of Things: building a seamless and secure smart home network 12 Jun 2018
Technical article Thread vs. Zigbee – what’s the difference? 16 May 2018
Technical article Your microcontroller deserves a nap – designing “sleepy” wireless applications 28 Mar 2018
Technical article SimpleLink™ MCU SDKs: Breaking down TI Drivers 12 Apr 2017
Application note Using the USCI I2C Master (Rev. A) 11 Mar 2015
White paper Wireless connectivity for the Internet of Things (IoT) with MSP430 MCUs 13 Mar 2014
Application note DN024 -- 868 MHz, 915 MHz and 955 MHz Monopole PCB Antenna (Rev. E) 22 Feb 2013
Application note DN035 -- Antenna Quick Guide (Rev. A) 12 Feb 2013
Application note Design Considerations When Using the MSP430 Graphics Library 05 Oct 2012
Application note CC430 RF Examples (Rev. C) 07 Sep 2012
Application note DN022 -- CC110x CC111x OOK ASK Register Settings (Rev. E) 08 Mar 2012
Application note DN036 -- CC1101+CC1190 600 kbps Data Rate, +19 dBm Transmit (Rev. A) 07 Nov 2011
Application note DN023 -- 868 MHz, 915 MHz and 955 MHz Inverted F Antenna (Rev. C) 30 Aug 2011
Application note AN094 -- Using the CC1190 Front End with CC1101 under EN 300 220 11 Jan 2011
Application note AN058 -- Antenna Selection Guide (Rev. B) 06 Oct 2010
Application note DN031 -- CC-Antenna-DK Documentation and Antenna Measurements Summary 26 Aug 2010

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

MSP-EXPCC430RFX — CC430 Sub-GHz RF Experimenter’s Board

 

 

Important Note:

The CC430 Sub-GHz RF Experiment’s Board is not supported by the Mac or Linux versions of the Code Composer Studio™ Integrated Development Environment. If you want to work with these operating systems, we suggest you select one of the many MSP LaunchPads.  

 

Get Software

Note: If (...)

Hardware programming tool

MSP-FET — MSP MCU Programmer and Debugger

The MSP-FET is a powerful emulation development tool – often called a debug probe – which allows users to quickly begin development on MSP low-power microcontrollers (MCU).

It supports programming and real-time debugging over both JTAG and SBW interfaces. Furthermore, the MSP-FET also provides a (...)

In stock
Limit: 999999999
Hardware programming tool

MSP-GANG — MSP-GANG production programmer

The MSP Gang Programmer (MSP-GANG) is a MSP430™/MSP432™ device programmer that can program up to eight identical MSP430/MSP432 Flash or FRAM devices at the same time. It connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow (...)

Software development kit (SDK)

MSPWARE — MSP430Ware for MSP Microcontrollers

MSP430Ware is a collection of resources that help users to effectively create and build MSP430 code. These resources support ALL MSP430 microcontrollers (MCUs). As one user mentioned, “It’s essentially everything developers need to become MSP430 microcontroller experts!”

This complete collection of (...)

Driver or library

MSP-GRLIB — MSP Graphics Library

The MSP Graphics Library is a royalty-free set of graphics primitives for displaying images or creating graphical user interfaces (GUIs) on MSP430 and MSP432 microcontroller-based boards that use a graphical display. The graphics library consists of two functional layers: 1) the display driver (...)
Driver or library

MSP-IQMATHLIB — Fixed Point Math Library for MSP

The Texas Instruments® MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in (...)
IDE, configuration, compiler or debugger

CCSTUDIO-MSP — Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers

Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, (...)

IDE, configuration, compiler or debugger

MSP430-GCC-OPENSOURCE — GCC - Open Source Compiler for MSP Microcontrollers

MSP430™ GCC open source package is a complete debugger and open source C/C++ compiler toolchain for building and debugging embedded applications based on MSP430 microcontrollers. This compiler supports all MSP430 devices without code size limitations. This compiler can be used standalone from the (...)
IDE, configuration, compiler or debugger

ULPADVISOR — ULP (Ultra-Low Power) Advisor

ULP (Ultra-Low Power) Advisor is a tool for guiding developers to write more efficient code to fully utilize the unique ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP (...)
IDE, configuration, compiler or debugger

IAR-KICKSTART — IAR Embedded Workbench

IAR Embedded Workbench delivers a complete development toolchain for building and debugging embedded applications for your selected target microcontroller. The included IAR C/C++ Compiler generates highly optimized code for your application, and the C-SPY Debugger is a fully integrated debugger for (...)
From: IAR Systems
Support software

CC430F513x Code Examples (Rev. H)

SLAC458H.ZIP (177 KB)
Package Pins Download
VQFN (RGZ) 48 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos