Product details

Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 5.5 Total supply voltage (Min) (+5V=5, +/-5V=10) 1.8 Rail-to-rail In, Out GBW (Typ) (MHz) 3 Slew rate (Typ) (V/us) 1.5 Vos (offset voltage @ 25 C) (Max) (mV) 2.5 Iq per channel (Typ) (mA) 0.13 Vn at 1 kHz (Typ) (nV/rtHz) 14 Rating Automotive Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 1 Features EMI Hardened Input bias current (Max) (pA) 10 CMRR (Typ) (dB) 96 Output current (Typ) (mA) 20 Architecture CMOS
Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 5.5 Total supply voltage (Min) (+5V=5, +/-5V=10) 1.8 Rail-to-rail In, Out GBW (Typ) (MHz) 3 Slew rate (Typ) (V/us) 1.5 Vos (offset voltage @ 25 C) (Max) (mV) 2.5 Iq per channel (Typ) (mA) 0.13 Vn at 1 kHz (Typ) (nV/rtHz) 14 Rating Automotive Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 1 Features EMI Hardened Input bias current (Max) (pA) 10 CMRR (Typ) (dB) 96 Output current (Typ) (mA) 20 Architecture CMOS
SOT-23 (DBV) 5 5 mm² 2.9 x 1.6
  • Qualified for Automotive Applications
  • AEC-Q100 Qualified With the Following Results:
    • Device Temperature Grade : –40°C to +125°C Ambient Operating Temperature Range
    • Device HBM Classification Level 2
    • Device CDM Classification Level C6
  • Low IQ: 150 µA/ch
  • Wide Supply Range: 1.8 V to 5.5 V
  • Low Noise: 14 nV/√Hz at 1 kHz
  • Gain Bandwidth: 3 MHz
  • Low Input Bias Current: 0.2 pA
  • Low Offset Voltage: 0.5 mV
  • Unity-Gain Stable
  • Internal RF/EMI Filter
  • Specified Temperature Range: –40°C to +125°C
  • Qualified for Automotive Applications
  • AEC-Q100 Qualified With the Following Results:
    • Device Temperature Grade : –40°C to +125°C Ambient Operating Temperature Range
    • Device HBM Classification Level 2
    • Device CDM Classification Level C6
  • Low IQ: 150 µA/ch
  • Wide Supply Range: 1.8 V to 5.5 V
  • Low Noise: 14 nV/√Hz at 1 kHz
  • Gain Bandwidth: 3 MHz
  • Low Input Bias Current: 0.2 pA
  • Low Offset Voltage: 0.5 mV
  • Unity-Gain Stable
  • Internal RF/EMI Filter
  • Specified Temperature Range: –40°C to +125°C

The OPAx314-Q1 series is a family of single-, and dual-, and quad-channel operational amplifiers (op-amps) that represents a new generation of low-power, general-purpose CMOS amplifiers. Rail-to-rail input and output swings, low quiescent current (150 µA typically at 5 VS) combined with a wide bandwidth of 3 MHz, and very low noise (14 nV/√Hz at 1 kHz) make this device family very attractive for a variety of battery-powered applications that require a good balance between cost and performance. The low input bias current supports applications with mega-ohm source impedances.

The robust design of the OPAx314-Q1 series provides ease-of-use to the circuit designer: unity-gain stability with capacitive loads of up to 300 pF, an integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electrostatic discharge (ESD) protection (4-kV HBM).

The device is optimized for low-voltage operation as low as 1.8 V (±0.9 V) and up to 5.5 V (±2.75 V), and is specified over the full extended temperature range of –40°C to +125°C.

The single-channel device, OPA314-Q1, is offered in the SOT-23 package and the dual-channel device, OPA2314-Q1, is offered in the VSSOP (8) package. The quad-channel OPA4314-Q1 is available in the 14-pin TSSOP package.

The OPAx314-Q1 series is a family of single-, and dual-, and quad-channel operational amplifiers (op-amps) that represents a new generation of low-power, general-purpose CMOS amplifiers. Rail-to-rail input and output swings, low quiescent current (150 µA typically at 5 VS) combined with a wide bandwidth of 3 MHz, and very low noise (14 nV/√Hz at 1 kHz) make this device family very attractive for a variety of battery-powered applications that require a good balance between cost and performance. The low input bias current supports applications with mega-ohm source impedances.

The robust design of the OPAx314-Q1 series provides ease-of-use to the circuit designer: unity-gain stability with capacitive loads of up to 300 pF, an integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electrostatic discharge (ESD) protection (4-kV HBM).

The device is optimized for low-voltage operation as low as 1.8 V (±0.9 V) and up to 5.5 V (±2.75 V), and is specified over the full extended temperature range of –40°C to +125°C.

The single-channel device, OPA314-Q1, is offered in the SOT-23 package and the dual-channel device, OPA2314-Q1, is offered in the VSSOP (8) package. The quad-channel OPA4314-Q1 is available in the 14-pin TSSOP package.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 6
Type Title Date
* Data sheet OPAx314-Q1 3-MHz, Low-Power, Low-Noise, RRIO, 1.8-V CMOS Operational Amplifier datasheet (Rev. B) 13 Jan 2017
Technical article What is an op amp? 21 Jan 2020
Technical article How to lay out a PCB for high-performance, low-side current-sensing designs 06 Feb 2018
Technical article Low-side current sensing for high-performance cost-sensitive applications 22 Jan 2018
Technical article Voltage and current sensing in HEV/EV applications 22 Nov 2017
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AMPQUICKKIT-EVM — TI Precision Amplifier Quickstart Kit

The TI Precision Amplifier Quickstart Kit simplifies op amp selection, design, and evaluation with samples of six op amps and an evaluation module for prototyping surface-mount ICs. The kit is the perfect starting point for your amplifier designs.

You may also be interested in TI Precision Labs, the (...)

In stock
Limit: 5
Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.

The (...)

In stock
Limit: 5
Evaluation board

DIYAMP-EVM — Universal Do-It-Yourself (DIY) Amplifier Circuit Evaluation Module

The DIYAMP-EVM is a unique evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling you to quickly evaluate design concepts and verify simulations. It is available in three industry-standard packages (SC70, SOT23, SOIC) and (...)
Simulation model

OPA314 TINA-TI Spice Model (Rev. A)

SBOM748A.ZIP (5 KB) - TINA-TI Spice Model
Simulation model

OPA314 TINA-TI Reference Design (Rev. A)

SBOM749A.ZIP (22 KB) - TINA-TI Reference Design
Simulation model

OPA314 PSpice Model (Rev. A)

SBOMAS7A.ZIP (30 KB) - PSpice Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Package Pins Download
SOT-23 (DBV) 5 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos