Product details

Number of receivers 4 Number of transmitters 3 ADC sampling rate (Max) (MSPS) 25 Arm CPU ARM-Cortex R4F 200MHz Interface type 2 CAN-FD, I2C, QSPI, SPI, UART Hardware accelerators Radar hardware accelerator RAM 1472 Rating Automotive Operating temperature range (C) -40 to 125
Number of receivers 4 Number of transmitters 3 ADC sampling rate (Max) (MSPS) 25 Arm CPU ARM-Cortex R4F 200MHz Interface type 2 CAN-FD, I2C, QSPI, SPI, UART Hardware accelerators Radar hardware accelerator RAM 1472 Rating Automotive Operating temperature range (C) -40 to 125
FCCSP (ABL) 161 108 mm² 10.4 x 10.4
  • FMCW transceiver
    • Integrated PLL, transmitter, receiver, Baseband, and ADC
    • 60- to 64-GHz coverage with 4-GHz continuous bandwidth
    • Four receive channels
    • Three transmit channels
    • Supports 6-bit phase shifter
    • Ultra-accurate chirp engine based on fractional-N PLL
    • TX power: 12 dBm
    • RX noise figure:
      • 12 dB
    • Phase noise at 1 MHz:
      • –93 dBc/Hz
  • Built-in calibration and self-test
    • Arm Cortex-R4F-based radio control system
    • Built-in firmware (ROM)
    • Self-calibrating system across frequency and temperature
    • Embedded self-monitoring with no host processor involvement on Functional Safety-Compliant targeted devices
  • C674x DSP for advanced signal processing (AWR6843 only)
  • Hardware accelerator for FFT, filtering, and CFAR processing
  • Memory compression
  • Arm® Cortex®-R4F microcontroller for object detection, and interface control
    • Supports autonomous mode (loading user application from QSPI flash memory)
  • Internal memory with ECC
    • AWR6843:1.75 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), DSP L1RAM (64KB) and L2 RAM (256 KB), and L3 radar data cube RAM (768 KB)
    • AWR6443: 1.4 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), and L3 radar data cube RAM (768 KB)
    • Technical reference manual includes allowed size modifications
  • Other interfaces available to user application
    • Up to 6 ADC channels (low sample rate monitoring)
    • Up to 2 SPI ports
    • Up to 2 UARTs
    • 2 CAN-FD interfaces
    • I2C
    • GPIOs
    • 2 lane LVDS interface for raw ADC data and debug instrumentation
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 functional safety system design
    • Hardware integrity up to ASIL-B targeted
    • Safety-related certification ISO 26262 certification by TUV Sud planned
  • Non-Functional safety variants
  • AEC-Q100 qualified
  • Power management
    • Built-in LDO network for enhanced PSRR
    • I/Os support dual voltage 3.3 V/1.8 V
  • Clock source
    • 40.0 MHz crystal with internal oscillator
    • Supports external oscillator at 40 MHz
    • Supports externally driven clock (square/sine) at 40 MHz
  • Easy hardware design
    • 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip chip BGA package for easy assembly and low-cost PCB design
    • Small solution size
  • Supports automotive temperature operating range
  • FMCW transceiver
    • Integrated PLL, transmitter, receiver, Baseband, and ADC
    • 60- to 64-GHz coverage with 4-GHz continuous bandwidth
    • Four receive channels
    • Three transmit channels
    • Supports 6-bit phase shifter
    • Ultra-accurate chirp engine based on fractional-N PLL
    • TX power: 12 dBm
    • RX noise figure:
      • 12 dB
    • Phase noise at 1 MHz:
      • –93 dBc/Hz
  • Built-in calibration and self-test
    • Arm Cortex-R4F-based radio control system
    • Built-in firmware (ROM)
    • Self-calibrating system across frequency and temperature
    • Embedded self-monitoring with no host processor involvement on Functional Safety-Compliant targeted devices
  • C674x DSP for advanced signal processing (AWR6843 only)
  • Hardware accelerator for FFT, filtering, and CFAR processing
  • Memory compression
  • Arm® Cortex®-R4F microcontroller for object detection, and interface control
    • Supports autonomous mode (loading user application from QSPI flash memory)
  • Internal memory with ECC
    • AWR6843:1.75 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), DSP L1RAM (64KB) and L2 RAM (256 KB), and L3 radar data cube RAM (768 KB)
    • AWR6443: 1.4 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), and L3 radar data cube RAM (768 KB)
    • Technical reference manual includes allowed size modifications
  • Other interfaces available to user application
    • Up to 6 ADC channels (low sample rate monitoring)
    • Up to 2 SPI ports
    • Up to 2 UARTs
    • 2 CAN-FD interfaces
    • I2C
    • GPIOs
    • 2 lane LVDS interface for raw ADC data and debug instrumentation
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 functional safety system design
    • Hardware integrity up to ASIL-B targeted
    • Safety-related certification ISO 26262 certification by TUV Sud planned
  • Non-Functional safety variants
  • AEC-Q100 qualified
  • Power management
    • Built-in LDO network for enhanced PSRR
    • I/Os support dual voltage 3.3 V/1.8 V
  • Clock source
    • 40.0 MHz crystal with internal oscillator
    • Supports external oscillator at 40 MHz
    • Supports externally driven clock (square/sine) at 40 MHz
  • Easy hardware design
    • 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip chip BGA package for easy assembly and low-cost PCB design
    • Small solution size
  • Supports automotive temperature operating range

The AWR device is an integrated single chip mmWave sensor based on FMCW radar technology capable of operation in the 60-GHz to 64-GHz band. It is built with TI’s low power45-nm RFCMOS process and enables unprecedented levels of integration in an extremely small formfactor. This is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the automotive space. Multiple automotive qualified variants are currently available including Functional Safety-Compliant targeted devices and non-functional safety devices.

The AWR device is an integrated single chip mmWave sensor based on FMCW radar technology capable of operation in the 60-GHz to 64-GHz band. It is built with TI’s low power45-nm RFCMOS process and enables unprecedented levels of integration in an extremely small formfactor. This is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the automotive space. Multiple automotive qualified variants are currently available including Functional Safety-Compliant targeted devices and non-functional safety devices.

Download

Similar products you might be interested in

open-in-new Compare products
Similar functionality to the compared device.
AWR6843 ACTIVE Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6443 has the same pinout as AWR6843, but down in functionality without the DSP.

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 6
Type Title Date
* Data sheet AWR6443, AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor datasheet (Rev. C) 01 Apr 2021
* Errata AWR6443 Device Errata, Silicon Revision 2.0 01 Apr 2020
Application note mmWave Radar Radome Design Guide 17 Aug 2021
Functional safety information TUV SUD Functional Safety Certification for xWR6843 (Rev. A) 05 Aug 2021
Application note Memory Compression and Decompression Engine for TI mmwave Radar 02 Dec 2019
White paper Using a complex-baseband architecture in FMCW radar systems 17 Apr 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AWR6843ISK — AWR6843 single-chip 60-GHz to 64-GHz automotive radar sensor antenna plug-in module

AWR6843ISK is an easy-to-use 60 GHz mmWave sensor evaluation kit based on AWR6843 device. The AWR6843ISK may be used to evaluate the AWR6843 and AWR6443 devices. This board is powered by USB interface and enables access to point-cloud data over USB or CAN-FD interface.

This kit is supported by (...)

In stock
Limit: 5
Evaluation board

DCA1000EVM — Real-time data-capture adapter for radar sensing evaluation module

The DCA1000 evaluation module (EVM) provides real-time data capture and streaming for two- and four-lane low-voltage differential signaling (LVDS) traffic from TI AWR and IWR radar sensor EVMs. The data can be streamed out via 1-Gbps Ethernet in real time to a PC running the MMWAVE-STUDIO tool for (...)

Out of stock on TI.com
Evaluation board

MMWAVEICBOOST — mmWave sensors carrier card platform

The MMWAVEICBOOST carrier card expands capabilities of select 60 GHz mmWave evaluation modules. This board provides advanced software developement, debug features such as trace and single step via TI’s Code Composers compatible debuggers. On-board Launchpad interface enables pairing with (...)

Out of stock on TI.com
Reference designs

TIDEP-01023 — Child-presence and occupant-detection reference design using 60-GHz antenna-on-package mmWave sensor

This reference design demonstrates the use of the AWR6843AOP, a 60-GHz single-chip mmWave sensor with integrated antenna. The sensor also has an integrated DSP, MCU, and a hardware accelerator for fast Fourier transform (FFT) processing.

The AWR6843AOP sensor can help developers address a wide range (...)

Package Pins Download
FCCSP (ABL) 161 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos